WALKING TO IMPROVE OUTCOMES IN PATIENTS WITH TYPE II DIABETES

A Scholarly Project

Submitted to the

Faculty of Liberty University

In partial fulfillment of

The requirements for the degree

Of Doctor of Nursing Practice

Ву

Kelley Leigh Sanders

Liberty University

Lynchburg, VA

July 2022

WALKING TO IMPROVE OUTCOMES IN PATIENTS WITH TYPE II DIABETES

A Scholarly Project

Submitted to the

Faculty of Liberty University

In partial fulfillment of

The requirements for the degree

Of Doctor of Nursing Practice

By

Kelley Leigh Sanders

Liberty University

Lynchburg, VA

July 2022

Scholarly Project Chair Approval:

ABSTRACT

Walking is a simple, feasible, and effective exercise modality in which providers can instruct patients as a component of type II diabetic treatment plans. Many patients are overwhelmed when given instructions to exercise and therefore never begin. Lack of exercise contributes to poor glycemic control and adverse outcomes. Also, gym memberships can be expensive resulting in patients forgoing exercise altogether. The purpose of this DNP scholarly project was to conduct research outcomes which may enlighten providers to prescribe exercise interventions by providing evidence walking 45 minutes three times a week can improve glycemic control among type II diabetic patients. Also, the DNP scholarly project sought to answer the following clinical question: In type II diabetic patients, what is the effect of walking 45 minutes three times a week on HgbA1c levels compared with no exercise within three months? A group of four type II diabetics participated in walking 45 minutes three times a week for 12 weeks. The projected outcome was lowered HgbA1c among participants walking three times a week. HgbA1c was evaluated at the beginning of the project and at the end of the 12-week implementation period. The project aimed to examine the efficacy of walking as an effective and feasible exercise intervention for type II diabetic patients. The average HgbA1c among the group decreased from 8.4 to 7.475. Providers can prescribe walking prescriptions for type II diabetic patients to increase glucose control and lesson the stress for patients related to initiating exercise.

Keywords: type II diabetics, exercise, walking, glucose control, glycosylated hemoglobin (HgbA1c)

Contents

SECTION ONE: INTRODUCTION
Background
Problem Statement
Purpose of the Project
Clinical Question
SECTION TWO: LITERATURE REVIEW
Search Strategy10
Critical Appraisal10
Synthesis
Conceptual Framework/Model11
Summary
SECTION THREE: METHODOLOGY12
Design
Measurable Outcomes13
Setting13
Population13
Ethical Considerations14
Data Collection14
Tools
Intervention15
Data Analysis17
SECTION FOUR: RESULTS18
Descriptive Statistics19
Measurable Outcome19
SECTION FIVE: DISCUSSION20
Implication for Practice20
Sustainability21
Dissemination Plan21
References
Appendix

List of Tables

Table 1 Timeline for scholarly project	16
Table 2 Participant HgbA1c levels before and after walking intervention	18
Table 3 Participant weight tracker	19
Table 4 Paired t-testing stattistics for initial and post walking intervention	20

SECTION ONE: INTRODUCTION

Type II diabetes is a chronic medical condition plaguing today's health care arena causing significant burden of overall health and wellbeing for many individuals. Sadly, type II diabetes is the most frequent metabolic condition seen throughout the world (Buttaro et al., 2021). Management for type II diabetes places large financial stress on healthcare systems, patients, and families (Arovah et al., 2018). Increased incidences of type II diabetes can be contributed to poor lifestyle choices and escalations in rates of obesity and sedentary lifestyles (Caron et al., 2018). Researchers estimate by 2035, about 592 million patients worldwide will be diagnosed with type II diabetes (Ruffino et al., 2017).

Many patients struggle with long term management of type II diabetes considering the complexity of the disease, motivation, social determinates of health, lifestyle, and socioeconomic status. Lifestyle changes, specifically exercise, can significantly improve outcomes for type II diabetic patients and prevent adverse outcomes (Caron et al., 2018). Walking is a feasible exercise which can improve glucose control for type II diabetics. The purpose of the DNP scholarly project was to provide evidence to aid providers in prescribing walking prescriptions for type II diabetic patients to increase patient outcomes and prevent complications.

Background

The pathophysiology of type II diabetes includes insulin resistance, impaired insulin secretion, and increased hepatic production of glucose (Buttaro et al., 2021). Metabolic syndrome is strongly related to the development of type II diabetes and presents with abdominal obesity, increased triglycerides, low high-density lipoproteins, hyperglycemia, and insulin resistance (Buttaro et al., 2021). However, type II diabetes can be prevented through lifestyle changes such as diet and exercise (Yates et al., 2017). Symptoms of type II diabetes can progress

slowly, and some patients may be asymptomatic for long periods of time (Buttaro et al., 2021). Common symptoms include blurred vision, polyuria, polyphagia, polydipsia, and fatigue (Buttaro et al., 2021). Proper treatment of type II diabetes is essential to prevent devastating complications.

Type II diabetes is the most common cause of cardiovascular disease (Buttaro et al., 2021). Complications of uncontrolled type II diabetes includes retinopathy, nephropathy, neuropathies, macrovascular complications, and microvascular complications (Buttaro et al., 2021). Diabetic retinopathy may progress to total vision loss if untreated (Buttaro et al., 2021). Patients who experience poor glucose control are at greater risk for blindness associated with diabetic retinopathy (Buttaro et al., 2021). Sadly, evidence has revealed 80% of all type II diabetics will develop diabetic retinopathy (Buttaro et al., 2021). Furthermore, uncontrolled type II diabetes commonly results in diabetic neuropathy in 60 % of patients leading to end stage renal disease (Buttaro et al., 2021). Nerve damage, coronary artery disease, cerebrovascular accidents, and peripheral vascular disease are also common complications due to poor glucose control (Buttaro et al., 2021).

The mainstay of treatments for type II diabetics are lifestyle changes, medications, and close monitoring (Buttaro et al., 2021; Ruffino et al., 2017). Goals of treatment include maintaining glucose within proper ranges, improving quality of life, and preventing complications. Type II diabetes is a progressive disease which requires patient education and frequent follow ups to prevent adverse patient outcomes. Treatment with medications alone is not sufficient to successfully treat and manage type II diabetes.

Multiple studies have revealed that walking improves glucose control and overall health among type II diabetics by improving the bodies glucoregulatory activity (Arovah et al., 2018;

Chang et al., 2021; Karstoft et al., 2017; Moghetti et al., 2020; Regeer et al., 2020). Overall, exercise such as walking lowers patients glycated hemoglobin (HgbA1c), reduces low density lipoproteins, and lowers blood pressure which improves outcomes among type II diabetic patients (Chang et al., 2021; Moghetti et al., 2020; Ruffino et al, 2017; Yates et al., 2017). Walking lowers blood pressure by stimulating the release of vasodilators and increasing baroreflex sensitivity (Change et al., 2021; Yates et al., 2017). Walking reduces low density lipoproteins by implementing reverse transport of cholesterol (Chang et al., 2021). Walking facilitates improvements in cardiometabolic health which decreases total and cardiovascular mortality among type II diabetics (Arovah et al., 2018; Moghetti et al., 2020; Reynolds et al., 2020).

Problem Statement

Exercise is an essential component of type II diabetic treatment plans to improve outcomes and prevent complications (Caron et al., 2018; Moghetti et al., 2020; Ruffino et al., 2017). However, many patients become overwhelmed when given instructions to exercise and never begin. Lack of exercise contributes to poor glycemic control and adverse outcomes. Many patients cannot afford expensive gym memberships and forgo exercise altogether. Walking is a simple, feasible, and effective exercise modality which providers can instruct patients as a component of type II diabetic treatment plans.

Purpose of the Project

The purpose of this DNP scholarly project was to aid providers in prescribing exercise interventions by providing evidence that walking 45 minutes three times a week can improve glycemic control among type II diabetic patients. Walking is a significant intervention for type II diabetic patients to improve outcomes, improve quality of life and prevent complications (Regeer

et al., 2020; Reynolds et al. 2020; Ruffino et al., 2017. A group of type II diabetics participated in walking 45 minutes three times a week for 12 weeks. The projected outcome was lowered HgbA1c among participants walking three times a week. HgbA1c was evaluated at the beginning of the project and at the end of the 12 weeks. Participants were required to have a documented HgbA1c within six months of the project start date. The DNP scholarly project aimed to examine the efficacy of walking as an effective and feasible exercise intervention for type II diabetic patients.

Clinical Question

In type II diabetic patients, what is the effect of walking 45 minutes three times a week on HgbA1c levels compared with no exercise within three months?

SECTION TWO: LITERATURE REVIEW

Many type II diabetic patients do not fully understand what providers mean when given instructions to exercise (Caron et al., 2018). Evidence has revealed a vast number of patients struggle with implementing exercise interventions due to lack of knowledge, finances, and time constraints (Caron et al., 2018; Chang et al., 2020; Moghetti et al., 2020; Regeer et al., 2020; Reynolds et al., 2020; Ruffino et al, 2017; Yates et al., 2017). Exercise compliance is decreased among patients who are just given general instructions to exercise (Caron et al., 2018). However, walking is a safe, cost effective and efficient form of exercise for type II diabetics to improve glycemic control, increase overall health, and prevent complications (Caron et al., 2018; Chang et al., 2020; Moghetti et al., 2020; Regeer et al., 2020; Reynolds et al., 2020; Ruffino et al, 2017; Yates et al., 2017).

Walking interventions can be completed anywhere and expensive gym memberships are not required. Walking prescriptions can increase exercise compliance among type II diabetics

(Reynolds et al., 2020). Exercise, such as walking, must be added to treatment plans as research reveals walking accelerates adequate control of type II diabetes (Chang et al., 2020).

Search Strategy

A systematic search was conducted related to exercise and type II diabetes. Cochran Database of Systematic Reviews, PubMed, CINAHL, and Ebsco were searched. The following keywords were utilized in the search: exercise, walking, type II diabetes, and lifestyle interventions. Parameters included peered reviewed studies published in English within the last five years. Systematic reviews and randomized controlled trials were searched to present highest levels of evidence. To narrow down the results, the terms walking, and type II diabetes were implemented within the search. Fifteen articles were included in the literature review consisting of three systematic reviews, five randomized controlled trials, four non-randomized controlled trials, and three descriptive studies.

Critical Appraisal

Strengths of the literature review include high levels of evidence such as systematic reviews of randomized controlled trials, randomized controlled trials, and non-randomized controlled trials. Limitations of the studies selected include small sample sizes and not accounting for comorbidities. A systematic review was conducted related to walking and type II diabetes to provide clinical recommendations and found that walking improves glycemic control, blood pressure, weight, and cardiopulmonary fitness (Moghetti et al., 2020). A randomized controlled trial determined walking improves overall health and glycemic control (Arovah et al., 2018). Research revealed even if type II diabetics walk at a slower pace, walking is still effective for improving glycemic control based on a non-randomized trial (Caron et al., 2018). Multiple studies revealed walking at slow, brisk, or interval pace lowers glycemic control and improves

overall health among type II diabetics (Chang et al., 2021; Cigarroa et al., 2020; Karstoft et al., 2017; Ruffino et al., 2017). Also, education related to walking among type II diabetic patients increases exercise compliance (Yates et al., 2017). A table of evidence is provided (Appendix A).

Synthesis

In review of evidence, walking interventions for type II diabetic patients can improve glucose control, overall health, and prevent diabetic complications (Arovah et al., 2018; Chang et al., 2021; Karstoft et al., 2017; Moghetti et al., 2020; Reeger et al., 2020). Medications alone are not sufficient to manage type II diabetic patients. Lifestyle changes must be implemented to insure best management of type II diabetes. Many patients become overwhelmed with strenuous lifestyle changes which causes undo stress and anxiety. Furthermore, walking is a simple, low cost, and effective exercise intervention to improve exercise compliance among type II diabetics (Yates et al., 2017). Walking not only lowers blood glucose but provides an outlet to improve mental health and wellbeing (Reynolds, 2020). Providers must educate on the importance of walking interventions for type II diabetic patients to improve outcomes.

Conceptual Framework/Model

The Iowa Model of Evidenced-Based Practice was utilized as the conceptual model for the project related to walking interventions for type II diabetic patients. Triggers identified for the exercise project were lack of exercise compliance among type II diabetics due to lack of knowledge, finances, and feelings of being overwhelmed by the thought of exercise (Iowa Model Collaborative, 2017; Reynolds et al., 2020). Next, the clinical question was established per the Iowa Model such as, in type II diabetic patients, what is the effect of walking 45 minutes three times a week on HgbA1c levels compared with no exercise within three months (Iowa Model

Collaborative, 2017). Based on research, the topic is a priority so the team implemented the practice change and disseminated results (Iowa Model Collaborative, 2017).

A copy of the Iowa Model of Evidenced-Based Practice is included (Appendix B).

Summary

The literature review revealed type II diabetics are at increased risk of serious complications due to the disease process and poor glycemic control (Buttaro et al., 2021). Exercise is a vital component of type II diabetic treatment plans related to lifestyle changes (Caron et al., 2018; Chang et al., 2020; Moghetti et al., 2020; Regeer et al., 2020; Reynolds et al., 2020; Ruffino et al, 2017; Yates et al., 2017). Many type II diabetics struggle with exercise compliance (Reynolds et al, 2020). The simple exercise intervention of walking is effective in improving glucose control and preventing adverse outcomes (Chang et al., 2021; Cigarroa et al., 2020; Karstoft et al., 2017; Ruffino et al., 2017). Exercise instructions for walking can increase exercise compliance. The purpose of this DNP scholarly project is to conduct research outcomes that may enlighten providers to prescribe exercise interventions by providing evidence that walking 45 minutes three times a week can improve glycemic control among type II diabetic patients.

SECTION THREE: METHODOLOGY

Design

The evidenced based DNP scholarly project related to walking interventions to improve outcomes among type II diabetic patients was conducted by utilizing the Iowa Model for Evidenced Based Practice. Approval was granted to use the Iowa Model and is located in Appendix B. The pilot study of the project consists of a quasi-experimental design to evaluate walking and glycemic control among type II diabetic patients (Sullivan, 2018). A group of type II diabetic patients were recruited from a primary care office to volunteer to participate in the

quasi- experimental study. Each participant was instructed to walk 45 minutes three times a week and log walking activities. The team leader (DNP student), physician, and office staff educated participants regarding the study, walking requirements, and impacts on disease processes. The length of the study was 12 weeks and HgbA1c was tested initially and at the end of the 12 weeks. Participants were required to have a documented HgA1c within six months of beginning the project.

Measurable Outcomes

Glycated Hemoglobin (HgbA1c)

Setting

The DNP scholarly project was completed at a clinic in Roanoke, Texas which cares for a large population of uninsured patients with many deficits in social determinants of health. The clinic serves a significant population of uncontrolled type II diabetic patients who lack the resources and knowledge to optimally manage their disease. The clinic's mission is to provide low-cost healthcare to underserved populations which aligns with the purpose of this project. Dr. Griffin (owner and primary provider) gave permission to conduct the project within the clinic and offered to help as needed. Stakeholders included the community, patients, caretakers, Dr. Griffin, office staff and the DNP student leader. The vision of the project is to provide a low-cost exercise intervention to type II diabetic patient to improve glucose control and utilize data to inform future practice. A copy of site letter of support is included in the appendix C.

Population

This low-income type II diabetic population is desperately in need of low-cost lifestyle interventions to improve glucose control and overall health which was the rational for selecting this patient population and feasible intervention. Convivence sampling was utilized to obtain five

participants from the clinic to complete the study. Inclusion criteria included ages 18-80, male or female, diagnosed with type II diabetes, and ability to walk without assistive devices. Exclusion criteria includes no hospitalizations within the last six months. Average participants consisted of uninsured working-class patients ages 43-77 years old.

Ethical Considerations

Training in research ethics has been completed to ensure protection of human subjects when conducting research. The project was submitted to Liberty University's institutional review board (IRB) and complied with ethical research standards for the protection of participants. A copy of IRB approval is provided in appendix B. A copy of the DNP students Collaborative Institutional Training Initiative (CITI) Certificate is attached in appendix D. Informed consent was delivered for all participants including risks and benefits of participating in the walking study. Participant confidentiality was maintained throughout the project. The researchers maintained professional conduct and vowed to always protect the rights of all human subjects. Walking prescriptions were given to participants to improve glucose control and the researchers pledged to do no harm. Ethical treatment of participants was maintained throughout the entire project.

Data Collection

The DNP student along with the office staff collected HgbA1c levels at the beginning of the DNP scholarly project before implementation of walking interventions. If the patient had a documented HgbA1c within six months, no beginning lab work was required. Then HgbA1c was collected at 12 weeks which was the end of the intervention period. The team scheduled participants to come into the clinic for lab work and the DNP student collected all data and

organized to evaluate. The DNP student collected walking logs at 3, 6, 9 and 12 weeks of the study and analyzed to evaluate compliance with walking prescriptions.

Tools

Participants logged walking dates and times every week and presented to the DNP project leader to evaluate compliance at weeks 3, 6, 9, and 12. HgA1c levels were logged on an excel spread sheet by the DNP student to evaluate and analyze glycemic control related to walking.

Intervention

The team first began with the project development and plan. Next, IRB approval was secured. Then through convenience sampling the student gained five type II diabetic participants through the clinic. Clinic staff was educated on the project and trained regarding patient lab scheduling and patient education. The team educated participants and provided informed consent for the project. Participants were educated on the importance of lifestyle changes such as walking to improve glucose control and overall outcomes. Participants were instructed to walk 45 minutes three times a week for 12 weeks. Before implementation the team collected baseline HgbA1c levels from all participants or allowed previously obtained HgbA1c results within six months of the project start date. Participants logged times walked each week and presented logs on weeks 3, 6, 9, and 12. HgbA1c was collected again at the end of the 12 weeks. The implementation period was completed over 12 weeks and then the team evaluated and analyzed results. The process was completed over 12 weeks to increase compliance and provide enough time to improve glycemic control.

Timeline

The timeline for the scholarly project table depicts the milestones accomplished throughout the project including a description of all stages. (See Table 1.) Each milestone and

deliverable were accomplished by the dates listed. The DNP scholarly project proceeded in a systematic process and was completed according to the timeline.

Table 1

Timeline for scholarly project

Milestone	Deliverable	Description	Estimated Completion Date
Proposal	Design and Proposal	Project development/plan/proposal	January 30, 2022
Defense	Proposal defense	Scholarly proposal defense with chair	January 31, 2022
IRB	Submission	Submit to IRB for approval	February 1, 2022
IRB	Granted IRB Approval	IRB approval	February 15, 2022
Sample	DNP student recruits' sample	Collect Sample	March 25, 2022
Educate	DNP student educates	Educate clinic staff	March 28, 2022
Educate	DNP student obtains informed consent	Educate participants/informed Consent	March 29, 2022
Collect	DNP student with office staff obtains initial lab work	Initial HgA1c check	March 30, 2022
Start	Intervention	Implementation start date	April 3, 2022
Collect	Exercise progress update	Exercise log check at 3 weeks	April 23, 2022
Collect	Exercise progress update	Exercise log check at 6 weeks	May 14, 2022
Collect	Exercise progress update	Exercise log check at 9 weeks	June 4, 2022

Collect	Project results	12-week HgbA1c check and exercise log check	June 27, 2022
Analyze	Completed project	Evaluate and analyze results – meet with statistician	June 30, 2022
Final Defense	Final Defense	Defend scholarly project	July 8, 2022

Feasibility Analysis

The cost associated with the project includes HgbA1c level testing. Cost at a local lab without insurance is \$40.00 per patient. Participants paid for HgbA1c testing initially and post intervention. The clinic allowed the DNP student to conduct the project free of charge. Overall, the project was considered cost effective as the walking intervention could be completed anywhere with no associated gym fees.

Data Analysis

A statistician was consulted related to measurable outcomes and statistical analysis. HgbA1c was evaluated to determine effectiveness of walking interventions for type II diabetic patients through the quasi-experimental study. Descriptive statistics and inferential statistics including paired t-testing was utilized to determine statistical significance of the walking intervention and glucose control (Sullivan, 2018).

Measurable Outcome 1

HgbA1c was tested before and after walking implementations to determine if walking 45 minutes three times a week improved glycemic control by lowering HgbA1c levels. Statistical significance was inferred if the p value was less than 0.05 and paired t-testing was utilized to determine if walking improved HgbA1c levels (Sullivan, 2018).

SECTION FOUR: RESULTS

The study began with five participants. Overall, four patients completed the study with one drop out. Aggregate demographics of the group consisted of the following: Caucasian, overweight males, type II diabetics, ages 43-77, working class, and mostly uninsured. The most successful participant was mostly compliant with walking only missing a few days due to sickness and his HgbA1c decreased from 10.5 to 6.6. The other four participants HgbA1c levels on average stayed the same as the initial result mostly likely due to missed walking sessions. However, the average HgbA1c of the sample decreased from 8.4 to 7.475. (See Table 2.) Three of the four participants lost weight after completing the study. (See Table 3.) Common causes of missed walking sessions included sickness, work obligations, and knee pain.

 Table 2

 Participant HgbA1c levels before and after walking implementation

Pt #	Initial HgbA1c	Post Walking Intervention HgbA1c	Difference
1	7.6	7.7	-0.1
3	10.5	6.6	3.9
4	5.4	5.5	-0.1
5	10.1	10.1	0
Mean	8.4	7.475	0.925
STD	2.376271589	1.967019742	1.983893478

 Table 3

 Participant weight tracking

Pt #	Initial weight	Post weight	Difference
	(lbs.)	(lbs.)	
1	206	204	2
3	258	252	6
4	188	184	4
5	299	305	-6
mean	237.75	236.25	1.5

Descriptive Statistics

Paired t-testing was used to determine statistical significance. Data were evaluated based on participants initial HgbA1c and then the post intervention HgbA1c. Even though the average HgbA1c decreased overall the results were not statistically significant. The p value was 0.419860968 which is not considered statistically significant. (See Table 4.)

Measurable Outcome

HgbA1c was the measurable outcome of the study. Overall, the mean of HgbA1c levels decreased from 8.4 to 7.475. The average difference was 0.925 from starting HgbA1c levels to post intervention HgbA1c levels.

 Table 4

 Paired t-testing statistics for initial and post walking intervention

	Initial	Post Walking Intervention
	HgbA1c	HgbA1c
Mean	8.4	7.475
Variance	5.64666667	3.869166667
Observations	4	4
Pearson Correlation	0.596897017	
Hypothesized Mean Difference	0	
df	3	
t Stat	0.932509744	
P(T<=t) one-tail	0.209930484	
t Critical one-tail	2.353363435	
P(T<=t) two-tail	0.419860968	
t Critical two-tail	3.182446305	

SECTION FIVE: DISCUSSION

Implication for Practice

This DNP scholarly project holds clinical and practical significance for type II diabetic patients. Walking is a practical intervention which is effective for improved glucose control and overall health. This project is important for medical providers to prescribe specific exercise interventions instead of simply instructing type II diabetic patients to exercise. Walking is a simple, low-cost intervention for type II diabetics to apply to lifestyle interventions to improve glucose control (Chang et al., 2021; Cigarroa et al., 2020; Karstoft et al., 2017; Ruffino et al., 2017). The project is important to the general public as walking increases overall health,

wellbeing and can contribute to weight loss (Arovah et al., 2018; Chang et al., 2021; Karstoft et al., 2017; Moghetti et al., 2020; Regeer et al., 2020). Providers must educate on the importance of walking for type II diabetic patients to improve health and prevent complications from poor glucose control (Chang et al., 2021; Moghetti et al., 2020; Ruffino et al, 2017; Yates et al., 2017). Detailed exercise instructions such as walking in addition to medications and diet is essential for improved outcomes and prevention of complications among type II diabetic patients (Caron et al., 2018; Chang et al., 2020; Moghetti et al., 2020; Regeer et al., 2020; Reynolds et al., 2020; Ruffino et al, 2017; Yates et al., 2017).

Sustainability

Prescribing walking prescriptions for type II diabetic patients is sustainable within practice to improve glucose control and overall health. A printed handout with walking instructions to walk 45 minutes three times a week would be beneficial for patients and providers. Low-cost interventions for type II diabetic patients are important to the community as most patients are among the uninsured working class. Limitations of the study included a small sample size and lack of compliance due to weather, motivation, time, employment constraints, and knee pain. Patient accountability, encouragement, and increased education were important lessons learned for increased compliance. The project could be more statistically significant with a larger sample size.

Dissemination Plan

Dissemination of these results were presented to the clinic staff and may potentially be used to develop new policies within the practice. These results can be the basis for another larger study related to walking and type II diabetic glucose control.

References

- Arovah, N. I., Kushartanti, B. M. W., Washington, T. L., & Heesch, K. C. (2018). Walking with diabetes (WW-DIAB) programme a walking programme for Indonesian type 2 diabetes mellitus patients: A pilot randomized controlled trial. *SAGE Open Medicine*, 6, 205031211881439. https://doi.org/10.1177/2050312118814391
- Buttaro, T., Polgar-Bailey, P., Sandberg-Cook, J., Trybulski, J. (2021). *Primary care: Interprofessional collaborative practice*. Elsevier.
- Caron, N., Peyrot, N., Caderby, T., Verkindt, C., & Dalleau, G. (2018). Effect of type 2 diabetes on energy cost and preferred speed of walking. *European Journal of Applied Physiology*, 118(11), 2331-2338. https://doi.org/10.1007/s00421-018-3959-z
- Chang, C., Kuo, C., Huang, C., Hwang, S., Liao, W., & Lee, M. (2021). Habitual physical activity and diabetes control in young and older adults with type II diabetes: A longitudinal correlational study. *International Journal of Environmental Research and Public Health*, 18(3), 1330. https://doi.org/10.3390/ijerph18031330
- Cigarroa, I., Espinoza-Sanhueza, M. J., Lasserre-Laso, N., Diaz-Martinez, X., Garrido-Mendez, A., Matus-Castillo, C., Martinez-Sanguinetti, M. A., Leiva, A. M., Petermann-Rocha, F., Parra-Soto, S., Concha-Cisternas, Y., Troncoso-Pantoja, C., Martorell, M., Ulloa, N., Waddell, H., & Celis-Morales, C. (2020). Association between walking pace and diabetes: Findings from the Chilean national health survey 2016–2017. *International Journal of Environmental Research and Public Health, 17*(15), 5341. https://doi.org/10.3390/ijerph17155341
- Iowa Model Collaborative. (2017). Iowa model of evidence-based practice: Revisions and validation. *Worldviews on Evidence-Based Nursing*, 14(3), 175-182. http://doi:10.1111/wvn.12223

- Karstoft, K., Clark, M. A., Jakobsen, I., Müller, I. A., Pedersen, B. K., Solomon, T. P. J., & Reid-Larsen, M. (2017). The effects of 2 weeks of interval vs continuous walking training on glycemic control and whole-body oxidative stress in individuals with type 2 diabetes: A controlled, randomized, crossover trial. *Diabetologia*, 60(3), 508-517. https://doi.org/10.1007/s00125-016-4170-6
- Moghetti, P., Balducci, S., Guidetti, L., Mazzuca, P., Rossi, E., Schena, F., the Italian Society of Motor and Sports Sciences (SISMES), the Italian Society of Diabetology (SID), the Italian Association of Medical Diabetologists (AMD), Italian Society of Motor and Sports Sciences (SISMES), Italian Society of Diabetology (SID), & Italian Association of Medical Diabetologists (AMD). (2020). Walking for subjects with type 2 diabetes: A systematic review and joint AMD/SID/SISMES evidence-based practical guideline. *Nutrition, Metabolism, and Cardiovascular Diseases, 30*(11), 1882-1898. https://doi.org/10.1016/j.numecd.2020.08.021
- Regeer, H., Huisman, S. D., Empelen, P., Flim, J., & Bilo, H. J. G. (2020). Improving physical activity within diabetes care: Preliminary effects and feasibility of a national low-intensity group-based walking intervention among people with type 2 diabetes mellitus. *Lifestyle Medicine*, 1(2), n/a. https://doi.org/10.1002/lim2.10
- Reynolds, A. N. (2020). How do we support walking prescriptions for type 2 diabetes management? facilitators and barriers following a 3-month prescription. *Journal of Primary Health Care, 12*(2), 173-180. https://doi.org/10.1071/HC20023
- Ruffino, J. S., Songsorn, P., Haggett, M., Edmonds, D., Robinson, A. M., Thompson, D., & Vollaard, N. B. J. (2017). A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes

patients. *Applied Physiology, Nutrition, and Metabolism, 42*(2), 202-208. https://doi.org/10.1139/apnm-2016-0497

Sullivan, L. (2018). Essentials of biostatistics in public health (3rd ed). Jones and Bartlett.

Yates, T., Edwardson, C. L., Henson, J., Gray, L. J., Ashra, N. B., Troughton, J., Khunti, K., & Davies, M. J. (2017). Walking away from type 2 diabetes: A cluster randomized controlled trial. *Diabetic Medicine*, *34*(5), 698-707. https://doi.org/10.1111/dme.13254

Appendix

- A. Strengths of Evidence Table
- B. Permission for Iowa Model
- C. Letter of Support
- D. CITI Certificate
- E. Patient Consent
- F. Walking Log
- G. Project Budget
- H. IRB Approval Documentation

Appendix A

Evidence Table

Name: Kelley Leigh Sanders

Clinical Question: In type II diabetic patients, what is the effect of walking 45 minutes three times a week on HgbA1c levels compared with no exercise within three months?

Article Title, Author, etc. (Current APA Format)	Study Purpose	Sample (Characteristic s of the Sample: Demographics, etc.)	Methods	Study Results	Level of Evidence (Use Melnyk Framework)	Study Limitation s	Would Use as Evidence to Support a Change? (Yes or No) Provide Rationale.
Arovah, N. I., Kushartanti, B. M. W.,	To evaluate the	A recruited	A	Findings	Level 2:	All	Yes, this
Washington, T. L., & Heesch, K.	effectiveness and feasibility	sample of 43 type II diabetic	randomized controlled	indicate walking	Randomized controlled	participants were	randomized controlled
C. (2018). Walking with diabetes	of walking programs to	patients from a public hospital	trial.	improves glucose levels	trial.	recruited from the	trial provides evidence
(WW-DIAB) programme a	improve overall health	in Yogyakarta, Indonesia.		and overall physical		same hospital	walking can improve
walking programme for	and glycemic control for type			activity in type II		and the study	glucose control and
Indonesian type 2 diabetes mellitus	II diabetic patients.			diabetic patients.		included a small	physical activity for
patients: A pilot randomized	patients.			Walking programs for		sample size.	type II diabetic
controlled trial. SAGE Open				type II		5120.	patients.
Medicine, 6,				diabetic patients are feasible. Also,			

205031211881439. https://doi.org/ 10.1177/2050312118814391				text support increased walking compliance.			
Caron, N., Peyrot, N., Caderby, T.,	To compare	A volunteered	A non-	Findings	Level 3:	Not	Yes, this
Verkindt, C., & Dalleau, G.	metabolic rate, energy cost	sample of 20 type II diabetic	randomized controlled	indicate type II diabetic	Controlled trial with no	randomized and the	controlled study
(2018). Effect of type 2 diabetes	and speed of walking	patients and 20 healthy patients.	trial.	patients walk with a higher	randomizatio n.	diabetic sample did	provided evidence for
on energy cost and preferred speed	effectiveness between type II			metabolic rate at all speeds		not have comorbiditi	walking prescriptions
of walking. European Journal of	diabetic patients and			compared to healthy adult		es such as peripheral	for type II diabetics
Applied Physiology, 118(11),	healthy patients.			patients. Type II diabetic		vascular disease	which can be considered
2331-				patients tend		which is	moderate
2338. https://doi.org/10.1007/s004				to select slower speeds		very common	intensity exercise. The
21-018-3959- <u>z</u>				of walking to compensate		among the vast	simple exercise of
				for higher		majority of	walking is an
				energy		type II	effective
				requirements		diabetic	exercise for
				which allows		patients.	type II
				them to gain			diabetic
				an intense			patients.
				workout even			
				at slower pace			
				due to higher metabolic			
				demands.			
Chang, C., Kuo, C., Huang, C., Hwang, S.,	Seeks to	A study sample	A	Findings	Level 6:	Sample	Yes, this
Chang, C., Ixuo, C., Huang, C., Hwang, S.,	determine if	of 206 type II	descriptive	indicate	Correlational	was	study
Liao, W., & Lee, M. (2021).	moderate daily	diabetic patients	correlational	glucose	descriptive	recruited	provides
	physical	which were	study using	control is	study.	using a	evidence for
Habitual physical activity and	activity among	recruited from	evaluation	improved		convenienc	the
	type II diabetic	an	via	with moderate		e sample	effectiveness

WALKING TO IMI KOVE OUTCOM	ILS						20
diabetes control in young and	patients	endocrinology	questionnair	daily exercise		which can	of daily
	improves	outpatient	es.	among type II		limit	moderate
older adults with type II diabetes:	glycemic	clinic. 95% of		diabetic		generalizab	exercise such
A longitudinal correlational	control?	patients within		patients.		ility. Also,	as walking to
A longitudinal conclational		the study		HgbA1c		the study	improve
study. International Journal of		experienced		improved		utilized	glycemic
		poor glycemic		with daily		used	control
Environmental Research and		control. The		exercise.		subjective	among type
		mean hgbA1c		More minutes		data which	II diabetic
Public Health, 18(3),		was 7.8 %.		of daily		increases	patients.
1220 1 //1 //10 2200/:				exercise		the risk of	
1330. <u>https://doi.org/10.3390/ijerp</u>				improves		recall bias.	
h18031330				glycemic			
<u>II18031330</u>				control.			
Cigarroa, I., Espinoza-Sanhueza, M. J.,	To assess	5520 type II	A non-	Findings	Level 6:	Multimorbi	Yes, even
	walking pace	diabetic patients	experiential	indicated	Descriptive	dity, body	though level
Lasserre-Laso, N., Diaz-Martinez,	related to type	ages 15 to 90	descriptive	participants	study.	mass index,	6 evidence
	II diabetic	years old were	survey.	who self-		and	this study
X., Garrido-Mendez, A., Matus-	glucose control	recruited from		reported a		socioecono	provides
Castillo, C., Martinez-Sanguinetti,	among type II	Chilean		brisk walking		mic status	evidence that
Castino, C., Martinez-Sangumetti,	diabetics who	National Health		pace had		may have	average to
M. A., Leiva, A. M., Petermann-	walk for	Survey between		lower Hgba1c		impacts on	brisk walking
	exercise.	2016 and 2017.		levels and		findings.	can improve
Rocha, F., Parra-Soto, S., Concha-		Participants		better glucose		Also, self-	glucose
		rated walking		control.		reporting	control and
Cisternas, Y., Troncoso-Pantoja,		pace as slow,		However,		could	health among
		average, or		those with		impact	type II
C., Martorell, M., Ulloa, N.,		brisk.		average and		reliability.	diabetics.
Waddell, H., & Celis-Morales, C.				brisk walking			
wadden, 11., & Cens-worders, C.				paces had			
(2020). Association between				lower glucose			
				levels when			
walking pace and diabetes:				compared to			
			Ī	all		1	
Findings from the Chilean national				participants.			

WALKING TO IMPROVE OUTCOM	IL3						29
health survey 2016–							
2017. International Journal of							
Environmental Research and							
Public Health, 17(15),							
5341. <u>https://doi.org/10.3390/ijerp</u>							
<u>h17155341</u>							
Edmealem, A., Ademe, S., & Tegegne, B.	To evaluate factors related to	364 type II diabetic patients	A cross- sectional	Depression, widowed,	Level 6:	Researchers noted	This study can be used to
(2020). Level of physical activity	physical activity (exercise)	were selected through	observational study.	living in urban area, and length	Descriptive study.	potential for recall bias.	stress the importance of
and its associated factors among	among type II diabetic patients.	systematic random sampling	study.	of disease were associated with		recair bias.	education regarding
type II diabetes patients in Dessie	diabetic patients.	from a hospital in Ethiopia.		lack of exercise among type II			physical activity for
referral hospital, northeast		Ешпоріа.		diabetic patients. More			type II diabetics and
Ethiopia. Diabetes, Metabolic				education is needed for type			how to
Syndrome and Obesity, 13, 4067-				II diabetics to be successful			overcome barriers to exercise.
4075. https://doi.org/10.2147/DMS				with physical activity.			exercise.
<u>O.S279772</u>				activity.			
Hicks, D., Hickner, R. C., Govinden, U., &	To assess the acute effects of	PRISMA guidelines were	Systematic review of	Aerobic exercise	Level 1: Systematic	Small sample size	This study can be used to aid
Sookan, T. (2021). Acute effects	exercise in adults with type	utilized for inclusion of	randomized controlled	improved glycemic	review of	was a limitation of	in exercise recommendati
	II diabetes.	studies related to	trials.	control	RCTs.	the study.	ons for type II

of single-bout exercise in adults with type 2 diabetes: A systematic review of randomized controlled trials and controlled crossover trials. JEMDSA: The Journal of Endocrinology, Metabolism and Diabetes of South Africa, 26(1), 24- 28. https://doi.org/10.1080/160896 77.2020.1850033		exercise and type II diabetes. Three studies were included in the systematic review out of 205 total studies.		compared to resistance training. High intensity interval training is highly effective for type II diabetic patients who can tolerate. Aerobic exercise is effective in lowering glucose within the first 24 hours after exercise.			diabetic patients to improve outcomes.
Karstoft, K., Clark, M. A., Jakobsen, I., Müller, I. A., Pedersen, B. K., Solomon, T. P. J., & Reid-Larsen, M. (2017). The effects of 2 weeks of interval vs continuous walking training on glycemic control and whole-body oxidative stress in individuals with type 2 diabetes: A controlled, randomized, crossover	To determine the impacts of interval walking compared to continuous walking on glycemic control among type II diabetic patients.	14 type II diabetic participants with a BMI >18 were recruited to participate in this randomized controlled trial.	A randomized controlled trial.	Interval walking improved glycemic control over continuous walking among type II diabetic patients with a BMI >18.	Level 2: Randomized controlled trial	This study presented with a small sample size and interventions only lasted two weeks.	Yes, this study can be used to aid in exercise prescriptions for type II diabetic patients. Patients who can tolerate interval walking may have more improved glucose control.

WALKING TO IMPROVE OUTCOM	ILS .						31
trial. Diabetologia, 60(3), 508-							
517. <u>https://doi.org/10.1007/s0012</u>							
<u>5-016-4170-6</u>							
Moghetti, P., Balducci, S., Guidetti, L.,	To conduct a	28 random	A	Walking	Level 1:	Many	Yes, this
Mazzuca, P., Rossi, E., Schena, F.,	systematic review related	controlled trials were included	systematic review of	among type II diabetic	Systematic review of	patients with type II	study can be utilized in
the Italian Society of Motor and	to walking interventions	from 1872 screened	RCTs.	patients improves	RCTs.	diabetes have	proving the necessity of
Sports Sciences (SISMES), the	among type II diabetic	randomized controlled trials.		glucose control, body		comorbid conditions	walking prescriptions
Italian Society of Diabetology	patients to provide	Inclusion criteria		weight, blood pressure and		which need special care	for type II diabetic
(SID), the Italian Association of	clinical recommendatio	maintained all participants		over all cardiorespirat		before implementi	patients. This study proved
Medical Diabetologists (AMD),	ns	must be		ory fitness.		ng walking	walking is
Italian Society of Motor and		diagnosed type II diabetic		walking		prescriptio ns.	intervention
Sports Sciences (SISMES), Italian		patients, participation in		exercises are effective and			of choice for type II
Society of Diabetology (SID), &		a structured walking		can be prescribed			diabetic patients to
Italian Association of Medical		program, random		especially in younger			improve quality of
Diabetologists (AMD). (2020).		controlled trials, and intervention		patients who are already			life, glucose control, and
Walking for subjects with type 2		length of at least eight		physically fit.			decrease adverse
diabetes: A systematic review and		weeks.					effects.
joint AMD/SID/SISMES							
evidence-based practical							
guideline. Nutrition, Metabolism,							

S
to be
le tion
ove
ype
tic in
to
of
t of the

WALKING TO IMPROVE OUTCOM		ı		1	1	1	
Pamungkas, R. A., Chamroonsawasdi, K.,	To review how	Through	A systematic	Family support	Level 1:	The	This study can
	family support	systematic search	review.	improves	Systematic	researchers	be utilized to
& Vatanasomboon, P. (2017). A	impacts type II	22 studies were		adherence to	review of	report	stress the
	diabetic patients	included in this		lifestyle	RCTs.	publication	importance of
systematic review: Family support	and self-	review using		changes like	Re 15.	bias due to	involving
	managements	Joanna Briggs		diet and		tendency to	family and
integrated with diabetes self-	such as diet,	Institute		exercise.		publish	support
	exercise,	guidelines.				more	persons when
management among uncontrolled	medications, and					positive than	instructing on
	lifestyle					negative.	lifestyle
type II diabetes mellitus	interventions.						changes to
., The second second second							improve
patients. Behavioral							outcomes for
partentis. Dentanto, un							type II
Sciences, 7(3),							diabetics.
(6),							<u> </u>
62. https://doi.org/10.3390/bs7030							
02. <u>integration of 10.237 0.037 030</u>							
062							
<u>002</u>							
Reynolds, A. N. (2020). How do we	To determine	28 type II	Non-	Walking	Level 3:	Study was	Yes, this
100 do we	barriers	diabetic adults	randomized	_	Non-	_	· ·
support walking prescriptions for				prescriptions		not	study proves
support warking prescriptions for	experienced by	were recruited	controlled	increased time	randomized	randomized	walking
4	type II diabetic	from general	trial.	of physical	controlled	, involved a	prescriptions
type 2 diabetes management?	patients who	practices and		activity and	trial.	small	for type II
£ . :11:4 . 4	were	outpatient		self-rated		sample	diabetic
facilitators and barriers following a	prescribed	clinics in		overall health		size, and	patients
2	walking	Dunedin, New		among type II		included	beneficial in
3-month prescription. <i>Journal of</i>	exercise	Zealand to		diabetic		self-	increasing
D : 11 11 C 12(2) 172							
Primary Health Care, 12(2), 173-	prescriptions to	complete a		patients.		reporting.	walking
100 1 //1 // 10 / 10 / 10 / 10 /	improve	three-month		Barriers for			adherence
180. <u>https://doi.org/10.1071/HC20</u>	glycemic	walking trial to		walking			and
000	control.	evaluate		included			improving
<u>023</u>		barriers.		walking in the			overall health
				dark during			and mental
				evenings			wellbeing.
				causing			5
	l .	l	1	- Jambiiig	1	1	I

Ruffino, J. S., Songsorn, P., Haggett, M., Edmonds, D., Robinson, A. M., Thompson, D., & Vollaard, N. B. J. (2017). A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients. Applied Physiology, Nutrition, and Metabolism, 42(2), 202- 208. https://doi.org/10.1139/apnm- 2016-0497 Solomon, T. P. J., Tarry, E., Hudson, C.	To compare the effectiveness of reduced exertion interval training and moderate intensity walking among type II diabetic patients.		A non-randomized controlled trial	participants to be scared and participants expressing no desire to walk. Both high intensity interval training and moderate intensity walking interventions improved mean arterial pressure and plasma fructosamine. Reduced exertion interval training improved overall fitness over walking.		The study was not randomized and included a small sample size. The safety of interval training among type II diabetic patients needs more research.	Yes, walking improves blood pressure and overall health of type II diabetic patients. Walking must be a long-term intervention for type II diabetics. It is not a short term treatment.
O., Fitt, A. I., & Laye, M. J. (2020). Immediate post-breakfast	of exercise in relation to improved glucose.	were selected randomly to participate in the randomized controlled trial.	randomized controlled trial.	breakfast was most effective in lowering blood glucose.	Randomized Controlled Trial.	diabetic patients were included in the study.	be utilized to encourage walking after breakfast to improve

WALKING TO IMI KOVE OUTCOM							
physical activity improves							glycemic control.
interstitial postprandial glycemia:							control.
A comparison of different activity-							
meal timings. Pflügers							
Archiv, 472(2), 271-							
280. https://doi.org/10.1007/s0042							
<u>4-019-02300-4</u>							
West, A. B., Konopka, A. R., LeBreton, K.	To assess behavior change	50 participants were recruited for	A randomized	Education such	Level 1: Randomized	Researchers stressed	This study can be utilized to
A., Miller, B. F., Hamilton, K. L.,	strategies among those high risk	the study after completing the	controlled trial.	as group discussions related to the	Controlled Trial.	future studies need	encourage group
& Leach, H. J. (2020).	for type II diabetics	original exercise trial and were	ulai.	benefits of exercise,	Tital.	more diverse	education to improve type
Incorporating behavior change	completing an exercise	randomized to the intervention		barriers, and goal setting		participants.	II diabetic exercise
strategies into an exercise trial to	program.	or control group		improved exercise			adherence.
improve physical activity				adherence.			
maintenance among adults at high							
risk for type II diabetes. Journal of							
Aging and Physical Activity, 28(6),							
813-							
821. https://doi.org/10.1123/JAPA.							
<u>2019-0307</u>							
	l		l	l	l		I

35

Yates, T., Edwardson, C. L., Henson, J.,	To determine if	A sample of	A	The	Level 2:	Type II	Yes, this
Gray, L. J., Ashra, N. B.,	educational behavioral	808 patients at high risk for	randomized controlled	intervention group (with	Randomized controlled	diabetes risk was	study can be utilized to
Troughton, J., Khunti, K., &	interventions for walking are	type II diabetes were recruited	trial	group education)	trial	not assessed	provide evidence for
Davies, M. J. (2017). Walking	effective in increasing	from ten primary care		increased walking		through HgbA1c	education and support
away from type 2 diabetes: A	walking activity among	offices in Leicestershire,		behaviors over the		but through risk scoring	among patients to
cluster randomized controlled	patients at risk for type II	UK.		control group while		which is less	improve exercise
trial. Diabetic Medicine, 34(5),	diabetes.			participating		accurate.	adherence
698-				within the study.			and overall results.
707. https://doi.org/10.1111/dme.1							
3254							

Appendix B

Permission to Use The Iowa Model Revised: Evidence-Based Practice to Promote Excellence in Health Care

From: Kimberly Jordan - University of Iowa Hospitals and Clinics :

To: Sanders, Kelley Leigh

Date: Wed, Oct 27, 2021, 1:56 PM

You have permission, as requested today, to review and/or reproduce *The Iowa Model Revised: Evidence-Based Practice to Promote Excellence in Health Care.* Click the link below to open.

The Iowa Model Revised (2015)

Copyright is retained by University of Iowa Hospitals and Clinics. **Permission is not granted for placing on the internet.**

Reference: lowa Model Collaborative. (2017). lowa model of evidence-based practice: Revisions and validation. *Worldviews on Evidence-Based Nursing*, 14(3), 175-182. doi:10.1111/wvn.12223

In written material, please add the following statement:

Used/reprinted with permission from the University of Iowa Hospitals and Clinics, copyright 2015. For permission to use or reproduce, please contact the University of Iowa Hospitals and Clinics at 319-384-9098.

Please contact <u>UIHCNursingResearchandEBP@uiowa.edu</u> or 319-384-9098 with questions.

Page 1

1/1

Appendix C

Letter of Support

To whom it may concern:

I, hereby, grant Kelley L. Sanders permission to conduct a scholarly project related to type II diabetes and walking within Roanoke Family Medicine in Roanoke, Texas. Kelley may implement her DNP scholarly project under my supervision.

Dr. Brad Griffin, DO

12-9-2020

Appendix D

CITI Training Certificate

This is to certify that:

Kelley Sanders

Has completed the following CITI Program course:

Biomedical Research - Basic/Refresher

(Curriculum Group)

Biomedical & Health Science Researchers

(Course Learner Group)

1 - Basic Course

(Stage)

Under requirements set by:

Liberty University

Not valid for renewal of certification through CME.

Completion Date Expiration Date Record ID

16-Dec-2021 15-Dec-2024 46373137

Appendix E

Patient Consent

Title of the Project: WALKING TO IMPROVE OUTCOMES IN PATINET'S WITH TYPE II DIABETES

Principal Investigator: Kelley Sanders, RN BSN, Liberty University DNP student

Invitation to be Part of a Research Study

You are invited to participate in a research study. To participate, you must be ages 18-70 years old, male, or female, diagnosed with type II diabetes, and ability to walk without assistive devices. Taking part in this research project is voluntary.

Please take time to read this entire form and ask questions before deciding whether to take part in this research.

What is the study about and why is it being done?

- The purpose of this project is to conduct research outcomes that may enlighten providers to prescribe exercise interventions by providing evidence, that walking 45 minutes three times a week can improve glycemic control among type II diabetic patients.
- Walking is a significant intervention for type II diabetic patients to improve outcomes, improve quality of life and prevent complications.
- The project aims to prove walking is an effective and feasible exercise intervention for type II diabetic patients.

What will happen if you take part in this study?

If you agree to be in this study, I will ask you to do the following things:

- A group of type II diabetics will be selected by the DNP student to participate in walking 45 minutes three times a week for 12 weeks.
- The projected outcome is lowered HgbA1c among participants walking three times a week.
- HgbA1c will be evaluated at the beginning of the project and at the end of the 12 weeks.
- Participants will document exercise on a provided exercise log and the DNP student will check frequently in in with participants and provide education as needed.

How could you or others benefit from this study?

The direct benefits participants should expect to receive from taking part in this study are lowered HgbA1c by walking three times a week for 45 minutes and improved overall health.

What risks might you experience from being in this study?

The risks involved in this study include possible injury from walking and possible hypoglycemia during walking. The risks involved in this study are minimal, which means they are equal to the

risks you would encounter in everyday life. The researchers are mandatory reporters and must report abuse or self-harm.

How will personal information be protected?

The records of this study will be kept private. No names will be published with HgbA1c levels. Published reports will not include any information that will make it possible to identify a subject. Research records will be stored securely, and only the researchers will have access to the records. Data collected from you may be shared for use in future research studies or with other researchers. If data collected from you is shared, any information that could identify you, if applicable, will be removed before the data is shared.

- Participant responses and exercise logs will be anonymous. Participant responses will be kept confidential using codes. Interviews will be conducted in a location where others will not easily overhear the conversation.
- Data will be stored on a password-locked computer and may be used in future presentations. After three years, all electronic records will be deleted
- Interviews/focus groups will be recorded and transcribed. Recordings will be stored on a password locked computer for three years and then erased. Only the researchers will have access to these recordings.
- Confidentiality cannot be guaranteed in focus group settings. While discouraged, other
 members of the focus group may share what was discussed with persons outside of the
 group.

How will you be compensated for being part of the study?

Participants will not be compensated for participating in this study.

What are the costs to you to be part of the study?

To participate in the research, you will need to pay for two HgbA1c laboratory lab tests. However, if the patient has a documented HgbA1c result within six months the patient will only need to pay for one HgbA1c lab test at the end of the study.

Is study participation voluntary?

Participation in this study is voluntary. Your decision whether to participate will not affect your current or future relations with Liberty University or Roanoke Family Medicine. If you decide to participate, you are free to not answer any question or withdraw at any time without affecting those relationships.

What should you do if you decide to withdraw from the study?

If you choose to withdraw from the study, please contact the researcher at the email address/phone number included in the next paragraph. Should you choose to withdraw, data collected from you will be destroyed immediately and will not be included in this study.

Whom do you contact if you have questions or concerns about the study?

The researcher conducting this study is Kelley Sanders, RN BSN, Liberty University DNP Student. You may ask any questions you have now. If you have questions later, **you are**

encouraged to contact her at sponsor Dr. Debbie Maddox

Whom do you contact if you have questions about your rights as a research participant?

If you have any questions or concerns regarding this study and would like to talk to someone other than the researchers, **you are encouraged** to contact the Institutional Review Board, 1971 University Blvd., Green Hall Ste. 2845, Lynchburg, VA 24515 or email at <u>irb@liberty.edu</u>.

Disclaimer: The Institutional Review Board (IRB) is tasked with ensuring that human subjects research will be conducted in an ethical manner as defined and required by federal regulations. The topics covered and viewpoints expressed or alluded to by student and faculty researchers are those of the researchers and do not necessarily reflect the official policies or positions of Liberty University.

Your Consent

By signing this document, you are agreeing to be in this study. Make sure you understand what the study is about before you sign. You will be given a copy of this document for your records. The researchers will keep a copy with the study records. If you have any questions about the study after you sign this document, you can contact the study team using the information provided above.

I have read and understood the above information. I have asked questions and have received answers. I consent to participate in the study.		
Printed Subject Name		
Signature & Date		

Appendix F

Walking log

Weeks of Walking –	Log walking dates and times
45 minutes 3 times a week	
WEEK #1	
WEEK #2	
WEEK #3 (Exercise Check In)	
WEEK #4	
WEEK #5	
WEEK III (E Cl. 11)	
WEEK #6 (Exercise Check In)	
WEEL HE	
WEEK #7	

WEEK #8	
WEEK #9 (Exercise Check In)	
WEEK #10	
WEEK #11	
WEEK #12 (Exercise Check in & LAB	
СНЕСК)	
,	

Appendix G

Project Budget

~4 Patients

~2 HgbA1c checks each

*
$$40.00 \times 2 = 80.00$$

$$*80.00 \text{ x } 4 = \$320.00$$

Appendix H

IRB Approval Documentation

LIBERTY UNIVERSITY. INSTITUTIONAL REVIEW BOARD

February 15, 2022

Kelley Sanders Debra Maddox

Re: IRB Application - IRB-FY21-22-692 WALKING TO IMPROVE OUTCOMES IN PATINET'S WITH TYPE II DIABETES

Dear Kelley Sanders and Debra Maddox,

The Liberty University Institutional Review Board (IRB) has reviewed your application in accordance with the Office for Human Research Protections (OHRP) and Food and Drug Administration (FDA) regulations and finds your study does not classify as human subjects research. This means you may begin your project with the data safeguarding methods mentioned in your IRB application.

Decision: No Human Subjects Research

Explanation: Your study is not considered human subjects research for the following reason:

Evidence-based practice projects are considered quality improvement activities, which are not "designed to develop or contribute to generalizable knowledge" according to 45 CFR 46.102(l).

Please note that this decision only applies to your current application, and any modifications to your protocol must be reported to the Liberty University IRB for verification of continued non-human subjects research status. You may report these changes by completing a modification submission through your Cayuse IRB account.

Also, although you are welcome to use our recruitment and consent templates,

you are not required to do so. If you choose to use our documents, please replace the word *research* with the word *project* throughout both documents.

If you have any questions about this determination or need assistance in determining whether possible modifications to your protocol would change your application's status, please email us at irb@liberty.edu.

Sincerely,

G. Michele Baker, MA, CIP

Administrative Chair of Institutional Research

Research Ethics Office