Publication Date

Spring 2019


School of Engineering and Computational Sciences


Engineering: Electrical


quadcopter, drone, haptic, creative thesis


Electrical and Electronics


Although remote controllers for drones, based upon a classic two-joystick architecture, are unwieldy, they still see widespread use. As a replacement, we propose a remote control with a glove-based architecture that utilizes haptic feedback from the quadcopter. The proposed controller should be far more intuitive, making drone flight easier and more intuitive. Additionally, since the pilot will have one hand free, he or she can use maps, electronics, and other aids much more straightforwardly than with a two-handed controller. While our technology is designed for drones, it also could see further usage in a wide variety of civilian and military applications, from entertainment to industry. This glove-based architecture with haptic feedback might well become a staple of the future.