
Influence of *SCP1* on *Cryptococcus neoformans* Virulence

Carleigh J. Warsing¹, Hannah Finson¹, Ryker Heller², Rebekah A. Satalino², J. Andrew Alspaugh³, and Michael S. Price^{2,3} ¹Dept. of Biology and Chemistry, and ²Dept. of Molecular and Cellular Sciences, Liberty University, Lynchburg, VA; ³Dept. of Medicine, Duke University, Durham, NC.

Background:

- Fungal pathogen
- Most affected: Immunocompromised individuals
- Critical priority pathogen on the Fungal Priority Pathogen List (WHO).
- Mortality rate: 41-61%
- Roughly 200,000 deaths annually
- Opportunistic pathogen
- Begins as pneumonia, crosses blood brain barrier, becomes meningoencephalitis
- Fatal without treatment.

Current Antifungal Therapies:

- Treatments: Amphotericin B and Fluconazole.
- Amphotericin B- Toxic Fungicidal
 - Immediate treatment- IV infusion.
 - Binds to ergosterol- Makes cell membranes leaky.
 - Negative effects: nephrotoxicity, anemia, hypotension, etc.
- Fluconazole- Fungistatic
 - Lifelong treatment.
 - Prevents ergosterol synthesis.
 - Fungal antigens are becoming resistant.

Research Goal

- Our goal is to identify a gene that can be targeted in the future for more effective anti fungal therapies.
- Long-term Plan:
 - 1. Identify gene
 - 2. Wildtype Strain
 - 3. Mutant strain
 - 4. Reconstituted Strains
 - 5. Virulence Assays

SCP1 Gene

- Crypto's survival and virulence is reliant on adaptation
- Wildtype upper limit: ~ pH8
- This adaptation is due to many genes.
- Needed to adapt, survive, and become virulent.
- SCP1 gene: SREBP Cap
- Regulates a transcription factor that regulates sterol biosynthesis
- Research Question: Does the SCP1 gene influence pH adaptation and virulence in Cryptococcus neoformans?

1. Identify- Mutant Library Screening

- Dr. Alspaugh (Duke) identified a number of genes involved in pH adaptation.
- Mutant Library Screening:
 - *SCP1* is one gene.
 - RIM101 Pathway
 - pH regulatory pathway
 - SRE1 Pathway
 - Sterol homeostasis pathway
 - Regulated by SCP1

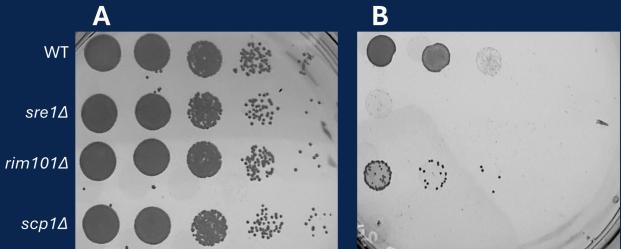
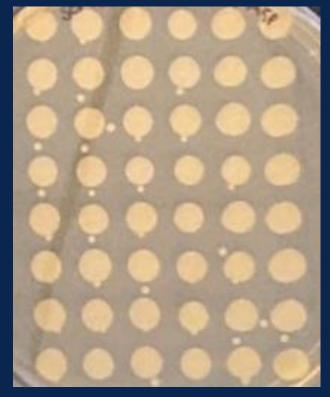
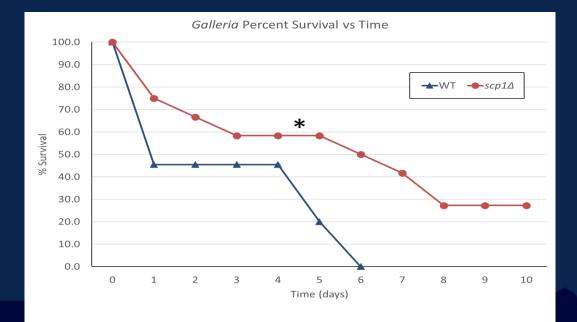
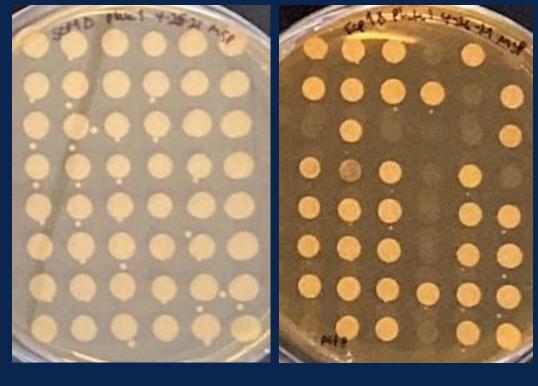



Image Source: Price Labs

2. Wildtype Strain

- Wildtype- KN99α
 - Cells Viable on YPD and pH8.


YPD


Image Source: Price Labs

3. Mutant Strain

- SCP1 deleted via biolistics.
 - Lack of growth indicates successful knockouts

YPD

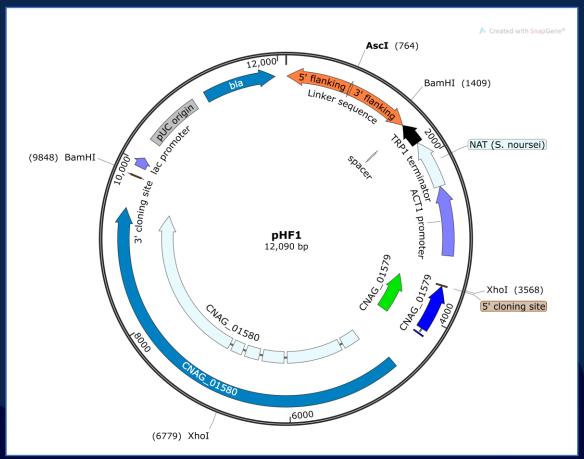

YPD pH8 Image Source: Price Labs

Image Source: Price Labs

4. Reconstituted Strain

- Reintegrate DNA:
 - Should have same phenotype as wildtype
- 1. Electroporation:
 - Unsuccessful
 - DNA would not integrate

Biolistic Bombardment

- 2. Gene Gun:
 - Physically inserts DNA into cells.

Image Source: Carleigh Warsings

4. Reconstituted

- Next Step- Growth phenotype assay
 - pH8, 1.5M NaCl, CoCl2

Image Source: Price Labs

5. Virulence Assays

- Invertebrate model
 - Galleria moth larvae
- Murine model (mice)
 - IACUC approved
 - Mimics natural infection

Invertebrate Model (Galleria)

Inhalation Model (mouse) Image Source: Price Labs

Future work

- Growth Phenotype assay
 - pH8, 1.5M NaCl, CoCl2.
- Virulence assay
 - Invertebrate and mouse models.
- QPCR data.
- Evaluate fluconazole sensitivity.

Questions?

