IBRERTY UNIVERSITY

Background

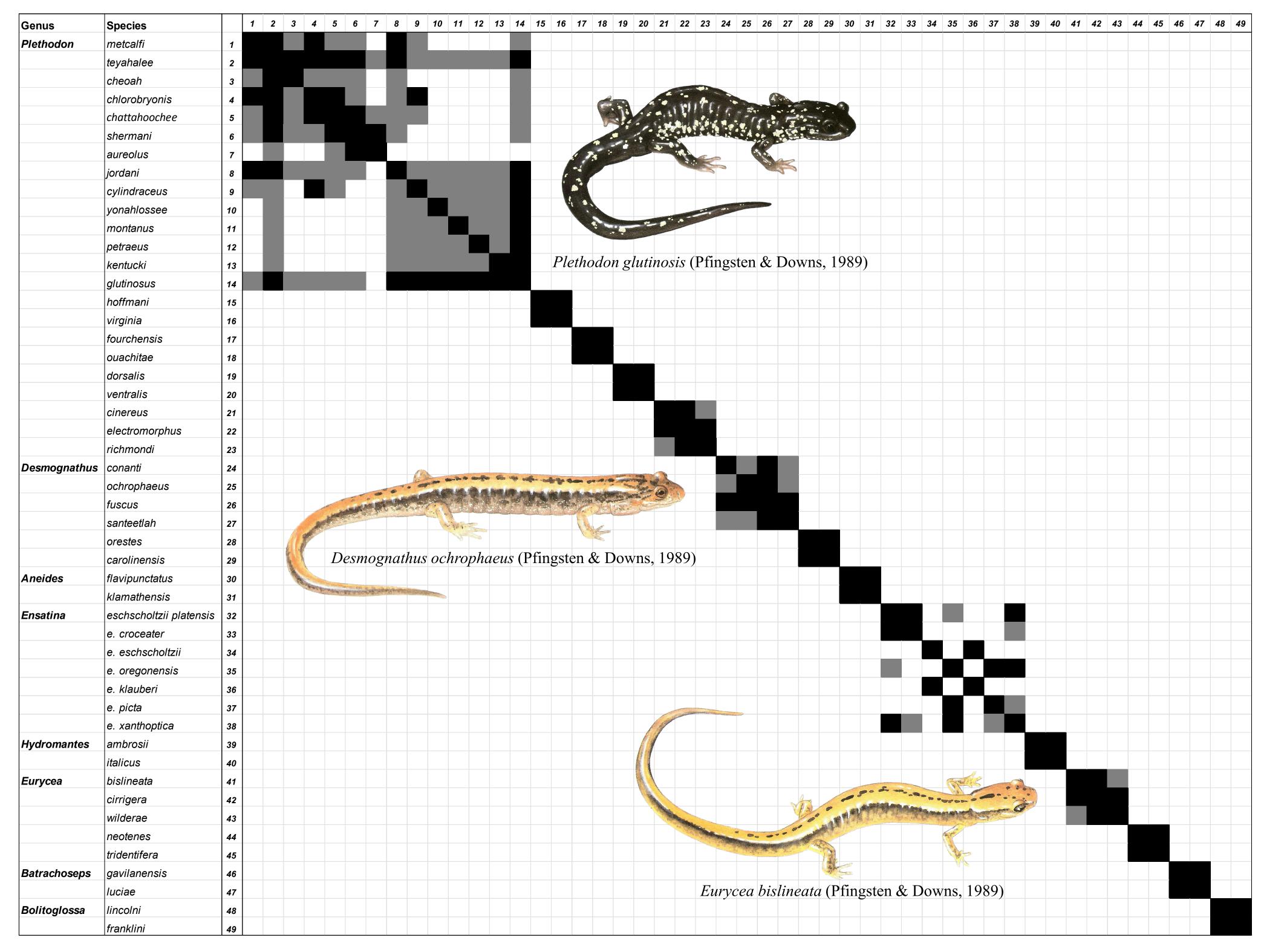

Baraminology is the study of God's created kinds as described in Genesis 1 (Wise, 1990). Holobaramins (groups of known organisms sharing continuity and bounded by discontinuity) are scientific approximations of these kinds identified by building up monobaramins (smaller, continuous groups) and dividing apobaramins (larger, discontinuous groups). The lungless salamanders (Caudata: Plethodontidae), composed of over 500 species in 29 genera, have been grouped together by herpetologists for almost 200 years. This consistent taxonomic history suggests that the family represents a cognitum (group of organisms recognized through the human cognitive senses as belonging together) and possibly apobaramin. The goals of the present study are to: 1) identify characteristics from the herpetological literature shared by all or most of the lungless salamanders; 2) survey three major taxonomic schemes from the past 60 years to identify consistent groupings of genera over time; and 3) compile records of hybridization to demonstrate continuity among various groups of species.

Research Question

• How many created kinds are found within the lungless salamander family based on taxonomic and hybridization data?

Methods

- We searched available literature to identify characteristics that are unique and/or shared by all or most of the lungless salamanders (Duellman & Trueb, 1986; Petranka, 1998; Heying, 2003).
- We surveyed literature related to three major taxonomic schemes from the past 60 years to identify consistent groupings of genera over time (Wake, 1966; Chippindale et al., 2004; Vieites et al., 2011).
- We also examined published hybridization records (Melander & Mueller, 2020) of lungless salamander species, and a hybridogram was constructed to help visualize relationships among species.



Eurycea lucifuga (Pfingsten & Downs, 1989)

Using Taxonomic and Hybridization Data to Identify Lungless Salamander Kinds Kayla G. Natelborg, Adelyn C. Fairley, and Timothy R. Brophy, Ph.D. **Center for Creation Studies and Department of Biology & Chemistry**

Table 1. Characteristics from herpetological literature shared by all or most lungless salamanders (left) and consistent groupings of genera over time based on survey of three major taxonomic schemes from past 60 years (right).

Present in All	Common in Many	Consistent Groups	Morphological 1960s-80s	Molecular 2000s	Molecular 2010
		Plethodontimin (MB):	SF Plethodontinae	SF Plethodontinae+	SF Plethodontina
one & Muscle Structure		Plethodon, Aneides, and Ensatina	Tribe Plethodontini	(includes Desmognathimin	Tribe Plethodont
perculum replaced by columella footplate*	Premaxillae paired or fused			and Hydromantimin)	Tribe Aneidini
terygoid absent*	Maxillae and premaxillae present				Tribe Ensatinini
Vertebrae opisthocoelous	Opercularis muscle derived from	Deeme methimin (MD)	SF Desmognathinae	SF Plethodontinae+	SF Plethodontina
	m. cucullaris major	Desmognathimin (MB): Desmognathus and	or Desmognatimae	(includes Plethodontimin	Tribe Desmognat
All but first three spinal nerves exit		Phaeognathus*		and Hydromantimin)	The Desmogra
ntravertebrally		Filleoghuthas		77 51 1775 529 16	
acrimals absent				Supergenus Desmognathus	
xoccipital, prootic, and opisthotic fused		Hydromantimin (MB):	SF Plethodontinae	SF Plethodontinae+	SF Plethodontina
nternal carotid foramen absent		Hydromantes and Karsenia*	Tribe Bolitoglossini	(includes Plethodontimin	Tribe Hydroman
Pedicellate teeth			Supergenus Hydromantes	and Desmognathimin)	(includes <i>Karsen</i>
Palatal teeth extend posteriorly along medial		Batrachosepimin (MB):	SF Plethodontinae	SF Bolitoglossinae+	SF Hemidactyliir
dges of vomers		Batrachoseps*	Tribe Bolitoglossini	(includes Bolitoglossimin)	Tribe Batrachose
asals ossified from lateral analgen		Datrachoseps	Supergenus Batrachoseps		Hibe Baciacitos
one or more flexures of periotic canal from					
unction with protrusion of periotic cistern to		Bolitoglossimin (MB):	SF Plethodontinae	SF Bolitoglossinae+	SF Hemidactyliir
enestra ovalis		Bolitoglossa, Bradytriton,	Tribe Bolitoglossini	(includes Batrachosepimin)	Tribe Bolitogloss
Reproduction		Chiropterotriton, Cryptotriton,	Supergenus Bolitoglossa		
Tail straddle walk during courtship*	Egg-guarding	Dendrotriton, Ixalotriton,			
	Terrestriality and direct development	Nototriton, Nyctanolis, Oedipina,			
	Cirri (males)	Parvimolge, Pseudoeurycea,			
	Papillose cloacal lips (males)	Thorius, Aquiloeurycea, and Isthmura			
	Mental gland				
Aiccollonoouc		Hemidactylimin (MB):	SF Plethodontinae	SF Hemidactylinae	SF Hemidactyliin
<u>Miscellaneous</u>		Hemidactylium*	Tribe Hemidactyliini+		Tribe Hemidacty
Vasolabial grooves near nares*	4 toes on forelimbs, 5 on hindlimbs		(includes Spelerpinimin)		
unglessness (also found in small number of	Projectile tongue and hyoid apparatus	Spolorninimin (MD)	SF Plethodontinae	SF Spelerpinae	SF Hemidactyliir
amily Hynobiidae)		Spelerpinimin (MB):			Tribe Spelerpini
/psiloid cartilage absent (associated with	Distribution in the Americas	Eurycea, Gyrinophilus, Psuedotriton, Stereochilus,	Tribe Hemidactyliini+ (includes		TIDE Shelet hilli
unglessness)		and Urspelerpes	(includes Hemidactylimin)		
)iploid number 26 or 28					

Figure 1. Hybridogram of plethodontid salamanders based on direct and indirect hybridization data. See Table 1 for additional taxonomic details. Black = two species hybridize directly; Gray = two species hybridize with same 3rd species.

Pseudotriton montanus (Pfingsten & Downs, 1989)

Results and Conclusions

Our literature search suggests that lungless salamanders share a tremendous number of characteristics, many of which are unique to the family. This combination of shared and unique characteristics suggests the family may represent a holobaramin (Table 1-left).

• The survey of taxonomic schemes from the past 60 years identifies seven monobaramins ranging from supergenus to tribe or subfamily level (Table 1-right).

Many records of interspecific hybridization (but not intergeneric or intertribal) reveal fourteen monobaramins at the genus level ranging in size from 2-14 species (Fig. 1).

These data suggest that lungless salamander holobaramin(s) range from genus to family levels (likely modern tribe level).

<u>Conclusions</u> – Other research by our team, utilizing morphological and molecular datasets, yields similar results. Despite the preliminary nature of our conclusions, we are the first to conduct baraminological analyses in this family of salamanders.

Future Work

We will continue our attempts to identify holobaramin(s) by utilizing genetic distance data to expand our hybridization analysis.

References

Chippindale, P.T., R.M. Bonett, A.S. Baldwin, and J.J. Wiens. 2004. Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58:2809-2822.

Duellman, W. E., and L. Trueb. 1986. Biology of Amphibians. McGraw-Hill, New York.

Heying, H. 2003. "Plethodontidae," Animal Diversity Web. Accessed February 24, 2024 at https://animaldiversity.org/accounts/Plethodontidae.

Melander, S.L., and R. L. Mueller. 2020. Comprehensive analysis of salamander hybridization suggests a consistent relationship between genetic distance and reproductive isolation across tetrapods. Copeia 108: 987-1003.

Petranka, J.W. 1998. Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, D.C.

Pfingsten, R.A., and F.L. Downs (eds.). 1989. Salamanders of Ohio: Bulletin of the Ohio Biological Survey 7(2). Ohio State University, College of Biological Sciences, Columbus,

Vieites, D.R., S.N. Román, M.H. Wake, and D.B. Wake. 2011. A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae. Molecular Phylogenetics and Evolution 59:623–635.

Wake, D.B. 1966. Comparative osteology and evolution of the lungless salamanders, Family Plethodontidae. Memoirs of the Southern California Academy of Sciences 4:1-111.

Wise, K.P. 1990. Baraminology: A young-earth creation biosystematic method. In Walsh, R.E. and C.L. Brooks eds., Proceedings of the Second International Conference on Creationism. Creation Science Fellowship, Inc., Pittsburgh, PA, pp. 345-358.