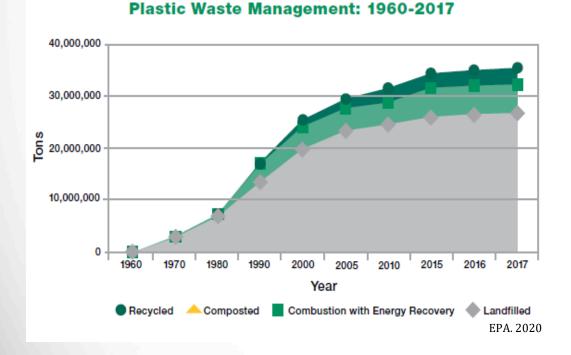
Recycling Plastic Wastes as Reinforcing Fibers in Asphalt Pavements

Daeeui Hong, Ph.D. Student

Civil Engineering, School of Engineering Liberty University Advisor: Dr. Songsu Son

> LIBERTY UNIVERSITY

LU Research Week 2024


Contents

- Background
- Problem Statement
- Methodology
- Result & Analysis
- Conclusion

Background

- **40 million tons** of plastic waste in the U.S. in 2021.
- **Only 8.4%** (3 million tons) of the plastic waste are recycled.

Туре	Sources	Example	Ratio of Plastic Waste (%)
LDPE	Soft water bottles		17.5
HDPE	Plastic bottles		11.7
РР	Straw, furniture	Yogurt	32.1
PVC	Pipes		2.8
PET	Soft water bottles		7.3
PS	Plates and cups	Becc)	4.9
Nylon	Fishing net		< 23

R. Willis, F. Yin, R. Moraes. (2020) Recycled Plastics in Asphalt Part A: State of Knowledge.

Background

- Recycling plastic waste into asphalt pavement
 - Wet Process: Plastic wastes are used as binder modifiers.
 - **Dry Process**: Plastic wastes are incorporated as **fine aggregate replacement**.

Method	Advantage	Drawback	Used Plastic	
Wet Process	Normative guidance, Higher stiffness and viscosity, rutting resistance	Poor storage stability, Segregation, Generating toxic fumes, Complex production process	LDPE, HDPE, PP, PVC	Fi
Dry Process	Lack of normative guidance, Rutting resistance	Generating toxic fumes , Poor water stability, high energy consumption	PET, Nylon	

Figure 1– Wet Process

Figure 2 – Dry Process, plastic (left), fine aggregate (right)

Problem Statement

- **Drawbacks** of current methods
 - Wet process: Poor storage stability, segregation, generating toxic fumes
 - Dry process: Generating toxic fumes, high energy consumption
- Third method: **Recycling plastic** wastes as **fibers** in asphalt pavements.

Figure 3 – Plastic Waste

Figure 4 – Aramid Fiber

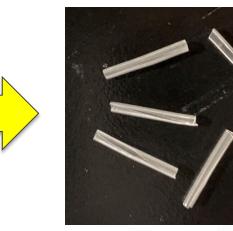


Figure 5 – PET Fiber

Advantage of Fiber in Asphalt Pavement

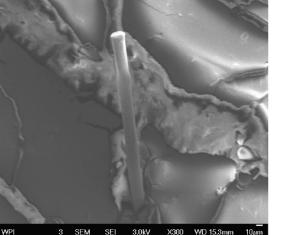

- Fiber-reinforced asphalt
- Type of fiber
 - Glass fiber, Aramid fiber, Carbon fiber,
 Polyester fiber, Polyamides fiber,
 Polyacrylonitrile fiber, Polypropylene
 fiber
- Advantage
 - Fibers increase the crack resistance by having the behavior of (a) pulled-out and (b)bridging

Figure 6 – Example of Crack in Asphalt Pavement

Figure 7 – Aramid Fiber

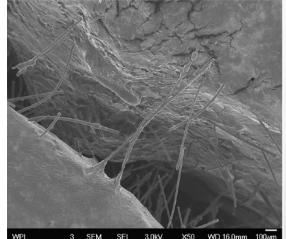
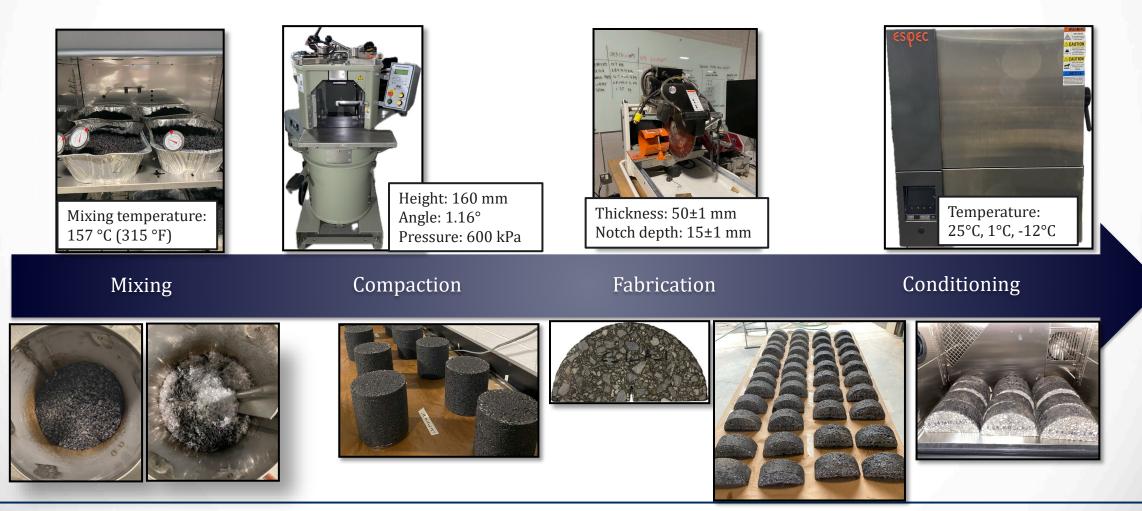


Figure 8 – Image of fiber with pull-out behavior (left), Image of fiber with bridging behavior (right)

Experiment Scenario

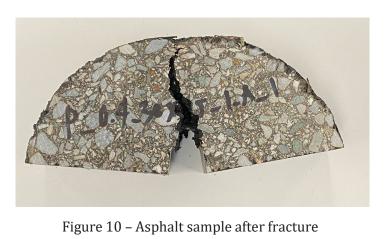


• Plastics with high melting points were selected for plastic fibers: PET, Nylon

Scenario	Туре	Thick [mm]	Length [mm]	Weight %	
1	Control	N/A	N/A	N/A	
2	РЕТ	5	20	0.4	C.
3	PET	5	30	0.4	
4	PET	5	10	0.4	
5	PET	8	20	0.4	S THE REAL PROPERTY AND A DESCRIPTION OF
6	PET	2	20	0.4	
7	PET	5	20	0.6	
8	PET	5	20	0.2	
9	Nylon	N/A	17	0.4	

Specimen Preparation

• Standard testing method, ASSHTO T393, was used to prepare specimen.


Fracture Testing

Temperature	Thickness [mm]	Loading Control	Loading Rate [mm/min]	Analyzed Data	Reference
25°C	50±1	LLD	50	<i>G_f</i> , m, FI	AASHTO Standard: T393 (I-FIT)
1°C	50±1	LLD	2.0	<i>G_f</i> , m, FI	Haslett, Katie E., (2018)
-12°C	50±3	LLD	0.3	<i>G_f</i> , m, FI	AASHTO T394 (SCB); EN 12697-44:2010; Yang, S., (2021)

- LLD: Load-Line Displacement
- *G_f*: Fracture Energy
- FI: Flexibility Index
- m: Post-peak slope

Figure 9 – I-FIT fracture testing

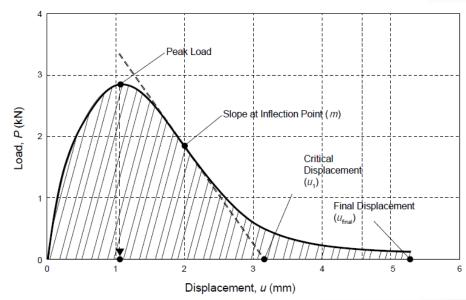


Figure 11 – Load-displacement curve used for analysis

Figure 11 – AASHTO Standard: T393, Lu. (2021)

Effect of PET Fiber

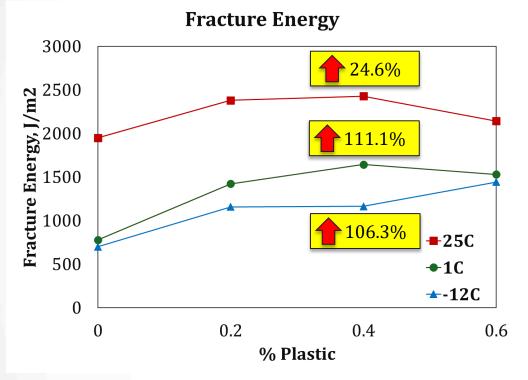


Figure 11 – Pulled out fibers at high temperature

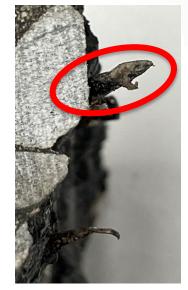
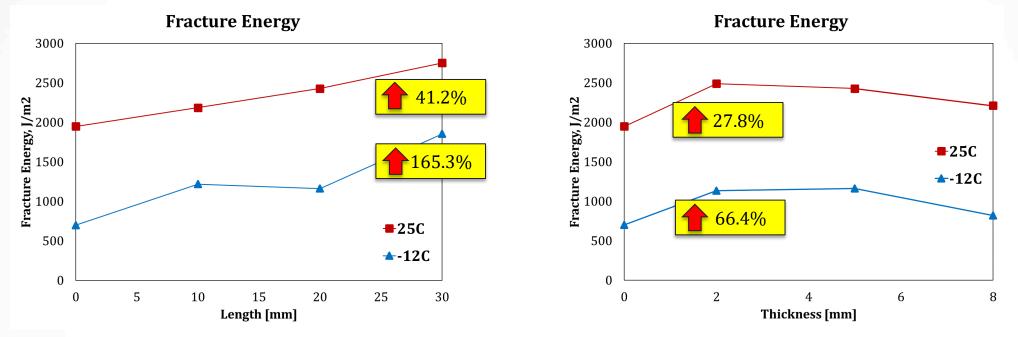
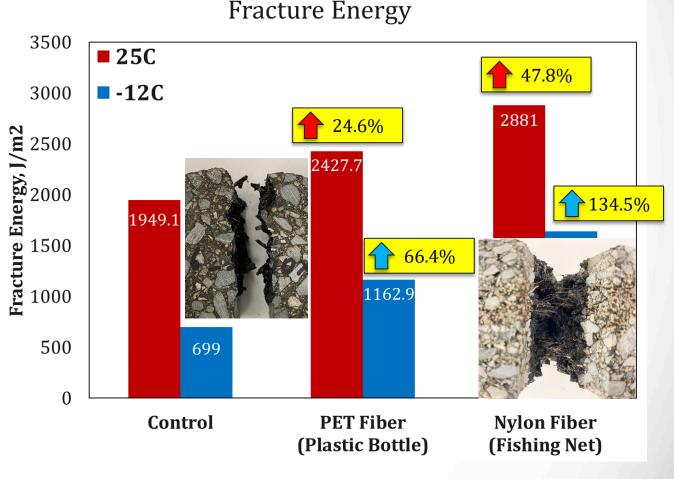



Figure 12 – Broken fiber at low temperature

- Fracture Energy (G_f)
 - At 25°C, fracture energy increased by 24.6%.
 - At 1°C, fracture energy increased by 111.1%.
 - At -12 °C, fracture energy increased by 106.3%.

Effect of PET Fiber Size on Fracture Energy


- The **longer** plastic fiber requires more energy to fracture the specimen.
- The **thinner** plastic fiber requires more energy to fracture the specimen because thicker fibers decrease adhesion between aggregates and binder.

FI	Control	30mm*5mm	20mm*2mm
25°C	2.62	5.82	3.26
-12°C	0.02	2.05	0.11

Effect of Different Types of Plastic

- Fracture Energy (G_f)
 - At 25°C, Fracture energy increased by 25% with PET fibers and by 48% with Nylon fibers.
 - At -12°C, Fracture energy increased by 66% with PET fibers and by 135% with Nylon fibers.
 - The behavior of **pull-out** and **bridging** can be identified.
- Flexibility Index (FI)

FI	Control	PET	Nylon
25C	2.63	9.15	8.28
-12C	0.02	0.09	0.12

12

Conclusion

- **Recycling plastic wastes as fibers** in asphalt pavement has the potential to improve its performance by reinforcing crack resistance.
- It seems that the plastic fiber performs better at low temperatures with the behavior of fiber breakage.
- Longer and thinner fiber shape is recommended to improve crack resistance.
- The fracture energy with the **nylon fiber was more significant** than PET fiber.

Further Research

- **Plastic properties** after heat treatment need to be identified.
- Identify the **optimum amount and size of fiber** to improve asphalt performance.
- Identify the **friction coefficient** between plastic fiber and asphalt binder.

Acknowledgement

• Funding was provided by the Liberty University Center for Research and Scholarship.

References

- AASHTO Standard: T393, Determining the Fracture Potential of Asphalt Mixtures Using the Illinois Flexibility Index Test (I-FIT)
- F. Yin, R. Moraes, A. Anand. Recycled Plastics in Asphalt Part B: Literature Review. National Asphalt Pavement Association. 2020; IS-142.
- Haslett, Katie E., "Evaluation of Cracking Indices for Asphalt Mixtures Using SCB Tests at Different Temperatures and Loading Rates" (2018). Honors Theses and Capstones. 380. https://scholars.unh.edu/honors/380
- Jia, H., Sheng, Y., Guo, P., Underwood, S., Chen, H., Kim, Y. R., Li, Y., & Ma, Q. (2023). Effect of synthetic fibers on the mechanical performance of Asphalt mixture: A review. Journal of Traffic and Transportation Engineering (English Edition), 10(3), 331–348. https://doi.org/10.1016/j.jtte.2023.02.002
- Kaloush, K. E., Biligiri, K. P., Zeiada, W. A., Rodezno, M. C., & Reed, J. X. (2010). Evaluation of fiber-reinforced asphalt mixtures using advanced material characterization tests. Journal of Testing and Evaluation, 38(4), 400–411. https://doi.org/10.1520/jte102442
- Lu, D. X., Bui, H. H., & Saleh, M. (2021). Effects of specimen size and loading conditions on the fracture behaviour of asphalt concretes in the SCB test. Engineering Fracture Mechanics, 242, 107452. https://doi.org/10.1016/j.engfracmech.2020.107452
- Recycled Plastic Waste Asphalt Concrete via Mineral Aggregate Substitution and Binder Modification" by M.A. Dalhat, H.I. Wahha, and K. Al-Adham in Journal of Materials in Civil Engineering, 2019.
- R. Willis, F. Yin, R. Moraes. Recycled Plastics in Asphalt Part A: State of Knowledge. National Asphalt Pavement Association. 2020; IS-142.
- Wu, S., & Montalvo, L. (2021). Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. Journal of Cleaner Production, 280, 124355. https://doi.org/10.1016/j.jclepro.2020.124355
- Xu, F., Zhao, Y., & Li, K. (2021). Using waste plastics as asphalt modifier: A Review. Materials, 15(1), 110. https://doi.org/10.3390/ma15010110
- Yang, S., Jiang, J., Leng, Z., & Ni, F. (2021). Feasibility and performance of the semi-circular bending test in evaluating the low-temperature performance of Asphalt Mortar. Construction and Building Materials, 269, 121305. https://doi.org/10.1016/j.conbuildmat.2020.121305
- T. Ahmad. (2018). Review of low-temperature crack (LTC) developments in asphalt pavements. The International Journal of Multiphysics, 12(2). https://doi.org/10.21152/1750-9548.12.2.169

Questions?

Thank you for listening!