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ABSTRACT 

Each year, ninth-grade students across the United States of America fail to meet the national 

standards in mathematics.  Ninth grade students with disabilities, especially in the southeastern 

region of the United States, consistently fail the math portion of the Georgia Milestones Test.  As 

a response to this problem in Georgia, Hands-On Equations by Henry Borenson represents a 

possible solution for many students failing to meet the standards in ninth grade mathematics.  

The purpose of this quantitative causal-comparative study was to examine the difference between 

the mathematics achievement of ninth-grade students with and without disabilities in a high 

school in Southeastern Georgia who received instruction with Hands-On Equations versus those 

who received instruction without the use of Hands-On Equations. The data used were historical 

data from the 2016 school year. One group of students participated in instruction using Hands-

On Equations while another group received traditional teaching methods without the use of the 

Hands-On Equations. The participating schools were urban schools located in the Southeastern 

part of Georgia.  Most of the students were African American, and the students in these schools 

received 100% free lunch.  An analysis of covariance (ANCOVA) generated comparative 

data. The results related to Hypothesis H01 and H03 indicated that there was a significant 

difference in the mathematics achievement scores for ninth-grade students with or without 

disabilities who received instruction with Hands-on Equations.  However, results related to 

hypothesis H02 indicated that there was no statistically significant difference in mathematics 

achievement scores for ninth-grade students who did or did not receive instruction using Hands-

on Equations.   

Keywords: active learning, cognitive, cooperative learning, Hands-On Equations, higher-order 

thinking, mathematics  
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CHAPTER 1: INTRODUCTION 

Overview 

 This chapter provides an introduction to the research topic for this study, focusing on the 

use manipulatives in mathematics among students with and without disabilities. The chapter will 

include the following key sections: (a) background of the problem, (b) problem statement, (c) 

purpose statement, (d) significance of the study, (e) research questions, (f) null hypotheses, and 

(g) definitions of terms.  This introduction will serve as the foundation of the proposed study, 

which will be further expanded on in the succeeding chapters.   

Background 

Every year, educators across the United States of America take on the daunting task of 

improving achievement in mathematics among students with and without disabilities (Bouck, 

Joshi, & Johnson, 2013; Fuchs, Fuchs, & Compton, 2012). It is the role of the educator to ensure 

all students regardless of their disabilities become productive citizens in life (Albers &Goblirsch, 

2013; Meyen, 2015). Teachers in schools across the nation are ever striving toward a high level 

of student success and achievement, especially in mathematics (Minsoo, 2012).For example, in 

Georgia many of the students with disabilities struggle to meet the standards in ninth grade math 

because of the algebra portion of the test (Georgia Department of Education, 2015).Students with 

disabilities struggle to keep up with the standards because of the pressure to meet expectations 

comparable to those of their classmates without disabilities (Yell, Katsiyannis, Collins, & 

Losinski, 2012).  Therefore, educators must find a solution to the dilemma of effectively 

instructing students with disabilities to meet the school standards.   
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Historical Context 

As a response to the Sputnik launching by the Soviets in 1957, the U.S. began financing 

education programs in math and science (Pinder, 2013). The Elementary and Secondary 

Education Act (ESEA) of 1965 was passed to emphasize high standards and accountability from 

schools (Standerfer, 2006).  In 1983, the A Nation at Risk report created a well-publicized 

perception of educational reform in the U.S. as imperative (Lund & United States National 

Commission on Excellence in Education, 1993). The result was the expansion of the federal 

government into education, which had previously been up to the individual states 

(Johanningmeier, 2010). The expansion opened the door for more federal legislation. In 1990, 

the Excellence in Mathematics, Science, and Engineering Education Act was passed to promote 

excellence in American mathematics, science, and engineering education as well as stimulate the 

professional development of scientists and engineers (International Labor Organization, 2014).  

In 2001, public schools in the United States were required to follow guidelines mandated in the 

No Child Left Behind (NCLB) Act (Shelly, 2012).  The NCLB is a direct reauthorization of a 

modified ESEA (Standerfer, 2006).  This legislation mandated assessments in reading and 

mathematics.  As a result, reading and mathematics became the focus of instruction (Miller, 

2010).   

The impact of NCLB could be seen in the improved math scores for every grade level, 

especially for the 9th-grade students (Dee, Jacob, & Schwartz, 2013).  Due to NCLB 

requirements and some evidence of the legislation’s effectiveness, restructuring how math is 

taught has become a component of improvement in many classrooms.  The Organization for 

Economic Cooperation and Development (OECD) (2012) reported a weakness of students in the 

U.S. is they are not able to create a mental model to show their understanding of math in real-
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world situations.  This model requires a firm understanding of what is being asked and knowing 

how to apply the appropriate mathematical thinking to solve the problem.  Students in the U.S. 

are not able to interpret real-world situations and apply mathematical concepts.  Other 

weaknesses include reasoning and a lack of focus in higher-order activities relating to the real 

world (OECD, 2012).   

Within the past few decades, the education system in the United States of America has 

gone through several changes.  The traditional classroom setting separating the general education 

students and the special education students has been replaced with a more progressive diverse 

classroom setting including both the special education students and the general education 

students in an inclusive classroom (Morningstar, Shogren, Lee, & Born, 2015; Santos, Sardinha, 

& Reis, 2016).  This change is due to the Education Act for All Handicapped Children (EAHCA) 

(Civic Impulse, 2017), a law passed by congress in 1975 requiring local schools to provide 

education to all disabled children.  The EAHCA identified some of the issues to be addressed, 

including nondiscriminatory placement in special education, an Individualized Education 

Program (IEP) to report goals and objectives for students with disabilities, and the establishment 

of special education services in the least restrictive environment (LRE).  It also allowed for 

services without partiality or preconception as students worked towards exact educational goals 

and objectives (Timberlake, 2014; Yell, Conroy, Katsiyannis, & Conroy, 2013).   

The movement toward inclusion of students with disabilities in general education 

classrooms has caused confusion among some special education teachers about the roles and 

responsibilities of regular educators in providing appropriate education for all students in United 

States public schools (Ajuwon, Lechtenburger, Zhou, & Mullins, 2012; McLeskey, Landers, 

Williamson, & Hoppey, 2012).  It has been argued that the most important factor in inclusive 
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education is the teacher, and the success of inclusive education is dependent upon the teacher’s 

positive attitude towards inclusion and ability to teach subjects proficiently, especially for 

fundamental areas, such as mathematics (Savolainen, Engelbrecht, Nel, & Malinen, 2012; Seçer, 

2010).  It has been widely accepted that the mathematics achievement gap still exists within 

classrooms, including students with disabilities, which poses utmost concern among educators 

and school administrators (Schulte & Stevens, 2015; Stevens, Schulte, Elliott, Nese, & Tindal, 

2015).   

Social Context 

In this current era of world economic competition and globalization, it is essential that all 

students are well prepared with knowledge and skills in mathematics to successfully compete in 

this 21st-century global economy and society (Mundia, 2010).  Adults who are highly skilled in 

mathematics are twice as likely to be employed and three times as likely to earn above-median 

salaries (Mundia, 2010).  All over the world, economies continue to be negatively impacted by 

learning difficulties in mathematics (Mundia, 2010).  For example, in England and Wales, the 

economy is at a tremendous disadvantage because adults lack sufficient numeracy skills.  As a 

result, their federal governments are currently providing a wide range of business training in 

numeracy to enable adults to manage budgets, to use discretion in obtaining credit, and to 

maintain good health (Mundia, 2010).  Several studies document poor math performance of 

students around the globe (Ali, 2011; Bingolbali, Akkoc, Ozmantar, & Demir, 2011; Ciltas & 

Tartar, 2011; Mundia, 2010).   

Students, regardless of their capacities, have the same areas of concerns and needs.  Four 

general principles basic to all children are: (a) non-discrimination; (b) the right to life, survival 

and development; (c) the right to be listened to and taken seriously; and (d) the right to pursue 
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their best interests (United Nations Committee on the Rights of the Child, 2016).  From the 

perspectives of individuals with disabilities, educators, policy-makers, and planners should be 

asking the following questions regarding these principles: Are educational activities providing an 

equal opportunity for students with special needs along with other students? Are the activities 

resulting in exclusion? Are activities exposing children to prejudice and stigma? Are activities 

and actions threatening children’s human dignity? (Pijl & Hamstra, 2005).   

DiGennaro Reed, McIntyre, Dusek, and Quintero (2011) suggested teaching students 

with disabilities in inclusive settings is a multifaceted task requiring a team of mutually 

supporting players who provide the best practices for all students.  Professional preparation of 

school personnel is essential.  Teachers must learn new teaching strategies and understand how 

to work cooperatively with other teachers.  Without proper planning and support, successful 

inclusive placements are difficult (Wade, 2000). Inclusion is the meaningful participation of 

students with disabilities in general education classrooms (Ajuwon et al., 2012).  To practice 

inclusion successfully, the educators involved must understand the history, terms, and legal 

requirements involved as well as have the necessary levels of support and commitment.   

Theoretical Context 

This study was based upon the theoretical frameworks put forth by Piaget (1965), Bruner 

(1977), and Dienes (1973).  Each of these theorists proposed children’s interaction with their 

environments creates new experiences building on their prior knowledge.  Piaget (1965) 

introduced four stages of development to explain the nature and development of human 

intelligence.  Bruner (1977) offered a theory for discovery learning.  Dienes (1973), who stressed 

the importance of processes for learning mathematics through interaction with one’s 

environment, developed six stages of learning.  These theoretical frameworks are pertinent to the 
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current study because they help to explain how manipulatives may be helpful to students, with 

and without disabilities, in understanding and solving abstract equations in mathematics.   

Piaget (1965) theorized children should understand concrete symbols and concepts when 

the symbols and concepts are introduced to them on the concrete level.  Many children absorb 

and retain what they learn in life when they can touch and feel what they are doing or 

experiencing.  When they touch, feel, take apart, put together, and manipulate a concrete object 

and its different pieces, they begin to develop a clear mental picture in their minds (Raphael & 

Wahlstrom, 1989).   

Bruner (1977) proposed students learn through discovery.  Learning through discovery 

occurs when students interact with their environments (Bruner, 1977).  Bruner (1977) also 

proposed students engage in discovery learning when they struggle with concepts and questions, 

when they develop and manipulate objects, and when they answer questions by testing and 

verifying hypothesis.  According to Bruner (1977), students should initially use objects they can 

manipulate to gain an understanding of mathematical concepts, and teachers should support 

students in their efforts to create different models, carry out experiments, and revise or validate 

their models.   

Dienes (1973) developed a theory to explain how students learn mathematical concepts.  

Dienes’ (1973) theory consists of six stages: (a) free play, (b) playing by the rules, (c) 

comparison, (d) representation, (e) symbolization, and (f) formalization.  During the first stage, 

free play, students use trial and error to figure out a problem or phenomenon they seek to solve.  

The second stage, playing by the rules, refers to following rules or principles to solve a problem.  

The comparison stage occurs when students discuss, evaluate, and compare the processes and 

products of their peers (Dienes, 1973).  The representation stage occurs when the student 
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identifies abstract content and invents a representation or maps the math concept.  The 

symbolization stage occurs when the student is able to describe properties through the use of 

conventional symbolic language (Dienes, 1973).  During the sixth stage, formalization, rules are 

applied, and the inductive and deductive reasoning processes are used to describe mathematical 

concepts, such as axioms, theorems, and proofs (Dienes, 1973).  Dienes’ theory is important to 

this study because it asserts students should interact with their environment as they learn 

mathematical concepts.   

The theories of Piaget (1965), Bruner (1977), and Dienes (1973) made up the theoretical 

framework of this study.  These theories were used to provide a rationale for the findings of the 

study.  These theories were used in providing context for examining the problem, summarizing 

the information, and preparing the reader for the research problem.   

Problem Statement 

Ninth grade students with disabilities in Georgia consistently fail the math portion of the 

high stakes test required by the NCLB (Georgia Department of Education, 2015).  It is unknown 

if Hands-on Equations will increase mathematics achievement among ninth-grade students with 

disabilities as measured by the state-mandated Georgia Milestones.  Studies have shown the use 

of manipulatives have been effective in improving math achievement (Carbonneau, Marley, & 

Selig, 2013; Gurbuz, 2010; Sherman & Bisanz, 2009) and specifically Hands-On Equations 

(Barber & Borenson, 2008; Brown, 2011; Jimenez, 2011; Liendenbach & Raymond, 1996; 

Skaggs, 2007).  However, existing studies often used students without disabilities as subjects in 

determining the effectiveness of manipulatives, such as Hands-On Equations.  Research has 

shown students with disabilities often fail to reach mathematics standards set forth by the school 

(Garderen, Scheuermann, & Jackson, 2012; Schulte & Stevens, 2015; Stevens & Schulte, 2017), 
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making them a good focus for a study on the effectiveness of Hands-On Equations in improving 

their achievement.   

Hennessey, Higley, and Chesnut (2012) concluded effective instruction in math should 

include a constructivist philosophy where problem solving is incorporated into active learning.  

The teaching of these skills in math is becoming more important because it contributes to the 

development of countries through innovation and discovery (Juan & IGI Global, 2011; Li, Silver, 

& Li, 2014).  The use of manipulatives is effective in improving the academic achievement of 

students so they can learn how to think in a rapidly changing world (Golafshani, 2013; Moyer-

Packenham, 2016).  The problem is the lack of information regarding the difference between the 

mathematics achievement of ninth-grade students with and without disabilities who are exposed 

to instruction with Hands-On Equations versus those who receive instruction without the use of 

Hands-On Equations.   

Purpose Statement 

The purpose of this quantitative causal-comparative study was to examine the difference 

between the mathematics achievement of ninth-grade students with and without disabilities in a 

high school in Southeastern Georgia who received instruction with Hands-On Equations versus 

those who received instruction without the use of Hands-On Equations.  Two groups of 

participants were considered for the study.  One group received instruction using Hands-On 

Equations while the other group received instruction without the use of Hands-On Equations.  

Each group consisted of students with and without disabilities.  The independent variables were 

the type of instruction (i.e., Hands-on Eqquations and without Hands-on Equations) and the type 

of students (i.e., with and without disabilities).  The dependent variable was the mathematics 
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achievement scores.  The difference between the groups on the basis of the mathematics 

achievement scores was analyzed through analysis of a two-way ANCOVA.   

Significance of the Study 

Improving math education has been a focus in the United States over the past 50 years.  

However, many high schools in Georgia struggle to make gains on the College and Career 

Readiness Performance Index (CCRPI) because of the performance of the ninth-grade students in 

mathematics (Georgia Department of Education, 2015).  One of the indicators for the CCRPI is 

achievement on the Algebra I I-Ready test.  Equations make up 30% of the Algebra I I-Ready 

test, and this area is where most students struggle (Georgia Department of Education, 2015).   

There are many methods of teaching that allow for active engagement in math, one of 

which is the use of Hands-On Equations.  Hands-On Equations has the potential to increase the 

achievement scores of the students in the equations portion of the I-Ready test.  Henry Borenson 

(1987) indicated Hands-On Equations could assist any school or district searching for 

interventions to improve student achievement.  This study examined whether the use of Hands-

On Equations would make an impact on the mathematics achievement of students, especially 

those with disabilities.   

 Differentiated instruction and Hands-On Equations could address the needs of individual 

students with disabilities in mathematics (Kablan, 2016).  Differentiated instruction with the use 

of Hands-On Equations could transform the way the information is being presented by the 

teacher and received by the student (Golafshani, 2013; Young, 2013).  In using differentiated 

instruction and Hands-On Equations, teachers could adapt knowledge, concepts, and skills in 

mathematics to the students’ interests, and reduce the rigor of instruction without reducing the 
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information.  Then, students with disabilities could become self-motivated to learn mathematics 

knowledge, concepts, and skills.   

Studies have shown the use of manipulatives could potentially improve student 

achievement in mathematics (Carbonneau et al., 2013; Gurbuz, 2010; Sherman &Bisanz, 2009).  

Specifically, research on Hands-On Equations generally indicates positive results in improving 

the math achievement of students (Barber & Borenson, 2008; Brown, 2011; Jimenez, 2011; 

Liendenbach& Raymond, 1996; Skaggs, 2007).  However, little research has been done on the 

effectiveness of Hands-On Equations in improving mathematics achievement of students with 

disabilities.  Students with disabilities have different needs and capabilities compared to students 

without disabilities, which supports the need to investigate the effectiveness of Hands-on 

Equations among students with disabilities.   

This study also investigated whether using Hands-On Equations effectively increased the 

understanding and improved the mathematical achievement of students with disabilities.  

Moreover, the findings of this study may be helpful to school administrators and teachers in 

identifying effective strategies to increase mathematics achievement.  Lastly, the insights of this 

study will further expand the knowledge about the use of manipulatives in improving student 

achievement.   

Research Questions 

RQ1: Is there a difference in mathematics achievement scores for ninth-grade students 

with and without disabilities in Southeastern Georgia who received instruction using Hands-On 

Equations, as measured by the Algebra I I-Ready test? 
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RQ2: Is there a difference in mathematics achievement scores for ninth-grade students in 

Southeastern Georgia who did or did not receive instruction using Hands-On Equations, as 

measured by the Algebra I I-Ready test? 

RQ3: Is there a difference in mathematics achievement scores for ninth-grade students 

with disabilities and those without disabilities, in Southeastern Georgia who did or did not 

receive instruction with Hands-On Equations, as measured by the Algebra I I-Ready test? 

Definitions 

• Abstract to Concrete Mathematical Concepts – The abstract to concrete mathematical 

concepts refers to the act of computing mathematical concepts without physical objects 

(abstract) and with physical objects (concrete) (Ding & Li, 2014).   

• Accountability – Accountability refers to the act of being responsible (GDOE, 2015).   

• Georgia Milestones Test – Georgia Milestones Test is a state-mandated assessment used 

in the state of Georgia to measure the knowledge of students in grades one through eight 

in reading, English/language arts (ELA), social studies, science and mathematics (GDOE, 

2015).   

• Disability – Disability refers to a physical or mental problem preventing someone from 

functioning at a normal rate (Americans with Disabilities Act, n.d.)  

• Hands-On Equations – Hands-On Equations is a visual and kinesthetic system developed 

by Dr. Henry Borenson for introducing and teaching students essential algebraic concepts 

(Borenson, 1987).   

• Individual Education Plan (IEP) – The IEP is a document that delineates the special 

education services for a student with disabilities.  The IEP will outline educational and/or 
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behavioral goals and lists the types of services that are to be given to the student with 

disabilities (GDOE, 2015).   

• Inclusion – Inclusion is an arrangement where students with disabilities receive services 

that are listed in their Individual Education Plan in the same classroom as their non-

disabled peers (Ajuwon et al., 2012).  

• Learning Style – Learning style refers to a facet of a student’s learning profile.  It refers 

to the personal and environmental factors that may affect learning (Desmedt & Valcke, 

2004).  

• Mathematics Anxiety – Mathematics anxiety refers to a state of mind that causes 

discomfort and adverse bodily effects when presented with mathematical problems or 

tasks (Lyons & Beilock, 2012). 

• Manipulative – Manipulatives are concrete objects used to help students understand 

abstracts concepts (Burns & Hamm, 2011). 
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CHAPTER 2: LITERATURE REVIEW 

Overview 

The purpose of this quantitative causal-comparative study was to examine the difference 

between the mathematics achievement of students with and without disabilities who received 

instruction with Hands-On Equations versus those who did not receive instruction using Hands-

On Equations.  The review was grounded by a theoretical framework consisting of Piaget’s 

(1965) cognitive development theory, Bruner’s (1977) theory of development, and Dienes’ 

(1973) theory of learning mathematics.  The empirical evidence supporting the use of 

manipulatives will also be discussed in this review.  Related literature, such as the importance of 

mathematics, abstract thinking in algebra, characteristics of students with learning disabilities, 

the use of mathematics manipulatives, role of manipulatives in mathematics, Hands-On 

Equations, and the Common Core Math Standards will be discussed.  The chapter will conclude 

with a summary of the key themes from the literature, including the gap in previous studies.   

Theoretical Framework 

The theoretical framework guiding this study was Piaget’s (1965) cognitive development 

theory, Bruner’s (1977) theory of development, and Dienes’ (1973) theory of learning 

mathematics.  Each of these theorists proposed children’s interaction with their environments 

creates new experiences building on their prior knowledge.  The selected theories in the 

theoretical frameworks are pertinent to the current study because they help to explain how and 

why manipulatives may be helpful to students, with and without disabilities, in understanding 

and solving many abstract equations in mathematics.  Each of these theories will be discussed in 

the following sub-sections.   
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Piaget’s Cognitive Development Theory 

Piaget (1965) theorized children understand abstract symbols and concepts when the 

symbols and concepts are introduced in concrete formats.  Many children absorb and retain what 

they have learned in life when they can touch and feel what they are doing or experiencing.  

When children touch, feel, take apart, put together, and manipulate a concrete object, a mental 

picture begins to develop in their minds (Raphael & Wahlstrom, 1989).  Piaget (1965) introduced 

four stages of cognitive development: (a) the sensorimotor stage, (b) the preoperational stage, (c) 

the concrete operational stage, and (d) the formal operational stage.   

The sensorimotor stage is the first stage of Piaget’s stages of operational development.  

The sensorimotor stage typically occurs when children are from birth to two years old.  During 

the sensorimotor stage, children become aware of their immediate surroundings through 

their senses.  For the most part, their behaviors are a reaction to stimuli.  Also, during the 

sensorimotor stage, children accomplish object permanence or understanding objects continue to 

exist even though they cannot be seen or heard (Paget, 1965).   

 The second stage, the preoperational stage, occurs when a child is about two years old 

until about seven years of age.  Children at this stage lack conservation and cannot reverse 

operations.  They can perform some mathematical tasks, such as comparing physical objects and 

assigning numeric values to objects when counted, but children at this stage have difficulties 

with concepts, such as length, area, weight, and volume.  During the preoperational stage, 

children engage in symbolic play and learn to manipulate symbols.  However, they do not 

understand concrete concepts.  Language begins to develop at the preoperational stage (Piaget, 

1965).  In addition, Piaget (1965) noted during the preoperational stage, children have a 

challenged understanding of people and objects dissimilar to themselves.  They also have 
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difficulty understanding different situations and dissimilar points of view, which is deemed 

egocentrism.   

The concrete operational stage is the third stage of Piaget's theory of cognitive 

development.  This stage occurs when children are from seven to eleven years old.  During the 

concrete operational stage, children become more logical in their thinking, but they are still 

challenged with understanding abstract ideas.  They become more engaged in inductive logic, 

which is a mental understanding of concepts from specific to general principles.  Reversibility is 

also introduced in the preoperational stage.  Reversibility is related to the child’s awareness of 

the order of relationships between mental categories (Paget, 1965).   

The fourth stage of Piaget’s operational development is the formal operational stage.  The 

formal operational stage starts at twelve years of age and continues into adulthood.  Abstract 

thought and hypothetical reasoning occur during this stage.  Also, during the formal operational 

stage, individuals rely on previous experiences to make sense of their current situations and 

consider possible outcomes and consequences of their actions (Paget, 1965).   

During the fourth stage, individuals engage in deductive reasoning.  Individuals can solve 

problems systematically through logic, and concrete models are no longer needed to understand 

abstract ideas.  They can separate and control variables, make assumptions contrary to fact, and 

test hypotheses (Paget, 1965).   

The cognitive development theory has been used in education to support instructional 

methods and strategies (Siegler, 2016).  When the cognitive development stages are applied in 

the use of manipulatives, Piaget (1965) suggested children need many experiences with concrete 

materials and drawings for learning to occur because they do not have the mental maturity to 

grasp abstract mathematical concepts presented in words or symbols alone (Piaget, 1965).  
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Piaget’s stages of operational development are often endorsed by educators because it supports 

the use of manipulatives.   

The use of manipulatives is related to Piaget’s (1965) cognitive development theory 

because of the assertion that children’s interaction with their environments creates new 

experiences building on their prior knowledge.  The cognitive development theory provides a 

framework in explaining how manipulatives may be helpful to students, with and without 

disabilities, in understanding and solving many abstract equations in mathematics.  This study 

may potentially advance the cognitive development theory by providing empirical support to the 

main assertions of the theory regarding how manipulatives can help teachers bridge the gap 

between concrete and abstract mathematical concepts.   

Bruner’s Theory of Development 

Bruner’s (1977) theory of development proposed students learn through discovery.  

Learning through discovery occurs when students interact with their environments (Bruner, 

1977).  Bruner (1977) also proposed students engage in discovery learning when they struggle 

with concepts and questions, when they develop and manipulate objects, and when they answer 

questions by testing and verifying hypothesis.  According to Bruner (1977), students should 

initially use objects they can manipulate to gain an understanding of mathematical concepts, and 

teachers should support students in their efforts to create different models, carry out experiments, 

and revise or validate their models.   

Bruner (1977) presented three levels of thinking that occur when students learn 

mathematical concepts.  First, learners are enactive, which is to say they manipulate objects 

directly.  The second level of thinking is the iconic level.  The iconic level involves the use of 
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images or other visuals to represent concrete objects (Bruner, 1977).  The third level of thinking 

is the symbolic level.  In the symbolic level, students manipulate abstract representations.   

The theory of development has been used in education to support instructional methods 

and strategies in mathematics (Kitta & Kapinga, 2015; Krummheuer, 2013).  Bruner (1977) 

asserted when teaching math, teachers should move students through the levels, from the 

enactive level, iconic level, and the symbolic level.  Krummheuer (2013) used the theory of 

development as a framework for understanding the mathematics thinking of young children 

through exposure to diagrammatic and narrative argumentations.  Kitta and Kapinga (2015) 

noted the intent of the theory of development is to emphasize the role of the interaction between 

the environment and the individual learning of children.   

The use of manipulatives is related to Bruner’s (1977) theory of development because of 

the assertion children learn through discovery.  Bruner’s (1977) theory is relevant to the current 

study because it suggests manipulatives can aid students in their understanding of abstract 

concepts by building on mental images.  Through the three stages of discovery, manipulatives 

can be used as a tool to facilitate the learning of complex mathematical concepts.  The theory of 

development provides a framework in explaining how manipulatives may be helpful to students 

in understanding and solving many abstract equations in mathematics.  This study may 

potentially advance the theory of development by providing empirical support to the main 

assertions of the theory regarding how manipulatives can help teachers facilitate students’ 

learning of complex mathematical concepts through discovery.   

Dienes’ Theory of Learning Mathematics 

Similar to Piaget and Bruner, Dienes (1973) also promoted students’ active engagement 

during the process of learning mathematical concepts.  Dienes (1973) authored several articles 
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that advocated the use of manipulatives in teaching elementary mathematics.  Dienes is 

considered the inventor of algebraic manipulatives (Lesh & Sriraman, 2007).  Many of Dienes’ 

theories and creations are used in classrooms to teach students about mathematical concepts.   

Dienes (1973) provided an explanation of how students learn mathematical concepts.  

Dienes understood one of the keys to retaining the basics of anything is to make the process fun.  

Making the learning of mathematics fun can be exemplified in the use of algebraic manipulatives 

(Dienes, 1973).   

Dienes (1973) developed a theory to explain how students learn mathematical concepts.  

His theory is important to this study because it asserts students should interact with their 

environment as they learn mathematical concepts.  Dienes’ (1973) theory consists of six stages.  

These stages are: (a) free play, (b) playing by the rules, (c) comparison, (d) representation, (e) 

symbolization, and (f) formalization.   

During the first stage, free play, students use trial and error to figure out a problem or 

phenomenon they seek to solve.  For example, a student who wishes to solve a puzzle may 

randomly try to unscramble the pieces to construct the image of the picture seen on the box.  

After some form of regularity begins to emerge, a more systematic problem-solving method is 

applied.  The second stage, playing by the rules, refers to following rules or principles to solve a 

problem.  After engaging in problem solving through free play, the rules may be applied until the 

condition becomes satisfied (Dienes, 1973).  The comparison stage occurs when students 

discuss, evaluate, and compare the processes and products of their peers (Dienes, 1973).  The 

representation stage occurs when the student identifies abstract content and invents a 

representation or maps the math concept.  The symbolization stage occurs when the student can 

describe properties through the use of conventional symbolic language (Dienes, 1973).  
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Furthermore, a symbol system is developed to describe the properties of the concepts.  At the 

sixth stage, formalization, rules are applied, and the inductive and deductive reasoning processes 

are used to describe mathematical concepts, such as axioms, theorems, and proofs (Dienes, 

1973).   

The use of manipulatives is related to Dienes (1973) theory of learning mathematics 

because of the assertion children’s active engagement during the process of learning can be 

crucial in the learning of mathematical concepts.  The theory of learning mathematics provides a 

framework in explaining how manipulatives may be helpful to students, with and without 

disabilities, by stimulating their active engagement in solving many abstract equations in 

mathematics.  This study may potentially advance the theory of learning mathematics by 

providing empirical support to the main assertions of the theory regarding how teachers can use 

manipulatives as tools to engage students in learning abstract mathematical concepts.   

Related Literature 

 Literature related to the importance of mathematics, characteristics of students with 

learning disabilities, the use of mathematics manipulatives, abstract thinking in algebra, the role 

of manipulatives in mathematics, Hands-On Equations, and the Common Core Math Standards is 

relevant to the research problem and purpose of this study.  A review of this literature provided 

an in-depth background for the research problem and purpose.   

The Importance of Mathematics 

In this current era of world economic competition and globalization, it is essential all 

students are well-prepared with knowledge and skills in mathematics to successfully compete in 

this 21st-century global economy and society (Mundia, 2010).  Adults who are highly skilled in 

mathematics are twice as likely to be employed and three times as likely to earn above-median 
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salaries (Mundia, 2010).  All over the world, economies continue to be negatively impacted by 

learning difficulties in mathematics (Mundia, 2010 For example, in England and Wales the 

economy is at a tremendous disadvantage because adults lack sufficient numeracy skills.  As a 

result, their federal governments are currently providing a wide range of business training in 

numeracy to enable adults to manage budgets, to use discretion in obtaining credit, and to 

maintain good health (Mundia, 2010).  Several studies document poor math performance of 

students around the globe (Ali, 2011; Bingolbali et al., 2011; Ciltas& Tartar, 2011; Mundia, 

2010).   

Ali (2011) explained students in Pakistan struggled with the mathematics curriculum, 

complex languages, mathematical concepts, and real-life connections to mathematics.  Further, 

Ali (2011) explicated higher-order thinking skills are needed for understanding linear algebra.  

Moreover, the author asserted there are no simple computational procedures in linear algebra; 

one must have the ability to think abstractly.  Therefore, learning difficulties in mathematics 

classrooms are inevitable when students struggle with fundamental math skills (Ali, 2011).  

Ciltas and Tartar (2011) also discussed how high school students encountered difficulties with 

abstract concepts of algebra, particularly in solving equations with inequalities containing 

concepts with absolute value.  Their findings showed 90% of 170 ninth-grade students in 

Turkey answered math questions of this nature similarly and incorrectly (Citas & Tartar, 2001).   

Broadway (2010) asserted accountability and standardization has placed our public 

schools under intense scrutiny and review.  As a result, schools  are being held increasingly 

responsible for the success and academic achievement of their students.  Political and business 

leaders, community members, parents, and other school stake holders are demanding our schools 

prepare all of our students to meet the challenges of the 21st century world (Broadway, 2010).  
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School accountability and standardization has mandated the implementation of effective 

academic interventions and supports for students to ensure all students are ready to enter college 

or the career world upon completion of high school (Broadway, 2010).  Many schools are 

addressing the call to improve student achievement by providing their teachers with high quality 

professional development opportunities and providing students with effective academic 

interventions in core subject areas in the hopes of improving student achievement.  Mathematics 

is currently considered the main subject which leads to success in life and is a key to 

successfully competing in a global economic world (Broadway, 2010).   

The National Assessment of Educational Progress (NAEP; 2011) documents 82% of U.S. 

students only demonstrated partial mastery of mathematics content based on their achievement 

scores. Perpetuated mathematics achievement gaps have continued over decades as the NAEP 

(2011) showed gains in performance among Hispanic students at the Proficient and Advanced 

levels between 2009 and 2011; however, Black and American/Indian/Alaska Native students 

demonstrated below basic level mastery on the 2011 NAEP.  Even with the disparity in 

mathematics achievement among ethnic groups in the United States, the majority of the nation’s 

students are demonstrating only partial mastery (NAEP, 2011).   

With the focus on academic accountability in math, many school districts have instituted 

academic programs to improve student performance and to increase the number of students who 

meet or exceed established standards on standardized achievement tests (Mundia, 2010).  The No 

Child Left Behind Act of 2001 specifically requires the implementation of only scientifically-

based research instructional activities and programs, which are rigorous, systematic, and 

objective procedures to obtain reliable and valid results (Mundia, 2010).   
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Abstract Thinking in Algebra 

 Abstract thinking in algebra consists of the nontangible aspects of completing an 

algebraic problem.  Rainbolt and Gallian (2010) suggested in their book, Abstract Algebra with 

GAP, algebra concepts weigh heavily on abstract thinking.  Traditionally algebra has been taught 

through the lecture style of teaching.  The abstract way of thinking with algebra creates difficulty 

for some students, and thus their appreciation for the subject area is diminished (Connely-

Fukawa, 2012).  Many students have difficulty with abstract thinking because it is intimidating to 

them and some learn better by performing an actual action.  Connely-Fukawa (2012) suggested 

the abstract way of thinking and teaching algebra is one of the main reasons undergraduate 

students change their majors away from mathematics.   

Donohue, Gfeller, and Schubert (2013) conducted a research experiment where they used 

teaching abstract algebra as the basis of their study.  Their article, “Using Group Explorer in 

Teaching Abstract Algebra,” suggests one of the most overwhelming aspects of teaching and 

learning algebra is the abstract nature of the concepts (Donohue et al., 2013).  Many teachers 

relied heavily on the traditional style of teaching where the concepts are conveyed via the 

lecture, which may not always be effective when teaching abstract subjects, such as mathematics 

(Donohue et al., 2013).   

 Piaget and other behavioral theorists have linked abstract thought of an individual to the 

concrete or physical attributes to which they can relate.  When a person works with information, 

not in pictorial or concrete form, it is abstract thinking (Hawker & Cowley, 1997). Many 

students have difficulty with mathematics because of the abstract thinking involved.  Many 

educators and students have failed to correctly comprehend algebraic concepts in mathematics 

because of its abstract nature (Coquin-Viennot & Moreau, 2007).  
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Students with Learning Disabilities 

According to the United States Department of Education (2013), almost two million 

students have been identified as having a learning disability.  Students with learning disabilities 

can be categorized as those who: (a) have difficulty analyzing and processing information, (b) 

have extremely low levels of motivation and self-esteem, (c) experience repeated academic 

failure, (d) fail to meet challenges with reasoning and problem-solving, (e) are reluctant to try 

new tasks, and (f) who have computational deficits (Strickland & Maccini, 2010).  Teachers have 

a responsibility as teachers to facilitate instruction, leading to success for all students, including 

those with learning disabilities.  Students who have learning disabilities often struggle to achieve 

at the levels of their peers who do not have learning disabilities, especially in mathematics 

(Steele, 2010).  The inferior academic performance in mathematics of students with learning 

disabilities compared to students who do not have learning disabilities is a major concern of 

educators throughout the United States (Steele, 2010).   

Approximately 5-8% of K-12 students have been identified as having a math-related 

learning disability (United States Department of Education, 2013).  The two areas which are 

most difficult among students with math-related difficulties are computations and problem 

solving (Bottge, Rueda, Grant, Stephens, & LaRoque, 2010).  Students with learning disabilities, 

especially experience difficulty with basic concepts and procedures (Cortiella, 2011).  

Procedures related to algorithms, which are steps used to find solutions to problems (Bottge et 

al., 2010; Cortiella, 2011).  Students who have difficulty following procedures also often have 

difficulty memorizing, paying attention, and organizing (Bottge et al., 2010; Cortiella, 2011).   

Teachers are not always cognizant of the reasons why some students do not understand 

mathematical concepts easily.  Wang (2013) added five categories of why students, including 
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those with learning difficulties, have difficulty understanding math concepts. They are 

mathematics content, cognitive gap, teaching issues, learning matters, and transition knowledge.  

In order for students with learning disabilities to advance their understandings of mathematics, 

teachers must use effective, research-based instruction (Wang, 2013).   

Geary (2011) noted students with disabilities often lack self-confidence and therefore 

expect to fail and often do not make connections between existing and new information.  They 

are also unable to distinguish between relevant and irrelevant information and understand the 

difference between concrete and abstract concepts.  When Geary (2011) tracked students’ 

achievement in identifying and combining quantities associated with Arabic numerals, he found 

students with disabilities demonstrated inferior performance, and their achievement fell behind 

their peers at least one year.  Therefore, it is important educators identify and utilize the most 

effective practices to increase the math performance of students with learning disabilities.   

Steele (2010) wrote due to No Child Left Behind and the Individuals with Disabilities 

Act (IDEA), students with learning disabilities are required to take algebra in general education 

classrooms.  Nonetheless, students with disabilities may be at a disadvantage, mainly with 

problems requiring reading and thought processing, which may impede their ability to complete 

equations and understand the processes required for problem solving, such as finding the square 

root, writing geometric proofs, and finding angles.  Students with disabilities may have difficulty 

understanding, interpreting, and explaining more simple tasks, such as plotting points on a grid, 

constructing graphs, and drawing parallel and vertical lines.  The inability to complete such tasks 

makes it difficult for this populace of students to grasp more complex mathematical concepts 

(Steele 2010).   
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Strickland and Maccini (2010) offered eight instructional strategies for teaching 

mathematics concepts to students with disabilities: (a) general problem-solving strategies, (b) 

self-monitoring strategies, (c) peer-assisted learning, (d) concrete-representation-abstract 

instructional sequence, (e) teaching prerequisite skills, (f) explicit instruction, (g) technology, 

and (h) using graphic organizers.  According to Servilio (2009), students with disabilities learn 

mathematical concepts when their teachers: (a) build on prior knowledge students bring into the 

classroom, (b) build on concepts by providing examples and practice, (c) integrate metacognitive 

skills into the math; (d) use formative assessments regularly, and (e) monitor students’ progress.  

Researchers also contend an effective strategy for teaching students with disabilities is the use of 

manipulatives, which are tangible simple or complex objects used to model or to demonstrate 

math problems (Allensworth, Nomi, Montgomery, & Lee, 2009; Brodesky & Gross, 2009; 

Burns, 2010; Ellis, 2009; Gersten et al., 2009; Strickland &Maccini, 2010).   

The Use of Math Manipulatives 

Manipulatives are objects used to present students with opportunities to physically 

interact with materials while learning math concepts (Carbonneau et al., 2013; Gurbuz, 2010; 

Sherman &Bisanz, 2009).  Urban and Wagnor (2009) noted manipulatives have been used to 

solve mathematical problems since 3000 B.C. when the abacus was used in China.  Boggan, 

Harper, and Whitmire (2010) added individuals from many civilizations used physical objects to 

help them solve everyday math problems.  For example, in Southwest Asia, individuals used 

counting boards, or wooden and clay trays covered by a thin layer of sand to draw symbols and 

to tally.  Boggan et al. (2010) gave credit to the Romans as being the creators of the first abacus, 

building on the concept of the counting board.  The Romans made abacus from beans and stones 

(Boggan et al., 2010).  
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The Chinese adopted the use of the Roman abacus and used it centuries later (Boggan et 

al., 2010).  The Mayan and Aztec Indians used corn kernels, whereas the Incas used knotted 

string called quipu (Boggan et al., 2010).  Then, during the latter part of the 1800s, manipulatives 

began to be applied more formally in teaching mathematical concepts (Boggan et al., 2010).  In 

the early 1900s, Montessori designed several manipulatives to help teachers and students explain 

and learn basic concepts at the elementary school level (Boggan et al., 2010).  Currently, the 

National Council of Teachers of Mathematics recommends the use of manipulatives at all grade 

levels (Boggan et al., 2010).   

Sinclair and Chorney (2012) wrote Montessori stressed the importance of concrete 

learning experiences during the 20th century.  Montessori noted students should learn through 

self-directed exploration by using manipulatives and believed they demonstrated increased 

success when they used manipulatives.  Roberts (2014) wrote calculators were used as 

manipulatives in classrooms at the beginning of the 21st century.  Advanced graphing calculators 

were available to students who enrolled in advanced math courses, such as calculus and statistics.  

Roberts (2014) also noted during the 21st Century, computers became a new type of 

manipulative called a virtual manipulative.   

D'Angelo and Iliev (2012) asserted manipulatives are the basis for understanding 

mathematical concepts.  The researchers also contended math manipulatives may be used as 

early as preschool to help students assign values to numbers through symbols.  Following 

students’ understanding values, teachers can then teach their students to use basic principles of 

mathematics.  Also, according to D'Angelo and Iliev (2012), manipulatives provide students with 

opportunities to actively engage in understanding the processes of mathematics.   
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Authors Blenenky and Nokes (2009) discussed the potential outcomes when using 

manipulatives in the article “Examining the Role of Manipulatives and Metacognition on 

Engagement, Learning, and Transfer.” Teachers often explore different ways to engage their 

students in math and manipulatives improve engagement (Belenky & Nokes, 2009).  When 

students are engaged in productive activities with learning materials, they become more 

interactive and learn the concept being taught (Belenky & Nokes, 2009).  Manipulatives give 

students hands-on experience, which concretizes their knowledge of the concept and solidify 

their problem-solving skills (Belenky and Nokes, 2009).   

Boggan et al. (2010) contended manipulatives can be used in teaching a wide variety of 

topics in mathematics, such as reasoning, estimation, measurement, and problem solving.  

Manipulatives may also be used to teach place-value, fractions, addition, subtraction, and order 

of operations.  For example, fraction strips may be used to show equivalent fractions.  Pattern 

blocks can be used to assist students with basic algebra concepts, and geoboards can be used to 

teach geometric shapes.  While the numbers of ways teachers can use manipulatives to teach 

math are limitless, they must be used correctly.  More importantly, students should develop a 

thorough understanding of the theories behind the mathematical concepts being taught (Boggan 

et al., 2010). 

According to Boggan et al. (2010), “the effective use of manipulatives can help students 

connect ideas and integrate their knowledge, so they gain a deep understanding of mathematical 

concepts” (p. 4). Smith (2009) stated manipulatives are used in various grade levels and in 

different countries because achievement improves when manipulatives are used effectively 

Manipulatives vary from simple household items, such as colored clothespins, to 

specifically designed items, such as unifix cubes.  Graham (2013) reported three types of 
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concrete manipulatives used for teaching mathematics.  The first types are everyday objects, 

such as buttons, dice, coins, popsicle sticks, and beads.  The second type of concrete 

manipulative are those which are commercially manufactured and serve other purposes besides 

mathematical conceptualization.  They are items such as jigsaw puzzles, Legos, and building 

blocks.  The third type of concrete manipulatives are designed specifically for teaching 

mathematics.  They are base ten blocks, Cuisenaire rods, geoboards, tangrams, color tiles, 

attribute blocks, pattern blocks, and unifix cubes.  While the literature by Fraser (2013) offers 

concrete examples for aligning manipulatives with common core standards, the examples 

provided by the researcher tend to focus on kindergarten through second-grade students with 

disabilities and do not take into account complex processes requiring mastery.   

 Boggan et al. (2010) focused on the importance and benefits of math manipulatives.  The 

authors reviewed several research articles which gave foundation to the use of manipulatives.  

Boggan et al. indicated the German educator Friedrich Froebel designed the educational play 

material known as Froebel Gifts.  This type of instruction is given credit for the foundation for 

the manipulatives considered by Italian educator Maria Montessori as essential in teaching 

mathematics at the elementary school level (Boggan et al., 2010).   

Boggan et al. (2010) provided a more precise definition of manipulatives, defining 

manipulatives as physical objects used as teaching tools to engage students in hands-on learning 

of mathematics.  Manipulatives can be made with common household materials or can be store-

bought items, such as blocks or cubes.  A manipulative is deemed effective if it is able to bridge 

the gap between informal math and formal math (Boggan et al., 2010).  

 Boggan et al. (2010) also indicated five of the National Council of Teachers of 

Mathematics (NCTM) standards could be taught using manipulatives: problem solving, 
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communicating, reasoning, connections, and estimation.  When addressing the notion of correct 

manipulatives usage, Boggan et al., (2010) explained the importance of clear expectations of the 

purpose of the lesson and the manipulative used within the lesson.  The focus must be on the 

concept, not the manipulative.  The math manipulative should be appropriate for the student and 

chosen to meet the specific goals and objectives of the lesson (Boggan et al., 2010).  

 When introducing a new manipulative, it is important to allow exploration time for 

students (Boggan et al., 2010).  Boggan et al. (2010) stated when given the opportunity to work 

with a material with open-ended objectives having no specific preset goal, the students have time 

to explore their own questions and generate a variety of answers.  Additionally, the research 

found teachers need support in making decisions regarding manipulative use, including when 

and how to use manipulatives to help them and their students think about mathematical ideas 

more closely (Boggan et al., 2010).  

 It must also be noted using manipulatives does not solve the problem of understanding 

complex math concepts.  The students’ understanding of the concepts while using the 

manipulatives is directly related to teachers’ knowledge of the concepts being taught and 

teachers’ knowledge of the use of the mathematical manipulatives (Raphael & Wahlstrom, 

1989). 

 Many teachers fail to use mathematical manipulatives because they feel manipulatives 

are difficult to use and are a difficult concept to teach.  Other teachers have expressed outside 

challenges to using manipulatives in the classroom, such as classroom management, lack of 

resources, improper professional development on the use of manipulatives, and assessing the use 

of the manipulatives (Kim, 1993).  As with any teaching technique, however, the teacher must 

lead the instruction in the classroom.   
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 Moyer (2001) conducted a study on the use of manipulatives in mathematics in the 

middle school.  The study included 10 middle school teachers in a yearlong project on the use of 

manipulatives.  The results indicated although the teachers used the manipulatives, student 

achievement was not high in all classes.  The interviews indicated some teachers did not 

understand the purpose of using the manipulatives, and thus, the effective use of manipulatives 

was not taught in the classroom.  Other teachers indicated they were ineffective in teaching with 

the use of manipulatives because they did not understand how to use manipulatives themselves 

(Moyer, 2001).   

 Moreover, some teachers viewed the use of manipulatives as a waste of time (Moyer & 

Jones, 1998).  Teachers felt manipulatives were extra work or secondary to using the abstract 

form of math.  The use of math manipulatives should not be considered as the sole solution for 

understanding mathematical concepts.  The achievement levels of the students could be 

correlated directly to the experience and expertise of the teachers who teach the use of 

manipulatives (Sowell, 1989).   

Hands-on Equations 

Many students struggle to understand basic mathematics concepts.  Solving simple linear 

equations can be challenging for many students and especially for those students with disabilities 

who already struggle in mathematics.  Hands-on Equations, by Henry Borenson (1987), was 

developed to curtail the lack of achievement in mathematics.  Hands-On Equations utilizes 

manipulatives to assist the students with understanding mathematics equations.  This 

manipulative system changes abstract linear equations to concrete linear equations.  This change 

gives many students, who learn better with tangible objects, the opportunity to learn the concepts 

needed to be successful in mathematics (Agency for Instructional Technology, 2003).   
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 Hands-On Equations teaches students the basic concepts of mathematics (Borenson, 

1987).  Hands-On Equations turns solving mathematics equations into a game in which the 

students can move chess-like pieces and number cubes to solve the equations (Agency of 

Instructional Technology, 2003).  The system teaches students how to solve mathematics word 

problems and how to add and subtract integers.  The students also learn the addition and 

subtraction properties of equality, the concept of variable, and the basic concepts associated with 

zero.   

 Liendenbach and Raymond (1996) conducted an action research study using Hands-On 

Equations.  The researchers utilized the traditional method of teaching mathematics during the 

first nine weeks of the school year.  Then they introduced Hands-On Equations and taught all 26 

lessons of the system.  Once the lessons were completed, Liendenbach and Raymond (1996) 

returned to the traditional way of teaching.  The results indicated a higher level of achievement 

in the students in the classroom when Hands-On Equations was being taught (Liendenbach& 

Raymond, 1996).   

 At the end of the year, when the state-mandated tests were given to the students, their 

results exceeded the researchers’ expectations.  The students had bridged the gap between the 

concrete concepts of Hands-On Equations with the abstract form of the questions on the test.  

The students were positive when they used the manipulatives versus the traditional form of 

teaching (Liendenbach& Raymond, 1996).   

Barber and Borenson (2008) summarized the effect of utilizing the Hands-On Equations 

module on the learning of algebra by fourth and fifth graders of Broward County public schools 

in a recent study.  This research was designed to determine whether fourth- and fifth-grade 

students can successfully solve equations normally taught in the ninth grade.  The samples in this 
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research included six fourth-grade regular classes, three fifth-grade regular classes, and five 

gifted and talented fifth-grade classes.  This learning module included games pieces and a 

pictorial notation piece.  Each teacher received 3 weeks of training on how to use the Hands-On 

Equations learning module.  The research study conducted by Barber and Borenson (2008) had 

the following results:  

• Students in the fifth grade had an average of 42.8% on the pretest, 84.7% on the posttest, 

and 79.3% on the retention test.  The t-test conducted found the increase to be significant 

at a value of 3.88.  

• The fourth-grade students from Broward County had an average of 30% on the pretest, 

84% on the posttest, and 88% on the retention test.  A t-test was done between the Lesson 

6 posttest scores and the Lesson 7 posttest scores.  The t-test was significant, with a t 

value of 2.86. 

Skaggs (2007) conducted a qualitative study that sought to examine the perceptions of 

high school graduates who experienced the mathematics education materials from Hands-On 

Equations when the students were in the sixth grade.  The study also included the perspectives of 

students who did not participate in the system.  Participants of the study attended school and 

graduated from high school in Kansas, and of the 19 students who were interviewed, 10 had 

experienced 21 lessons using Hands-On Equations when they were in the sixth grade in January 

1997.  Ten of the students were male, and nine were female.  The data consisted of the 

interviews conducted with these students in 2005, solutions to six one-variable linear equations 

completed by each student, and GPA and ACT information for each student.  The results 

indicated students who participated in Hands-On Equations favored mathematics more than the 

non-Hands-On Equations students.  Additionally, the Hands-On Equations group had both a 
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lower mean GPA and lower mean ACT mathematics score compared to the non-Hands-On 

Equations group; however, the students in the Hands-On Equations group solved the six one-

variable linear equations with more success (72% accuracy) than did the non-Hands-on 

Equations group (59% accuracy).   

Brown (2011) conducted a quantitative correlational study to determine the impact of 

Borenson’s Hands-on Equations on the math achievement of ninth-grade students in South 

Carolina.  The participants were ninth grade regular and special education students who were 

either gifted and talented students or who had been identified as having a learning disability.  

Brown (2011) used an eight-question pretest and eight-question posttest to measure different 

skills when solving linear equations.  The pretest was used to analyze prior knowledge about 

solving linear equations.  The posttest was used to measure what the students had learned since 

receiving instruction on how to use the Borenson’s module to solve linear equations.  The 

posttest was also used to measure whether the students scored significantly higher using the 

module than those students who did not.  Results of the study indicated while 80% of the 

students did not score above 70 percent on the Solving Linear Equations pretest, on the posttest, 

60% of the students scored above 70%.  Moreover, the students who utilized the module were 

able to retain slightly more skills than the students who did not utilize the module.  As a result of 

the study, Brown (2011) recommended future research be conducted to analyze the effects of the 

module in relation to its impact on the achievement of students from diverse racial backgrounds.   

Jimenez (2011) investigated the effectiveness of Hands-On Equations on the math 

achievement of 9th and 10th-grade students.  Jimenez (2011) used pretests, posttests, retention 

tests, and benchmark tests to evaluate the academic growth of students in two set groups. The 

collected data was analyzed by conducting t-tests and an ANOVA.  The results of the study 
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indicated Hands-On Equations was effective with solving linear equations and was a positive 

factor in students’ success with linear equations.  However, analysis of the data also revealed the 

program was not as effective six weeks after the intervention in terms of performance in the 

retention test or the benchmark test.   

Borenson (2009) examined the performance of 195 gifted third graders on specific verbal 

problems pretest and posttests.  The pretests were provided after the students had completed 

Level I of Hands-On Equations, but prior to receiving instruction on how to apply the equations 

to solve verbal problems.  All of the students had completed Level I of Hands-On Equations and 

were provided with six verbal problem lessons to be solved using the Hands-On Equations 

approach to word problems.  At the conclusion of the six lessons, the students were provided 

with a post-test, which consisted of six verbal problems similar to those provided on the pre-test.  

A t-test was conducted to determine if there was a significant increase in performance from the 

pre-test to the post-test.  The results of the study indicated a significant gain by these gifted third 

graders in solving the specific problems after instruction.  However, the researcher, suggested 

additional studies be conducted with other students in grades 3-12 to see if this method of 

instruction also leads to successful learning by those students.   

The studies reviewed in this section indicated Hands-On Equations can be effective in 

improving the academic achievement of students in mathematics (Borenson, 2009; Brown, 2011; 

Jimenez, 2011; Skaggs, 2007).  These researchers also recommended more studies be conducted 

on the effectiveness of Hands-On Equations because of the suggestion that the benefits of the 

technique may not be sustainable (Jimenez, 2011).  Most of the studies reviewed also focused on 

students who had no learning disabilities or difficulties (Jimenez, 2011; Skaggs, 2007).   
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Empirical Evidence 

 This study examined the effects of using Hands-On Equations in instructing ninth-grade 

students to determine if this form of instruction has a positive impact on the achievement of 

students with disabilities and other low performing students.  In this quantitative study, a causal-

comparative design was used to examine the effectiveness of Hands-On Equations, a program 

developed to provide a hands-on approach to presenting algebraic concepts to elementary and 

middle school students.  In this section, the empirical evidence supporting the use of 

manipulatives in teaching mathematics was provided.  Gurbuz (2010), Sherman and Bisanz 

(2009), and Carbonneau et al. (2013) agreed the use of manipulatives is an effective approach to 

improved student achievement in mathematics.  

A research study was conducted by Suydam and Higgins (1977) on the use of physical 

manipulatives in mathematics.  These researchers examined the effects of mathematical 

manipulatives on the achievement of students in elementary and middle school.  The results 

indicated who utilized physical manipulatives had a higher level of achievement than their 

counterparts who did not.   

Sowell (1989) compiled a meta-analysis of 60 different studies and found manipulatives 

used in mathematics were effective in increasing the students’ overall knowledge in the targeted 

subject matter.  The results indicated when the instruction was completed over a period of a 

school year, the students’ retained most of the knowledge, concepts, and skills when 

manipulatives were used.  The study also indicated there was no significant increase in 

knowledge when the manipulatives were used over a shorter period of time (Suydam& Higgins, 

1977).   
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The research performed by Sowell (1989) was the first documented research synthesis on 

the use of manipulatives.  Since the time of Sowell’s research in 1989, there has been more 

research on the use of manipulatives, indicating though Sowell’s research had limitations, there 

was validity to the research in the arena of mathematical manipulatives (Carbonneau et al., 

2013).  The study by Sowell (1989) indicated although the manipulatives contributed to the 

achievement of the students on the mathematical portion of the test, the amount of time spent on 

teaching the students how to use the manipulative was an important factor as well.  The study 

also indicated students had to be able to go from the concrete to the abstract and vice versa.   

 Another research study indicated there was a significant increase in achievement when 

students used mathematical manipulatives.  Parham (1983) indicated the students who used 

manipulatives during their course of study in mathematics scored in the 85th percentile on the 

mathematical portion of the California Achievement Test.  The students who did not use 

mathematical manipulatives scored in the 50th percentile on the California Achievement Test 

(Parham, 1983).  Clearly, there is a difference in achievement when the students can make 

physical representations.   

 The previous studies reviewed primarily involved students without disabilities.  The 

literature on the effects of manipulatives in the mathematics learning of students with disability 

is less researched.  One study conducted by Marsh and Cooke (1996) found support for the 

effectiveness of manipulatives among students with disabilities.  The researchers conducted a 

research study on the effects of using mathematical manipulatives with third-grade students with 

a learning disability in mathematics.  This study focused on using Cuisenaire rods during 

teaching.  The results indicated using manipulatives significantly increased student achievement.  
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The Cuisenaire rods increased the students’ ability to correctly identify the proper procedures to 

solve the problems (Marsh & Cooke, 1996).   

 Miller and Mercer (1997) conducted a study on the effects of the three types of 

instruction, including concrete, semi-concrete, and abstract instruction of students with learning 

disabilities.  The concrete type of instruction consisted of learning with concrete manipulatives.  

The semi-concrete type of instruction consisted of learning when students used pictures or 

pictorial representations.  The abstract type of instruction consisted of learning when the students 

used only numbers.  The study concluded students with mathematical learning disabilities 

performed better with concrete instruction as opposed to abstract instruction (Miller & Mercer, 

1997).   

Research on Hands-On Equations generally indicates positive results in improving the 

math achievement of students.  Liendenbach and Raymond (1996) found a higher level of 

achievement in the students in the classroom when Hands-On Equations was being taught.  

Barber and Borenson (2008) found an increase among students who engaged with the system.  

Skaggs (2007) found students who participated in Hands-on Equations favored mathematics 

more than the non-Hands-on Equations students.  Additionally, the Hands-on Equations group 

had both a lower mean GPA and lower mean ACT mathematics score; however, the students in 

the Hands-on Equations group solved the six one-variable linear equations with more success 

(72% accuracy) than did the non-Hands-on Equations group (59% accuracy).  Brown (2011) also 

found positive results among students who used the system.   

Jimenez (2011) investigated the effectiveness of Hands-on Equations on the math 

achievement of ninth and tenth-grade students and concluded Hands-on Equations was effective 

with solving linear equations.  Borenson (2009) examined the performance of 195 gifted third 
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graders on specific verbal problems pretest and posttests using Hands-On Equations found a 

significant gain by these gifted third graders in solving the specific problems under instruction.   

Common Core State Standards 

The Common Core State Standards were created to ensure all K-12 students have the 

skills needed to be successful in post-secondary education and in a career.  Common Core State 

Standards were adopted by the National Governors Association Center for Best Practices and by 

the Council of Chief State School Officers (Hill, 2013: Porter, McMaken, Hwang, & Yang 

2011).  Educational stakeholders also collaborated with these agencies to create Common Core 

State Standards for K-12 mathematics (Moursund & Sylvester, 2013).  The Common Core 

Standards Initiative of 2010 was developed to expand from individual state standards to national 

standards, with the expectation all students in the United States would learn the same content and 

develop the same skills within these two domains (Hill, 2013; Moursund& Sylvester, 2013).   

Moursund and Sylvester (2013) noted the Common Core Standards were first 

implemented in 2010 and adopted by 40 states.  The Common Core Standards were adopted by 

the District of Columbia in 2011 and by six additional states in 2012 (Moursund& Sylvester, 

2013).  As a result of the Common Core Standards, students at each grade level are assigned 

specific domains and key topics that they must master (Moursund& Sylvester, 2013).  For 

students in kindergarten through second grade, students must master: (a) number names and 

sequencing of numbers and identifying geometric shapes; (b) addition and subtraction, 

understanding of place value, interpreting data, and geometric reasoning; (c) multiplication, 

measurement of objects in units, working with money; and (d) representing and interpreting data.  

Fourth-grade students must master concepts related to: (a) multi-digit multiplication and multi-

digit dividends; (b) fraction equivalence, addition and subtraction of fractions, and multiplication 
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of fractions by whole numbers; and (c) the analysis of geometric figures and their properties.  By 

the end of the fifth grade, students are expected have a plethora of mathematical concepts and 

procedures to help them move into more advanced applications (Common Core Standards 

Initiative, 2013).  Under the Common Core Standards Mathematics Initiative, students must also 

foster their problem solving, critical thinking, and reasoning skills.   

In the state of Georgia, Common Core Standards in math are presented by grade level 

from kindergarten to ninth grade.  The standards for mathematics were arranged into three 

different categories: (a) domains, (b) standards, and (c) clusters.  The mathematics content is 

organized into four domains, with standards specific to each domain.  Clusters are combinations 

of related standards (Common Core Standards Initiative, 2013).  The four domains for grade four 

are outlined as: (a) operation, (b) algebraic thinking, (c) numbers and operations in base ten, and 

(d) geometry.  Moreover, there are critical areas for each grade level in addition to the standards 

(Common Core Standards Initiative, 2013).  In grade eight, there are five critical areas: (a) ratios 

and proportional relationships, (b) number system, (c) expressions and equations, (d) geometry, 

and (e) statistics and probability (Common Core Standards Initiative, 2013; Ediger, 2011).   

Ratios and proportional relationships focus on students’ understanding of ratio concepts 

and the use of ratio reasoning to solve problems (Common Core Standards Initiative, 2013).  The 

number system focuses on the application of previous understandings of multiplication and 

division to divide fractions by fractions (Common Core Standards Initiative, 2013).  This area 

also focuses on math computations with multi-digit numbers and finding common factors and 

multiples.  Additionally, students must be able to apply and extend previous understandings of 

numbers to the system of rational numbers.  Expressions and equations focus on students’ 

application and the extension of their previous understandings of arithmetic to algebraic 
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expressions.  This area also focuses on one-variable equations and inequalities (Common Core 

Standards Initiative, 2013).  In this area, students must also analyze quantitative relationships 

between dependent and independent variables.  Geometry requires students to solve real-world 

and mathematical problems involving area, surface area, and volume (Common Core Standards 

Initiative, 2013).  Statistics and probability require students to develop an understanding of 

statistical variability standards (Common Core Standards Initiative, 2013).  The current study 

focused on the effects of Hands-On Equations on the math achievement of ninth-grade students 

with learning disabilities.  (See Appendix A for complete details of the 2015-2016 Common 

Core Standards for eighth-grade students who attend schools in the state of Georgia).  Given 

ninth grade is the first year of high school, students should be able to demonstrate the standards 

from the previous year.   

Summary 

According to the United States Department of Education (2013), two million students 

have been identified as having a learning disability.  Students with learning disabilities have 

computational deficits and difficulty analyzing and processing information.  They fail to meet 

challenges with reasoning and problem solving.  These students generally have low levels of 

motivation and low self-esteem as they have experienced repeated academic failure.  They are 

reluctant to try new tasks (Geary, 2011; Strickland &Maccini, 2010).  Given these limitations 

and vulnerabilities, students with learning disabilities need to be exposed to teaching strategies 

that assist in the development of their ability to solve complex math problems (Geary, 2011; 

Strickland &Maccini, 2010).   

The use of manipulatives has been proposed as a strategy that can help students with 

disabilities improve their ability to learn and understand math concepts.  The use of 
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manipulatives is an effective approach to improve student achievement in mathematics 

(Carbonneau et al., 2013; Gurbuz, 2010; Sherman &Bisanz, 2009).  The limitation of the studies 

reviewed is they primarily involved students who had no disability (Carbonneau et al., 2013; 

Gurbuz, 2010; Sherman &Bisanz, 2009).  The effectiveness of manipulatives among students 

with special needs is less established compared to the literature on students without disabilities 

(Jimenez, 2011; Skaggs, 2007).   

Hands-On Equations was developed by Borenson (1987) to curtail the lack of 

achievement in mathematics.  Research has generally shown Hands-On Equations is effective in 

improving the math achievement of students (Barber & Borenson, 2008; Brown, 2011; 

Liendenbach& Raymond, 1996; Jimenez, 2011).  Hands-on Equations is particularly effective in 

improving the ability of students to solve linear equations (Jimenez, 2011; Skaggs, 2007).  The 

literature on the application of Hands-On Equations within the special education population is 

limited.  To address the gap in the literature, this study examined how Georgia educators in a 

struggling school are implementing The Hands-On Equations, using math manipulatives, to 

achieve the state-mandated standard in mathematics among their special education population 

and low performing students.   
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CHAPTER 3: METHODOLOGY 

Overview 

 The purpose of this quantitative causal-comparative research study was to examine the 

difference between the mathematics achievement of ninth-grade students with and without 

disabilities in high school in Southeastern Georgia who were exposed to instruction with Hands-

on Equations versus those who received instruction without the use of Hands-on Equations.  This 

chapter includes the following key sections of the methodology; (a) design, (b) research 

questions, (c) null hypotheses, (d) participants and settings, (e) instrumentation (f) procedures, 

and (g) data analysis.  The detailed discussion of the methodology was instrumental in 

demonstrating the step-by-step procedure of the study.   

Design 

This study employed a quantitative method with a causal-comparative research design.  

Quantitative methods measure variables or data numerically and objectively and make use of 

statistical techniques to analyze the underlying relationship between and among these variables 

or data (Mustafa, 2011).  Quantitative methods deduce insights from numerically measured and 

statistically tested data in the hope of generalizing the findings to a larger population (Allwood, 

2012).  Thus, a quantitative methodology allowed the determination of differences in 

mathematics achievement between students with and without disabilities and between students 

who received instruction using Hands-on Equations and those who did not.  In other words, the 

study attempted to ascertain the extent of differences between two groups based on a criterion 

variable, which for this study was mathematics achievement.   

Furthermore, this study employed a causal-comparative research design.  A causal-

comparative design is a research design used to determine the cause or consequences of 
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differences already existing between or among groups of individuals (Gall, Gall, & Borg, 2010).  

A causal-comparative design is often used when there is a need to compare two groups defined 

by categorical variables in terms of one or more quantified dependent variables to assess 

causation (Cohen, Manion, & Morrison, 2013).  This study used test result data from two classes 

(independent variable), one utilized Hands-on Equations in instruction and one did not use 

Hands-on Equations, to measure the difference in terms of a mathematics achievement 

(dependent variable), which makes a causal-comparative design appropriate.   

Research Questions 

The research questions and hypotheses that guided this research are as follows: 

RQ1: Is there a difference in mathematics achievement scores for ninth-grade students 

with and without disabilities in Southeastern Georgia who received instruction using Hands-on 

Equations, as measured by the Algebra I I-Ready test? 

RQ2: Is there a difference in mathematics achievement scores for ninth-grade students in 

Southeastern Georgia who did or did not receive Hands-on Equations instruction, as measured by 

the Algebra I I-Ready test? 

RQ3: Is there a difference in mathematics achievement scores for ninth-grade students 

with disabilities and those without disabilities, in Southeastern Georgia who did or did not 

receive instruction using Hands-on Equations, as measured by the Algebra I I-Ready test? 

Null Hypotheses 

H01: There is no statistically significant difference in mathematics achievement scores 

for ninth-grade students with or without disabilities in Southeastern Georgia who received 

instruction using Hands-on Equations, as measured by the Algebra I I-Ready test.    
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H02: There is no statistically significant difference in mathematics achievement scores 

for ninth-grade students in Southeastern Georgia, who did or did not receive instruction using 

Hands-on Equations, as measured by the Algebra I I-Ready test.   

H03: There is no statistically significant difference in mathematics achievement scores 

for ninth-grade students with or without disabilities, in Southeastern Georgia, who did or did not 

receive instruction using Hands-on Equations as measured by the Algebra I I-Ready test.   

Participants and Setting 

The data studied was the result of a trial use of Hands-on Equations with groups of high 

school students enrolled in two schools located in South Eastern Georgia during the spring 

semester of 2016-2017 school year.  The first selected high school had approximately 600 

students enrolled, around 60 of which were students with disabilities.  The student population in 

this high school was 90% African American, 5% Caucasian, and 5% other races.  There were 

approximately 120 staff workers in the school, including administration, teachers, custodial, and 

lunchroom workers.  Additionally, there was one public safety officer and one parole officer.  

The school had two self-contained special education classes, with the remainder of the classes 

being inclusive.  The school is located in an urban community and is also 100% free lunch.  

There were approximately 160 students who could participate in the study in this high school.  

The second selected high school had approximately 600 students enrolled, around 50 of which 

were students with disabilities.  The student population in this high school consisted of 95% 

African American, 2% Caucasian, and 3% other races.  There were approximately 120 staff 

workers in the school, including administration, teachers, custodial, and lunchroom workers.  

Additionally, there was one public safety officer.  The school had four self-contained special 

education classes, with the remainder of the classes being inclusive.  The school was located in 
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an urban community and is also 100% free lunch.  There were approximately 150 students who 

could participate in the study in this high school.   

A power analysis was conducted to determine the minimum required sample size.  Four 

factors were considered in conducting the power analysis including the power of the test, effect 

size, significance level, and statistical technique.  The level of significance refers to the 

probability of rejecting a null hypothesis given it is true, which is commonly referred to as the 

Type I error (Haas, 2012).  The power of test refers to the probability the test correctly rejects a 

false null hypothesis thus accepting the alternative hypothesis (Haas, 2012).  In most quantitative 

studies, an 80% power of test is used.  The effect size is an approximated measurement of the 

magnitude of the relationship between the dependent and independent variables (Cohen, 1988).  

Berger, Bayarri, and Pericchi (2013) asserted effect sizes in quantitative studies could be 

categorized according to small, medium, and large, where medium is generally used to denote a 

balance between being too strict (small) and too lenient (large).  The level of significance is 

usually denoted with an alpha and in most quantitative studies is set at 95% (0.05) (Creswell, 

2012).   

Instrumentation 

 The difference between the groups of students whose data were utilized for this study lies 

in the use of Hands-on Equations.  One of the groups received instruction with Hands-on 

Equations, and the other did not.  In addition, the same tests were used for both groups, but the 

pretest was different from the posttest.  Pretest and posttest data were gathered from I-Ready.   

I-Ready is a diagnostic test for reading and mathematics intended for K-12 students (Curriculum 

Associates, 2017).  The test can determine the learning needs of students by monitoring their 

progress for every skill.  The diagnostic test provides information about the achievement of 
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students in both reading and mathematics at the end of the school year based on pre-determined 

targets.  

Curriculum Associates (2017) reported I-Ready was informed by best practices in 

assessment development, calibration, and testing supported by a large and diverse population.  

As of 2017, I-Ready was administered to more than 500,000 students in the United States and 

has been state-approved for student growth measure (through achievement scores) and Common 

Core curriculum in states such as Utah, Colorado, Oklahoma, Georgia, Ohio, Virginia, and New 

York.  The Educational Research Institute of America reported I-Ready has strong correlations to 

the 2013 New York Assessment, which has correlation coefficients ranging from .77 to .85 

across grades and subjects – thus, I-Ready predicted individual student proficiency on the CCSS.   

Given that the I-Ready Diagnostic is a computer-adaptive assessment that does not have a 

fixed form, some traditional reliability estimates such as Cronbach’s alpha are not an appropriate 

index for quantifying consistency or inconsistency in student performance. The I-

Ready Diagnostic is often used as an interim assessment, and students can take the assessment 

multiple times a year. The test-retest reliability estimate is appropriate to provide stability 

estimates for the same students who took two diagnostic tests. The Pearson correlation 

coefficient for the diagnostic test was .97 (National Center on Intensive Intervention). 

Historical data consisting of Algebra I mathematics achievement scores were retrieved 

from the I-Ready database.  In this data set, one class was taught using Hands-on Equations at a 

high school in southeastern Georgia, and another class was at a different high school in 

southeastern Georgia with similar demographics.  Each class was taught the same information 

from the same teachers; however, the delivery method was different.  One class utilized Hands-
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on Equations, and the other class received traditional instruction without the use of Hands-on 

Equations.  The data set spanned for one whole semester or 18 weeks across two classes.   

Procedures 

The data collection procedures commenced once the approval from both the Liberty 

University’s Institutional Review Board (IRB), and the selected high schools was secured.  For 

the IRB, an application form was submitted detailing the proposed research, including how the 

participants would be protected and the ethical procedure of the study.  For the selected schools, 

the Liberty University template was completed to request permission to request the data.   

 The data retrieved for this study were from ninth-grade students attending the target high 

schools.  The data retrieved were the test results (specifically on mathematics) of the students 

following the use and non-use of Hands-on Equations for classroom instruction.  The groups 

were (a) students who were exposed to Hands-on Equations and (b) students who were exposed 

to traditional instruction without Hands-on Equations.  The school administrators identified 

students who scored 50% or lower on the pre-test.  The assessment determined the prior 

knowledge of the students.  From this student population, the students were assigned randomly to 

each of the two groups.   

In each of the two high schools, the instruction for both groups focused on the same 

standard, for example, “given ax + 3 = 7, solve for x,” but each group received different forms of 

instruction from two different teachers.  Each of the teachers obtained their Bachelor of Arts 

degree in business education.  They both collaboratively planned with the remaining teachers in 

the math department.   

The teacher who implemented Hands-on Equations received training before utilizing it in 

the classroom with the group of students who received instruction with the system.  After a 
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semester, a post-test was given to both to assess the knowledge, concepts, and skills the students 

gained.  Data from the pre-tests and post-tests were collected and analyzed, as will be discussed 

in the succeeding sections.   

Information relevant to the study variables, such as the mathematics achievement scores, 

were collected from the student records housed in the target high schools.  Specifically, the 

mathematics achievement scores, as well as the information about whether manipulatives were 

used, were gathered to compare data for pretest and posttest.  The researcher sought help from 

the administrators of the schools to identify the data of the students who met the eligibility 

criteria of ninth-grade students with and without disabilities.   

All data collected from the database were imported into an Excel spreadsheet, and coded 

for analysis into SPSS 22.0 software, which was the software used for statistical analysis (Arora, 

2014).  SPSS is a computer program used for statistical analysis.  In-depth access and 

preparation, graphics, modeling, and analytical reporting are possible through this program.   

Data Analysis 

All information gathered from the student participants’ records were coded to Microsoft 

Excel for preprocessing.  Occurrences of missing data were addressed before data analysis was 

conducted (Dong & Peng, 2013).  Schlomer, Baum, and Card (2010) asserted more than ten 

percent of missing data on a data set could render research ineffective and powerless.  For 

simplicity, the researcher ensured only those participants with complete information were 

included in the study.  Once a complete data set was achieved, the data from Microsoft Excel 

was transferred to a working sheet in SPSS.  A participant ID (e.g., P01 for Participant) was 

assigned to each participant to link the data from a survey in the Microsoft Excel spreadsheet to 

the SPSS working sheet. Specifically, SPSS Version 22 was used for this study.   
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Two types of statistical techniques were used, descriptive statistics and inferential 

statistics.  The descriptive statistics provided basic information, such as the frequency and 

percentages of the demographic information (such as gender, race, etc.), while the mean and 

standard deviation were used for continuous variables (such as the mathematics achievement 

score).  Specifically, a two-way ANCOVA was used as the inferential statistics to analyze the 

differences in the means (mathematics achievement) among identified groups (students with and 

without disabilities and students exposed and not exposed to Hands-on Equations) and pretest as 

a covariate.   

RQ1, RQ2, and RQ3 were addressed using ANCOVA.  The objective of an ANCOVA is 

to determine whether there was a statistically significant difference between two 

dependent/independent populations based on a dependent variable in the presence of a covariate 

(Gamst, Meyers, & Guarino, 2008; Pandis, 2016).  The two dependent populations in this study 

were the (a) students with and without disabilities and (b) students exposed and not exposed to 

Hands-on Equations, and the dependent variable was the mathematics achievement score while 

the pretest is the covariate.  The test results were based on an F-statistic distributed on an F-

distribution (Christensen, 2016).  If a significant difference exists between the two groups the 

test statistic will exceed a critical value from the F-distribution (Hoaglin, Mosteller, & Tukey, 

1991).  The sign of the test statistic (positive or negative) indicated whether the control or 

intervention group had a tendency to score higher or lower on the dependent variables.  All tests 

followed a significance level of 0.05.  The following is the information reported from the 

ANCOVA analysis: Number (N), Number per cell (n), Degrees of freedom (df within/ df 

between), Observed F value (F), Significance level (p), and Effect size and power.  If a 

significant interaction effect is found, additional analysis will be needed.   
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Since ANCOVA is a parametric test, there is a need to examine first whether the data 

gathered adheres to the statistical assumptions of these tests.  Particularly, the level of 

measurement, sampling, normality, linearity, bivariate normal distribution, homogeneity-of-

slope, and homogeneity assumptions was tested and ensured.  The level of measurement for the 

dependent variable should be in interval or ratio form.  The achievement scores for this study 

were measured in interval form.  Groups were formed through random sampling.  The normality 

assumption assumes the distribution of the test is normally distributed with a mean of zero, one 

standard deviation, and an asymmetric bell-shaped curve (Goodwin & Goodwin, 2013).  A 

normal probability plot was generated to examine if a violation of the normality assumption 

exists.  The assumption of linearity indicates the relationship between variables (i.e., the 

independent and dependent variables) follows a straight line (Bücher, Dette & Wieczorek, 2011).  

A scatter plot with standard regression output was generated to examine if a violation of the 

linearity assumption exists.  To test the bivariate normal distribution assumption, a series of 

scatter plots between the pre-test variable and post-test variable for each group was used 

(Goodwin & Goodwin, 2013).  If the plot exhibits the classic “cigar shape” then it is said to 

follow the bivariate normal distribution.  The assumption of homoscedasticity refers to the equal 

variance of all values of the independent variables around the regression line (Goodwin & 

Goodwin, 2013).  A residual scatter plot was generated to examine if a violation of the linearity 

assumption existed.   
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CHAPTER 4: FINDINGS 

Overview 

This chapter will present analytical findings from the test scores received by the two test 

groups of students; those who received instruction with Hands-on Equations, and those whose 

instruction did not include Hands-On Equations.  These analyses allowed testing the null 

hypothesis and accepting or rejecting it accordingly.  In the first section of this chapter, the 

general demographic results of the study sample are presented.  The later section of this chapter 

provides an analysis of means and covariances in the target groups.   

Research Questions 

RQ1: Is there a difference in mathematics achievement scores for ninth-grade students 

with or without disabilities in Southeastern Georgia who received instruction using Hands-on 

Equations, as measured by the Algebra I I-Ready test? 

RQ2: Is there a difference in mathematics achievement scores for ninth-grade students in 

Southeastern Georgia who did or did not experience Hands-on Equations, as measured by the 

Algebra I I-Ready test? 

RQ3: Is there a difference in mathematics achievement scores for ninth-grade students 

with disabilities and those without disabilities, in Southeastern Georgia who did or did not 

experience Hands-on Equations, as measured by the Algebra I I-Ready test? 

Null Hypotheses 

H01: There is no statistically significant difference in mathematics achievement scores 

for ninth-grade students with or without disabilities in Southeastern Georgia who received 

instruction using Hands-on Equations, as measured by the Algebra I I-Ready test.    
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H02: There is no statistically significant difference in mathematics achievement scores 

for ninth-grade students in Southeastern Georgia, who did or did not experience Hands-on 

Equations, as measured by the Algebra I I-Ready test.   

H03: There is no statistically significant difference in mathematics achievement scores 

for ninth-grade students with or without disabilities, in Southeastern Georgia, who did or did not 

experience Hands-on Equations, as measured by the Algebra I I-Ready test.   

Descriptive Statistics 

This section discusses the demographics of the study sample to generate a better 

understanding of the targeted population.  Gender was considered, and though it proved 

impractical, initial efforts were made to make the study gender-neutral.  The racial orientation 

was also identified with representation from African-American, White, and Native Hawaiian or 

Other Pacific Islanders.  Finally, ethnicity was also included as a demographic factor.   

Gender 

Efforts were made to make the study gender-neutral by including participants from both 

genders in the study.  However, a complete equivalence could not be achieved due to the 

different male to female student ratios in the surveyed schools.  Table 1 depicts a summary of the 

outcome related to the gender demographics for the students who received instruction using 

Hands-on Equations.  

Table 1: Gender of Students Receiving Instruction using Hands-on Equations 

 

Gender Frequency Percent Valid Percent Cumulative Percent 

Valid female 44 53.0 53.0 53.0 

male 39 47.0 47.0 100.0 

Total 83 100.0 100.0  
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The gender demographics for the ninth-grade students exposed to the instruction based on 

Hands-on Equations depict that out of the 83 participants, 44 (53.0%) were females, while 39 

(47.0%) constituted the male participants.  Gender composition was fairly balanced among the 

participants. 

Table 2 highlights a summary of the demographic results attributed to the group of 

participants who did not receive instruction using the Hands-On Equations system.   

Table 2: Gender for Students Not Receiving Instruction Using Hands-on Equations 

Gender Frequency Percent Valid Percent Cumulative Percent 

Valid female 19 63.3 63.3 63.3 

male 11 36.7 36.7 100.0 

Total 30 100.0 100.0  

 

For the ninth-grade students who did not receive instruction using Hands-On Equations, 

30 complete observations were made, with 19 (63.3%) being females and 11 (36.7%) being 

males.  The stated gender demographics depict that the female ninth-grade students outnumbered 

the males in the sample constituent of the students who did not receive instruction using Hands-

on Equations. 

Race 

Table 3 depicts the racial composition of the participants who received instruction using 

Hands-on Equations 

Table 3: Race of Students Receiving Instruction with Hands-on Equations 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid Black or African American 79 95.2 95.2 95.2 

Native Hawaiian or Other Pacific Islander 1 1.2 1.2 96.4 

White 3 3.6 3.6 100.0 

Total 83 100.0 100.0  
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The majority of ninth-grade students who received instruction using Hands-on Equations 

were Black or African American (95.2%) followed by the White students (3.6%) and the Native 

Hawaiian or Other Pacific Islanders students (1.2%). 

The racial composition of the students who did not receive instruction using Hands-on 

Equations is illustrated in table 4. 

 

Table 4: Race of Students Not Receiving Instruction Using Hands-on Equations 

 Frequency Percent Valid Percent Cumulative Percent 

Valid Black or African American 26 86.7 86.7 86.7 

White 4 13.3 13.3 100.0 

Total 30 100.0 100.0  

 

Similarly, for the students who did not experience the use of the manipulative (Hands-on 

Equations), a majority of them were Black or African American (86.7%) followed by White 

(13.3%).  The implication is that the sample composition in the two population groups was 

dominated by the ninth-grade students who were of the Black (African-American) descent.   

Ethnicity 

In addition to the sample composition based on race, the researcher also inquired for 

ethnicity (Hispanic or Latino) in the observed group.  The ethnicity demographics related to the 

students who were using Hands-on Equations is depicted in table 5 below.   

Table 5: Ethnicity Demographics for Students Who Received Instruction Using Hands-on Equations 

 Frequency Percent Valid Percent Cumulative Percent 

Valid N 80 96.4 96.4 96.4 

Y 3 3.6 3.6 100.0 

Total 83 100.0 100.0  
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The majority of the ninth-grade students exposed to Hands-on Equations were not 

classified as Hispanic or Latino (96.4%).  The insinuation is that only 3.6% of the ninth-grade 

students were identified as Hispanic or Latino. 

The ethnicity demographic composition of the students who did not receive instruction 

using Hands-on Equations is illustrated in Table 6 below. 

Table 6: Ethnicity Demographics for Students Not Receiving Instruction Using Hands-on Equations 

 Frequency Percent Valid Percent Cumulative Percent 

Valid N 29 96.7 96.7 96.7 

Y 1 3.3 3.3 100.0 

Total 30 100.0 100.0  

 

Similarly, the demographic results for the ninth-grade students who did not receive 

instruction using Hands-on Equations depict that the majority of them were not Hispanic or 

Latino (96.7%).  This means that only 3.3% of the participants who did not receive instruction 

using Hands-on Equations were considered as Hispanic or Latino. 

Special Education Status 

The analysis also ensured that in each of the two groups (students who used and did not 

use hands-on Equations) were equally represented in terms of the special education needs status. 

Table 7 depicts the results of the participants’ special education needs status from the group of 

ninth-grade students that received instruction using Hands-on Equations. 

Table 7: Special Needs Status for Students Receiving Instruction Using Hands-on Equations 

 Frequency Percent Valid Percent Cumulative Percent 

Valid N 68 81.9 81.9 81.9 

Y 15 18.1 18.1 100.0 

Total 83 100.0 100.0  
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The results show that the majority of the ninth-grade students using Hands-on Equations 

did not require special education (81.9%).  The insinuation is that only 18.1% of the group of 

students using Hands-on Equations needed special education.   

The outcome on the students’ special education needs status from the group that did not 

receive instruction using Hands-on Equations is illustrated in Table 8 below. 

Table 8: Special Needs Status for Students Not Receiving Instruction Using Hands-on Equations 

 Frequency Percent Valid Percent Cumulative Percent 

Valid N 26 86.7 86.7 86.7 

Y 4 13.3 13.3 100.0 

Total 30 100.0 100.0  

 

Similarly, for the ninth-grade students who were not using Hands-on Equations, the 

majority (86.7%) did not need any special education services.  However, a slightly lower 

percentage (13.3%) of the group that did not receive instruction using Hands-on Equations was 

considered in need of special education.  The outcome based on the special needs education 

status depicts that in both groups, the ninth-grade students with a disability were dominated by 

the students that did not require any special education services.   

Results 

This section presents the results obtained from the surveys of the data conducted in the 

study.  The results are grouped according to the three researched hypotheses.  Specifically, the 

results of the ANCOVA analysis, which depicts a comparison of the adjusted means 

(mathematics scores) controlling for the effect of the pretest results, are discussed in this section 

of the paper.   
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Hypotheses 

The three hypotheses tested the individual and combined differences between the special 

education need and the use of Hands-on Equations with the dependent variable being the 

mathematics achievement (scores) represented by the diagnostic overall scale score-2 from the 

Algebra I I-Ready test.   

Hypothesis 1 (H01).  Mathematics Achievement in Special Education Group.   

The first null hypothesis of the study stated there is no significant difference in 

mathematics achievement scores for ninth-grade students with or without disabilities in 

Southeastern Georgia who were exposed to instruction using the Hands-on Equations system as 

measured by the Algebra I I-Ready test.  In order to test the hypothesis, a one-way ANCOVA 

analysis was employed to assess the covariance in the two groups of students (those with special 

education needs and those that were not in need of special education).  The dependent variable 

was the Diagnostic Overall Scale Score-2, as measured by the Algebra I I-Ready test.  The 

independent explanatory factor variable was the ‘Special Education’ categorical variable.  The 

factor covariate, which controls for the effect of disability on the students’ mathematics 

achievement scores, is specified as the pretest scores (Diagnostic Overall Scale Score-1) as 

measured by the Algebra I I-Ready test.  SPSS v. 22 was employed to conduct the ANCOVA 

analysis. 

Table 9 illustrates a summary of the estimated adjusted marginal means related to the 

mathematics scores for the ninth-grade students with disabilities (in need of special education) 

and those without any form of disability (do not require special education). 

Table 9: Estimated Adjusted Marginal Means: Mathematics Scores of Students with and without Disabilities 

Dependent Variable: Diagnostic Overall Scale Score-2   
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Special Education Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

N 481.827a 2.414 477.023 486.631 

Y 466.517a 5.903 454.770 478.265 

a. Covariates are evaluated at the following values: Diagnostic Overall Scale Score-1 = 474.193. 

 

As can be seen in Table 9 with respect to the Diagnostic Scale Score-2, the ninth-grade 

students who did not require special education had a higher adjusted mean score (μ = 481.83; σ = 

2.41) when assessed against the adjusted mean scores of the ninth-grade students that were in 

need of special education (μ = 466.52; σ = 5.90).  The one-way ANCOVA analysis was 

conducted to determine whether the difference in the adjusted mean mathematical scores was 

statistically significant or not.  Table 10 highlights the outcome of the one-way ANCOVA 

analysis to generate answers for research question 1. 

Table 10: ANCOVA Analysis Outcome for Research Question 1 

Tests of Between-Subjects Effects 

Dependent Variable: Diagnostic Overall Scale Score-2   

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 58440.850a 2 29220.425 81.050 .000 .670 

Intercept 5587.499 1 5587.499 15.498 .000 .162 

DiagnosticOverallScaleScore1 27372.414 1 27372.414 75.924 .000 .487 

Special Education 1859.536 1 1859.536 5.158 .026 .061 

Error 28841.849 80 360.523    

Total 19135676.000 83     

Corrected Total 87282.699 82     

a. R Squared = .670 (Adjusted R Squared = .661) 

 

The outcome of the one-way ANCOVA analysis depicts that both the covariate and the 

independent variable were significant at α0.05.  This means that both the pretest scores and the 
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Special Education needs status of the ninth-grade students exposed to Hands-on Equations had a 

substantial influence on the mathematics scores as measured by the Diagnostic Scale Score-2.  

The partial Eta squared column illustrates that the pretest scores (Diagnostic Overall 

Scale Score 1) (0.487) explain 48.7% of the changes in the mathematics scores as measured by 

the Diagnostic Scale Score-2. In addition, the Special Education need status (0.061) expounds 

6.1% of the movement in the mathematics scores as defined by the Diagnostic Scale Score-2.  

Therefore, based on the significance of the ‘Special Education’ independent factor variable [ F 

(1, 83) = 5.16; ρ = 0.026< 0.05)], the analysis rejects the null hypothesis 1 (H01), which means 

that there is a significant difference in the mathematics scores of the students with a disability 

and those without a disability among the group of participants exposed to instruction using 

Hands-on Equations.  

Hypothesis 2 (H02).  Mathematics Achievementusing the Hands-On Equations 

The second null hypothesis of the study stated that there is no statistically significant 

difference in mathematics achievement scores for ninth-grade students in Southeastern Georgia, 

who did or did not receive instruction using Hands-on Equations as measured by the Algebra I I-

Ready test.  A one-way ANCOVA analysis was used to examine the covariance in the two 

groups of students (participants using Hands-on Equations and the students not subjected to the 

manipulative).  Similarly, in this case, the dependent variable was the Diagnostic Overall Scale 

Score-2.  The independent factor variable was the “Instruction with Hands-on Equations,” which 

is also a categorical variable.  The covariate, which controls for the effect of exposure to the 

Hands-on Equations on the mathematics achievement scores is defined as the pretest scores 

(Diagnostic Overall Scale Score-1).  The ANCOVA analysis was conducted in SPSS v. 22. 



69 

 

Table 11 presents the estimated adjusted marginal means related to the mathematics scores 

for the ninth-grade students using and not using Hands-on Equations.   
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Table 11: Estimated Adjusted Marginal Means: Mathematics Scores of Students Exposed and Not Exposed to 

Hands-on Equation Instruction 

Estimates 

Dependent Variable:   Diagnostic Overall Scale Score-2   

Exposure to Hands-on Equations Mean Std.  Error 

95% Confidence Interval 

Lower Bound Upper Bound 

N 476.516a 3.614 469.355 483.678 

Y 480.849a 2.164 476.561 485.138 

a. Covariates are evaluated at the following values: Diagnostic Overall Scale Score-1 = 476.558. 

 

From Table 11, the mathematics scores (Diagnostic Scale Score-2) of the ninth-grade 

students who were using Hands-on Equations had a higher adjusted mean score (μ = 480.85; σ = 

2.16) compared to the adjusted mean scores of the ninth-grade students that did not receive 

instruction using the manipulative (μ = 476.52; σ = 3.61).  Similarly, the one-way ANCOVA 

analysis was also conducted to determine whether the difference in the adjusted mean scores was 

substantial or not.  The outcome of the one-way ANCOVA analysis to generate solutions related 

to the research inquiry (question 2) is delineated in Table 12.   

 

Table 12: ANCOVA Analysis Outcome for Research Question 2 

Tests of Between-Subjects Effects 

Dependent Variable:   Diagnostic Overall Scale Score-2   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 57409.549a 2 28704.774 74.207 .000 .574 

Intercept 6061.929 1 6061.929 15.671 .000 .125 

DiagnosticOverallScaleScore1 57281.944 1 57281.944 148.084 .000 .574 

Exposure to Hands-on 

Equations 
406.618 1 406.618 1.051 .307 .009 

Error 42550.221 110 386.820    

Total 26102530.000 113     

Corrected Total 99959.770 112     

a. R Squared = .574 (Adjusted R Squared = .567) 
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The ANCOVA analysis results depict that only the covariate, pretest scores, was 

significant at the α = 0.05 level.  However, the independent factor variable, Exposure to Hands-

on Equations, was not significant at α0.05.  The explanation is that only the pretest scores 

(Diagnostic Scale Score-1) had a considerable influence on the mathematics scores as measured 

by the Diagnostic Scale Score-2.  However, exposure to the Hands-on Equations did not have 

any substantial effect on the succeeding students’ mathematics scores as measured by the 

Diagnostic Scale Score-2.   

Based on the partial Eta squared, the pretest scores (Diagnostic Overall Scale Score 1) 

(0.574) expounds 57.4% of the fluctuations that occur in the student mathematics scores as 

measured by the Diagnostic Scale Score-2.  However, the exposure to Hands-on Equations 

(0.009) accounts for 1% of the changes in the mathematics scores (Diagnostic Scale Score-2). 

The outcome of the ANCOVA analysis concurs with the null hypothesis defined for the research 

question 2.  Specifically, given that the ‘Exposure to Hands-on Equations’ independent variable [ 

F (1, 113) = 1.05; ρ = 0.31> 0.05)] is non-significant, the null hypothesis 2 (H02) cannot be 

rejected.  This means that there is no significant difference in the mathematics scores of the 

ninth-grade students exposed and not exposed to instruction using Hands-on Equations.  

Hypothesis 3 (H03).  Mathematics Achievement for Hands-On Equations in the 

Special Education Group 

The third null hypothesis of the study stated there is no statistically significant difference 

in mathematics achievement scores for ninth-grade students with or without disabilities, in 

Southeastern Georgia, who did or did not receive instruction using Hands-on Equations.  The 

implication is that there are two independent factor variables that influence the dependent factor 

variable (mathematics score as measured by the Diagnostic Scale Score-2).  The two independent 
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factor variables include the ‘Special Education’ and ‘Exposure to Hands-on Equations.’  The 

covariate, which controls for the effect of ‘Exposure to the Hands-On Equations’ and ‘Special 

Education’ is the pretest scores (Diagnostic Overall Scale Score-1).  The two-way ANCOVA 

analysis was conducted in SPSS v. 22. The two-way ANCOVA analysis is specified because 

there are two explanatory variables (‘Special Education’ and ‘Exposure to Hands-on Equations’) 

that influence the student mathematics scores.   

Table 13 presents the estimated adjusted marginal means related to the mathematics scores 

for the ninth-grade students for both the ‘Special Education’ group and for the participants 

exposed and not exposed to ‘Hands-on Equations.’ 

Table 13: Estimated Adjusted Marginal Means: Mathematics Scores for the Interaction Effect of Exposure to 

Hands-on Equations and Special Education 

Exposure to Hands-on Equations * Special Education 

Dependent Variable:   Diagnostic Overall Scale Score-2   

Exposure to Hands-on 

Equations Special Education Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

N N 476.020a 3.820 468.448 483.592 

Y 484.664a 9.619 465.598 503.730 

Y N 483.735a 2.375 479.027 488.443 

Y 466.456a 5.898 454.764 478.147 

a. Covariates are evaluated at the following values: Diagnostic Overall Scale Score-1 = 476.558. 

 

Based on Table 13, the mathematics scores (Diagnostic Scale Score-2) of the ninth-grade 

students who were subjected to Hands-on Equations and did not require special education had a 

higher adjusted mean score (μ = 483.74; σ = 2.38) compared to the adjusted mean scores of the 

ninth-grade students that received instruction using Hands-on Equations and required special 

education (μ = 466.46; σ = 5.90).  On the other hand, mathematics scores of the ninth-grade 

students who were not exposed to Hands-on Equations but required special education had a 

higher adjusted mean score (μ = 484.66; σ = 9.62) when assessed against the adjusted mean 
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scores of the students that were not using Hands-on Equations and did not require special 

education (μ = 476.02; σ = 3.82).  The two-way ANCOVA analysis was also conducted to 

determine whether the difference in the adjusted mean scores was considerable or not.  The 

results of the two-way ANCOVA analysis to answer the research inquiry (question 3) are 

outlined in Table 14. 

Table 14: ANCOVA Analysis Outcome for Research Question 3 

Tests of Between-Subjects Effects 

Dependent Variable:   Diagnostic Overall Scale Score-2   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 60331.687a 4 15082.922 41.106 .000 .604 

Intercept 8357.436 1 8357.436 22.777 .000 .174 

Diagnostic Overall ScaleScore1 

 
29032.968 1 29032.968 79.125 .000 .423 

Exposure to Hands-on 

Equations 284.384 1 284.384 .775 .381 .007 

 

Special Education 

 

167.123 1 167.123 .455 .501 .004 

Exposure to Hands-on 

Equations * Special Education 1758.506 1 1758.506 4.793 .031 .042 

Error 39628.083 108 366.927    

Total 26102530.000 113     

Corrected Total 99959.770 112     

a. R Squared = .604 (Adjusted R Squared = .589) 

 

The outcome based on the two-way ANCOVA analysis indicate that only the covariate 

(pretest scores) [F (1, 113) = 79.13; ρ = 0.000< 0.05)] and the interaction effect (Special 

Education* Exposure to Hands-on Equations) [ F (1, 113) = 4.79; ρ = 0.031< 0.05)]  were 

significant at the α = 0.05 level.  However, the two independent factor variables, ‘Special 

Education’ [ F (1, 113) = 0.46; ρ = 0.501> 0.05)] and the ‘Exposure to Hands-on Equations’ [ F 

(1, 113) = 0.78; ρ = 0.381> 0.05)] were not significant at α0.05.  The insinuation is that only the 
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pretest scores (Diagnostic Scale Score-1) and the interaction cross factor variables had a 

substantial influence on the mathematics scores as defined by the Diagnostic Scale Score-2.  

However, when incorporated separately, the exposure to Hands-on Equations and Special 

Education did not have any substantial effect on the mathematics scores as measured by the 

Diagnostic Scale Score-2.   

From the partial Eta squared, the pretest scores (0.423) explain 42.3% of the changes in 

the student mathematics scores as measured by the Diagnostic Scale Score-2.  The interaction 

effect (0.042) expounds 4.2% of the changes in the mathematics scores (Diagnostic Scale Score-

2).  However, when accounted independently, ‘Special Education’ and ‘Exposure to Hands-on 

Equations’ explain less than 1% of the variations in the mathematics scores (Diagnostic Scale 

Score-2).  The insight from the ANCOVA analysis contrasts the null hypothesis associated with 

the research question 3.  Precisely, given that the interaction effect (“Special Education” and 

“Instruction using Hands-on Equations”) [ F (1, 113) = 4.79; ρ = 0.031< 0.05)] is significant, the 

initial hypothesis 3 (H03) is discarded.  The implication is that there is a significant difference in 

the mathematics scores of the ninth-grade students with and without disability in Southeastern 

Georgia for those who received and did not receive instruction using Hands-on Equations.  
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Table 15: Hypotheses Mean Scores 

  

H01 

  

Special Education   Mean 

N   481.827 

Y   466.517 

  

H02 

  

Exposure to Hands-on Equations   Mean 

N   476.516 

Y   480.849 

  

H03 

  

Exposure to Hands-on Equations Special Education Mean 

N N 470.02 

  Y 484.664 

Y N 483.735 

  Y 466.456 

 

Testing the Assumptions for ANCOVA Analysis 

The validity and accuracy of the ANCOVA analysis depend on the attainment of several 

sets of assumptions.  This section reports tests used to assess the assumptions related to the 

normality, linearity, and the homogeneity (constant residual variance), which are the primary 

foundations that guide the ANCOVA analysis.   

Normality Test:  

The ANCOVA analysis presumes that the mathematics scores data for the students 

exposed to Hands-on Equations and those who did not receive the manipulative instruction have 

a normal distribution with a mean of nil and a standard deviation (variance) of 1.  Table 16 

depicts the results of the normality test to assess whether the mathematics scores of the students 

who received instruction using Hands-on Equations have a normal distribution or not.   
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Table 16: Normality Test for the Mathematics Scores of the Students Using Hands-on Equations 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

HoE-Diagnostic Overall 

Scale Score-2 
.163 83 .000 .917 83 .000 

a. Lilliefors Significance Correction 

 

The outcome from both the K-S normality test (ρ = 0.000< 0.05) and the Shapiro-Wilk 

normality test (ρ = 0.000< 0.05) illustrate that the assumption of normal distribution in the 

student mathematics score data does not hold at the α = 0.05.  The visual analysis from the 

histogram also confirms that the stated data is not normally distributed.   

Figure 1: Diagnostic Overall Scale Score 

 
 

Table 17 illustrates the outcome of the normality test to assess whether the mathematics 

scores of the students who did not receive instruction using Hands-on Equations is normally 

distributed or not.   
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Diagnostic Overall Scale Score 2 Not using Hands-on Equations 

Table 17: Normality Test for the Mathematics Scores of the Students not Using Hands-on Equations 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Diagnostic Overall Scale 

Score-2 
.148 30 .090 .924 30 .035 

a. Lilliefors Significance Correction 

 

      The insight from the K-S normality test (ρ = 0.090 > 0.05) depicts that the assumption of 

normal distribution in the student mathematics score holds at α = 0.05.  However, the Shapiro-

Wilk normality test (ρ = 0.035 < 0.05) does not agree with the normality assumption.  The 

visual analysis from the histogram (Figure 1) slightly agrees with the outcome of the K-S 

normality test.   

 

Figure 2: Diagnostic Overall Scale Score 

 
 

 

Linearity Test:  

The linearity assumption is based on the premise that both the dependent factor variable 

and the explanatory factor variable are linearly related.  Figures 2 and 3 present the scatterplots 

to assess the linearity in the student mathematics scores for the group that did receive instruction 

using Hands-on Equations and the group that was not subjected to the manipulative respectively.  
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Figure 3: Linearity Test for the Mathematics Scores of Students Using Hands-on Equations 

 
 

The scatterplot visual (Figure 3) indicates that the mathematics scores for the students 

who did not receive instruction using Hands-on Equations was linearly related to the pretest 

scores.  The stated conclusion is derived because of the curved-shaped appearance of the 

scatterplots.  However, there seems to be a weak linear relationship between the student 

mathematics scores (Diagnostic Scale Score-2) and the pretest scores for the participants that did 

receive instruction using Hands-on Equations.   
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Figure 4: Linearity Test for the Mathematics Scores of Students not Using Hands-on Equations 

 

 

Homogeneity (Constant Variance) Test:  

The validity of the ANCOVA analysis is also based on the assumption that there is an 

unstable (constant) variance attributed to the residuals of the archetype model.  A homogeneity 

test was conducted using the Levene’s constant variance test.  A summary of the Levene’s 

constant variance test outcome for hypotheses 1, 2 and 3 is depicted in Table 17, 18 and 19 

respectively.   

Table 18: Homogeneity Test for Equality of Variance: Hypothesis 1 

 

 

 

 Levene's Test for Equality of Variances 

F Sig. (p) 

Diagnostic Overall Scale Score-2 
Equal variances assumed 3. 164 0. 078 

Equal variances not assumed   
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Table 19: Homogeneity Test for Equality of Variance: Hypothesis 2 

 

Table 20: Homogeneity Test for Equality of Variance: Hypothesis3 

 

The outcome of the homogeneity test reveals that only in model 1 and 3 did the constant 

variance assumption hold with respect to the student mathematics achievement scores because 

the F-values had a ρ>0.05.  However, in model 2 (F = 12.06; ρ = 0.001< 0.05), the constant 

variance assumption was not held at the 5% level. 

Therefore, in summary, the assumptions of normality, linearity, and the constant variance 

(homogeneity) have been partially met in the data that was employed to conduct the ANCOVA 

analysis.  This situation is likely to have a slight influence on the reliability of the ANCOVA 

analysis outcome. 

Combined Results 

 The third null hypothesis is based on two independent observations from the “Special 

Education” and the “Exposure to Hands-on Equations” factor variables.  Therefore, the results 

 Levene's Test for Equality of Variances 

F Sig.  

Diagnostic Overall Scale Score-2 
Equal variances assumed 12. 062 0. 001 

Equal variances not assumed   

 Levene's Test for Equality of Variances 
F Sig.(p) 

Diagnostic Overall Scale Score-2 
Equal variances assumed 3.164 0. 078 

Equal variances not assumed   
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need to be combined in terms of weightage, as there is a contradiction between the results.  

While the first set of results (Score-1) does not show the intercept of Special Education and 

Intervention to play a significant role in defining students’ mathematics performance, Score-2 

showed the intercept to have a significant effect.  The null hypothesis 1 (H01) was not accepted, 

which suggests that there is a significant difference in the mathematics achievement scores of 

students with and without special education needs for the participants that did receive instruction 

using Hands-on Equations.  However, the initial hypothesis 2 defined by (H02) was not rejected, 

which means that there is no substantial difference in the student mathematics scores for the 

group that did receive instruction using Hands-on Equations and the group that was not subjected 

to the manipulative.  Finally, the null hypothesis 3 (H03) was not accepted.   There is a 

substantial variation in the mathematics scores of the students with and without a disability in 

Southeastern Georgia; for the group that did receive instruction using the Hands-on Equations 

and the group that did not experience instruction with the manipulative. 
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CHAPTER 5: DISCUSSION, CONCLUSION, AND RECOMMENDATIONS 

Overview 

This chapter will present a critical analysis of the study results in light of the literature 

review and previous empirical findings.  The aim of this chapter is to compare and analyze the 

present findings with the previous finding, identify study limitations, and new insights resulting 

from the study. 

Discussion 

In the following section, the researcher will address the three research questions, 

analyzing if special education and Hands-on Equations have any role to play in the overall 

mathematics achievement of students.  To present a critical analysis, results obtained from data 

surveys will be compared and analyzed with previous findings and assertions.   

Challenges for Ninth-Grade Students with Learning Disabilities 

One of the primary premises of the study is based on the argument that children with 

disabilities have a more difficult time grasping concepts of mathematics as compared to those 

without disabilities.  It was based on the premise of the need for Hands-on Equations was 

proposed and evaluated for the ninth-grade students of two different schools; one utilizing the 

mentioned intervention and the other which does not practice the intervention.  So, one of the 

primary tests conducted in the study was to see if mathematics scores for children enrolled in the 

schools differed among the ones receiving special education and the ones who were not receiving 

special education.   

The test results clearly showed students who did not receive special education scored 

higher in their mathematics test as compared to the ones who received special education.  A 

mean difference of -15.31 was reported for the first research question based on the Diagnostic 
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Scale Score-2 (refer to Table 9).  This result confirms the assertion made by Yell et al.  (2012) 

that students with disabilities find it increasingly difficult to meet the evaluation standard as they 

move to a higher grade-level.  Referring to the Piaget’s Cognitive Development theory, it is the 

fourth stage in which formal operational development takes place, where children learn how to 

make meaning of their learning experiences and relate it to their previous knowledge and 

experience.  It is this stage where a critical understanding is expected of the children with 

disabilities to compete with their classmates without disabilities.   

Significance of Hands-on Equations for Ninth-Grade Students 

Addressing the problem statement of the study, the primary objective of the research was 

to get more certainty regarding the use and significance of Hands-on Equations to improve 

mathematics achievement of ninth-grade students.  Many studies (Barber & Borenson, 2008; 

Brown, 2011; Jimenez, 2011; Liendenbach& Raymond, 1996; Skaggs, 2007), using students 

without disabilities as the test subjects, found a positive correlation between the use of Hands-on 

Equations and the overall mathematics achievement of the students.  On the other hand, studies 

by Garderen, et al. (2012), Schulte & Stevens (2015), and Stevens & Schulte (2017) observed 

Hands-on Equations failed to achieve the desired output when the test population was students 

with learning disabilities.  Based on this foundation, the present study was a step forward to 

analyze the impact of the use of Hands-on Equations on mathematics scores in general, 

considering both students with and without disabilities.   

Contrary to the previous studies (Carbonneau et al., 2013; Gurbuz, 2010; Sherman 

&Bisanz, 2009), which found a significant positive association of Hands-on Equations with 

mathematics achievement, the current study did not find any significant correlation, either 

positive or negative.  A surprising finding was the scores for the students with disabilities were 
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slightly higher when they received no intervention (µ1=484.66) as compared to those who 

received the intervention (µ2= 466.46).  However, since no statistical correlation was reported, 

this difference can be associated with mere chance, coincidence, or variation in the two sample 

sizes.  Thus, in general, the present study fails to confirm all previous studies advocating the use 

of Hands-on Equations for improved mathematics achievement.  The majority of the previous 

studies were conducted with fourth and fifth-grade students aged between 8-11 years.  This age 

bracket falls under the third stage of ‘concrete operational development,’ according to Piaget’s 

theory of cognitive development (Piaget, 1965).  The difference in results could be explained as 

the application of Hands-on Equations for ninth-grade students is yet to be properly developed or 

because supplementary tools are required to make a noticeable impact on the overall 

performance output.   

As the mathematics concepts become more intricate with each level, it is important to 

question and understand how the chosen teaching tools correspond to the three learning stages 

involved in mathematics learning, as proposed by Bruner (1977).  The use of manipulatives is 

one part of the overall learning cycle, and it needs to be backed by exercises of hypothesis 

testing, model building, and experimentation so students can recreate the problem in different 

scenarios (Kitta & Kapinga, 2015).  It has been learned tools of narrative argumentations, 

symbolic representations, and audio-visual aids. All of these tools contribute to the overall 

understanding and conceptualizing of a complex or compound mathematics tool (Belenky & 

Nokes, 2009; Krummheuer, 2013).  Hands-on Equations should then be fitted with these tools in 

the best possible way, considering the difficulty level of the target problems and the particular 

needs or knowledge-level of the target students.   
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Significance of Hands-On Equations for Ninth-Grade Students with Disabilities 

The application and correlation of Hands-on Equations with mathematics achievement 

becomes dubious when the target group of students is the one with disabilities (Schulte & 

Stevens 2015; and Stevens & Schulte, 2017).  Previous researchers have identified the added 

complexity when dealing with students who require special education, and therefore, building a 

significant correlation becomes more difficult (Steele, 2010).  A two-factor test with the 

dependent variable of the Diagnostic Overall Scale Score seconded the arguments presented by 

Schulte & Stevens (2015) and Stevens & Schulte (2017).  The observed population was divided 

into four groups; students with disabilities, students without disabilities, students who received 

instruction using Hands-on Equations, and the ones who did not.  The intersection of these four 

sets results is included in this study (refer to Table 14).  It can be seen as children with 

disabilities, who received instruction with Hands-on Equations scored slightly less (µ=466.46) in 

the second test (Overall Scale Score-2) than those who did not receive the intervention 

(µ=484.66. Again, with no statistically significant correlation detected, these differences in 

performance scores cannot be directly associated with the intervention). 

One of the crucial findings from the literature was students with learning disabilities often 

suffer from other problems like difficulty memorizing, paying attention, and organizing (Bottge 

et al., 2010; Cortiella, 2011).  While Hands-on Equations focuses on conceptualization and 

visualization, the other pertinent problems of children with difficulties often remain unaddressed.  

In addition, children with disabilities are aware they are different from their fellow students, and 

this awareness often hinders their self-confidence, self-esteem, and communication skills.  

Therefore, assuming utilization of Hands-on Equations will work for all or the majority of the 

students with learning disabilities would be an overstatement.  The argument made by Geary 
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(2011) needs to be emphasized here: a student-oriented and individual need-based intervention is 

required to target the unique skills and challenges of the students with and without disabilities 

when teaching algebra, geometry, measurement, and other mathematics concepts.   

In my opinion, the real benefits of Hands-on Equations can only be obtained when the 

teacher understands the grass root-level issues of students like having problems in recalling a 

concept, anxiety when solving a text exam, or lack of productive feedback on errors from the 

tutor.  The suggestion of Wang (2013) regarding research-based teaching should also be taken 

into account in order to test and evaluate different techniques with different populations, rather 

than using a one-fit-for-all approach.   

Implications 

At the end of the discussion and analysis, it is a good time to summarize the findings and 

present some implications which can be applied in a real-world scenario.  While the literature is 

consistent on the significant correlation between the use of Hands-on Equations and math 

achievement, the present study did not find any such correlation.  This means the significance of 

the traditional ways of teachings through lectures and note-taking cannot be undermined.  

However, the overall mathematics achievement of the target population was average at best, and 

this means there is still some room for improvement in how mathematics and its different 

modules are taught in the classrooms.   

The researcher agrees with the viewpoint of the involvement of abstract thinking in a 

number of mathematics modules, including algebra and geometry, as noted by a number of 

researchers (Connely-Fukawa, 2012; Donohue et al., 2013; Rainbolt & Gallian, 2010).  For 

teachers, those abstract concepts might make complete sense, but it may sound very vague and 

irrelevant to students, especially the ones with learning disabilities.  Thus, the tutors need to 
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make efforts in relating those abstract concepts to everyday scenarios, allowing students to relate 

objects with them and make meaning out of the concepts.  As noted in Bruner’s theory of 

development, teachers should go from the inactive level to the iconic level and then to the 

symbolic level.  This means before introducing algebraic notations or theorems; students should 

understand the process of getting there or the sense of why such a concept is needed to solve a 

problem.   

Owing to Dienes’ theory of learning mathematics, the use of manipulatives can help in the 

early stages of learning, where students are still getting familiar with the concepts, their 

representation, and symbolism.  However, the final stage of formalization is when students 

should be able to use their inductive and deductive reasoning to explain, elaborate, and replicate 

a problem (Dienes, 1973).  A general observation is students are given some problems to solve, 

and tutors try to give them multiple similar problems to strengthen their concepts.  However, 

repetition is not the same as replication, which invites students to come up with similar problems 

to the ones given by the tutor.  Thus, tutors need to encourage a critical thinking and problem-

solving environment in the class, allowing students to think or act as tutors themselves.  This 

activity needs to be backed by regular formative assessment and feedback, as guided by 

Strickland and Maccini (2010).  Rather than a yearly or bi-annual evaluation, students, 

particularly the ones with learning disabilities, need regular feedback and assessment to embed a 

concept correctly into their minds.   

Finally, the use of Hands-on Equations and other manipulatives for teaching mathematics 

concepts should be guided by evidence-based research for the target audience.  As noted in the 

current research, Hands-on Equations may not guarantee improved mathematics achievement, 

particularly with children that have special learning needs.  It is obvious a different plan cannot 
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be prepared for individual students, so the best way could be for teachers to assess the needs of 

their class and blend those needs into a single or a specialized lesson plan.  It is important to 

mention again the grassroots-level issue of lack of confidence or fear and anxiety should be 

addressed before tutors introduce any kind of learning interventions to their students.  The 

studies by Brodesky& Gross (2009) and Burns & Hamm (2011) can be used as a guideline for 

breaking down complex mathematics concepts into simple, tangible, and concrete objects which 

can help in the process of visualizing and conceptualizing a problem.  Finally, it is the tutor who 

should be the judge of the best and workable exercises to be brought into the classrooms for 

making the course more interactive and students’ need-oriented.   

Limitations 

One of the study limitations was a high number of missing values, which resulted in a 

limited sample size when the univariate analysis was made.  As the analysis is based on the 

interception of values, a single missing value would result in dismissing all values of that 

particular observation.  However, there are only meager chances of this limitation to have altered 

the study results.  Future studies should use a larger sample size to get more intercepted 

observations and then compare their findings with the current study.  Moreover, it is believed 

such interventions often take time to have an impact, and therefore, using a longitudinal study 

would have produced results over a time-series which could then be compared to see any pattern 

of performance improvement.  However, a longitudinal study was not possible for this study due 

to time, resources, and permission constraints.   

Recommendations for Future Researchers 

In the end, I would like to make some recommendations to future researchers who might 

be interested in conducting their research in a similar field of study.   
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• Researchers with enough time and resources can adopt a longitudinal research and sampling 

approach, where they collect data from the study participants during different intervals and 

monitor any improvement in their mathematics aptitude or performance scores.   

• Researchers can also conduct module-specific research, focusing on Hands-on Equations 

implementation and efficiency for different mathematics modules, for example, algebra, 

geometry, and fractional measurements.   

• Researchers who would like to take a more theoretical approach can try to expand or enrich 

the presented learning theories by targeting the use of intervention at different developmental 

stages during mathematics learning, either collecting and comparing data from different 

grade levels or at different module stages in the same grade level.   

• Researchers should focus more on the primary grades for maximum impact of the Hands-on 

Equations learning system.  Solving linear equations is a sixth grade standard.  By the time a 

student reaches the ninth grade they are examining the relationships and reasoning with the 

equations.  By focusing on the earlier grades such as primary, it will be a preview for the 

student and it will build the self-esteem for the struggling learner.   

• In order for the Hands-on Equations program to be fully successful, the instructor must be 

fully vested in its success with proper training.  
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