Optimization of bisguaiacol F Synthesis via Microwave Assistance

Jessica Bryant, Nehemiah Jantomaso, and Dr. Stephen Hobson

Presentation Overview

- Introduction to BPA
- Background on BGF
- Research Objective, Results, and Plans

Introduction to BPA

BPA Uses

- Widely used chemical
- 5.5 million tons produced annually in United States alone

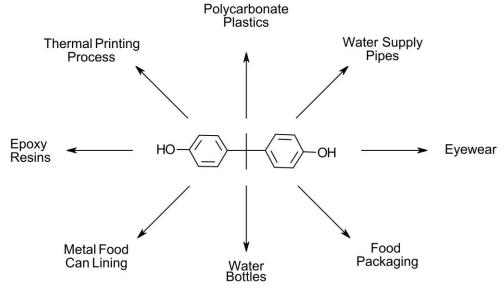


Figure 1. BPA Uses (Created by Jessica Bryant)

Downsides of BPA

- Synthesized from fossil fuels
- Significant energy requirement
- Estrogenic compound
- Endocrine disruptor that impacts:
 - Diabetes
 - Obesity
 - Reproductive disorder
 - Respiratory Disease
 - Cardiovascular disease

Background on BGF

BGF: Potential Alternative for BPA

- Similar thermal, mechanical, and structural properties compared to BPA
- Synthesized from naturally occurring organic molecules
- Lacking estrogenic and endocrine disrupting characteristics

Figure 3. Bisguaiacol F Product (Photos by Jessica Bryant)

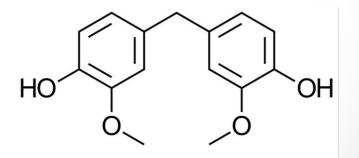
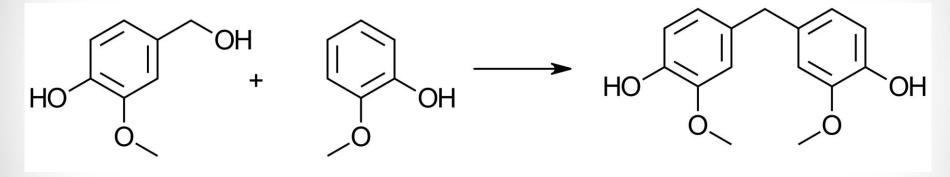



Figure 4. BGF Structure (Created by Dr. Stephen Hobson)

BGF Synthesis

Vanillyl Alcohol

Guaiacol

BGF

Created by Dr. Stephen Hobson

CEM Discover 2.0 Microwave Reactor

- Rapidly reaches high temperatures
- Decreases reaction time
- Reduces side reactions

Figure 6. Microwave Reactor (Photo by Jessica Bryant)

CEM Discover 2.0 Microwave Reactor

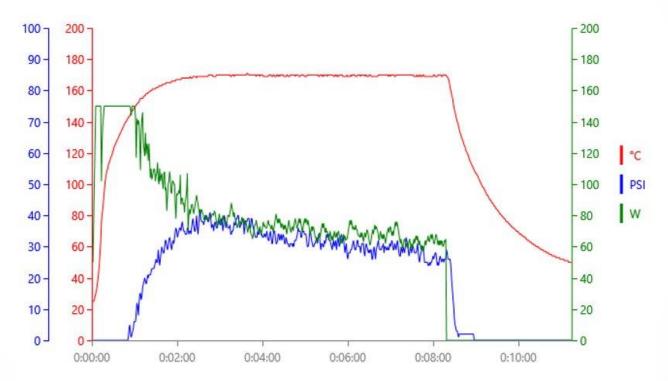


Figure 7. Temperature/Pressure/Power During Microwave Reaction (Photo by Jessica Bryant)

BGF Preliminary Results

- Control syntheses of BGF completed using conventional heating methods with water as the solvent and Amberlyst resin as an acid catalyst at 65 °C and 100 °
- BGF synthesis at 100 °C resulted a mixture of p,p'-BGF and o,p'-BGF isomers as indicated by the broader MP (88.4-94.5 °C).
 - Moderate yields of BGF isomers obtained through laborious workup and purification

Reaction	Temperature	Percent Yield	Melting Point
1	65°C	26.7%	82.5-95.6 °C
2	100°C	56.7%	88.4- 94.5 °C

Table 1. Control BGF Synthesis (Created by Jessica Bryant)

TLC Comparisons

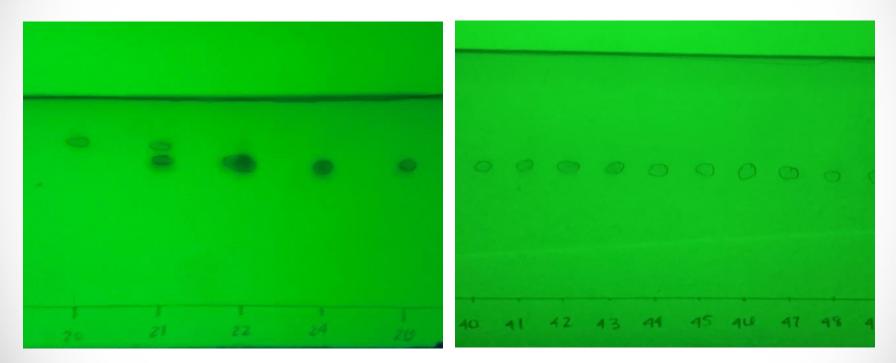


Figure 5. BGF Products (Photos by Jessica Bryant)

Characterization: IR

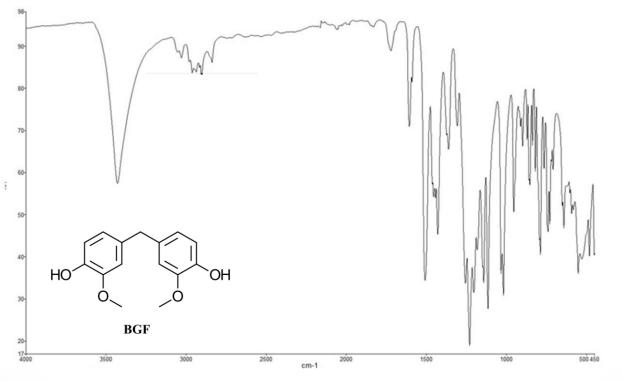


Figure 9. FTIR spectrum of BGF

BGF Preliminary Results

- Control syntheses of BGF completed using microwave reactor
- Higher purity obtained compared with conventional heating methods

Reaction	Solvent	Catalyst	Conditions
1	Water	Amberlyst	135 °C/ 6 min
2	Water	Amberlyst	170 °C/ 6 min
3	Ethanol	H_2SO_4	170 °C/ 6 min
4	Water	Amberlyst	170 °C/ 12 min

Table 2. Microwave Control BGF Synthesis (Created by Jessica Bryant)

TLC Comparisons

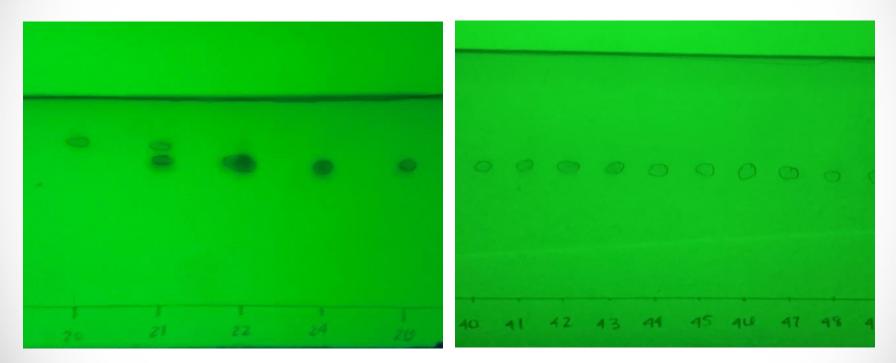
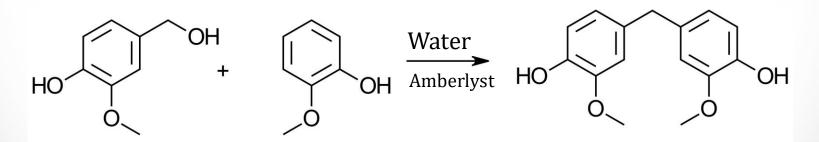


Figure 5. BGF Products (Photos by Jessica Bryant)

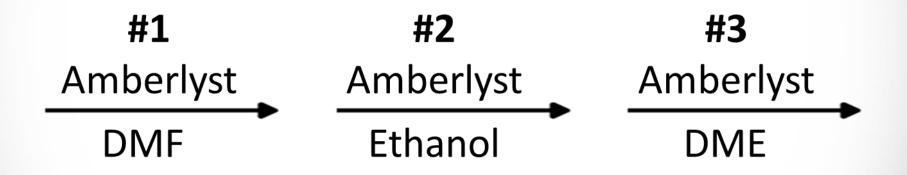
Research Objectives


Optimize Microwave Synthesis Conditions Vary Polarity of Solvents and Determine Effect of Acid Sources

Characterization and Analysis Optimize workup/ purification of BGF Peer-Review, Publication of Results

Created by Dr. Stephen Hobson

Optimize Microwave Synthesis Conditions


- Use Water solvent and Amberlyst Resin as acidic catalyst
- Establish optimal microwave assisted synthesis conditions in terms of:
 - Time
 - Temperature
 - Heating rate

Created by Jessica Bryant

Vary Polarity of Solvents

• Vary solvent polarity with optimal conditions for water

Determine Effect of Acid Sources

• Use optimal solvent and reaction conditions to evaluate different acid catalysts

Characterization: TLC

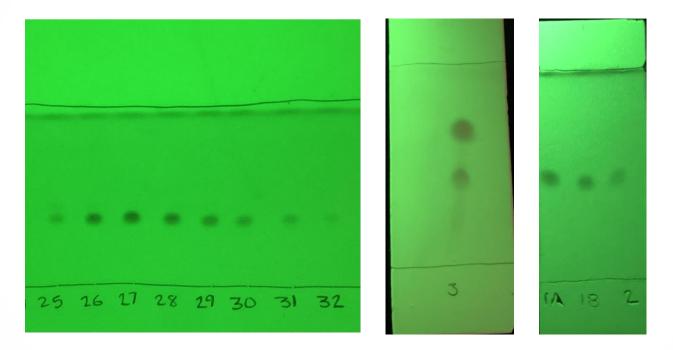


Figure 8. TLC Analysis of BGF (Photos by Jessica Bryant)

Characterization: IR

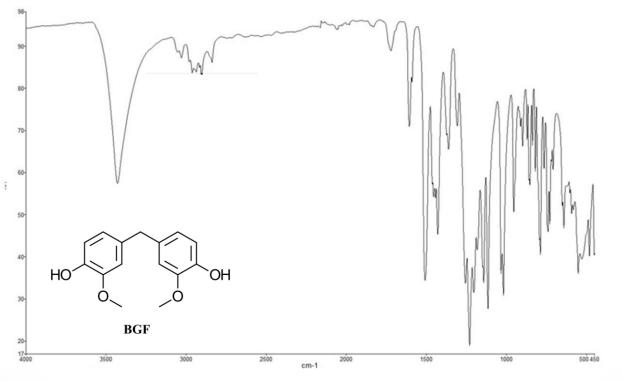


Figure 9. FTIR spectrum of BGF

Optimize BGF Workup/Purification

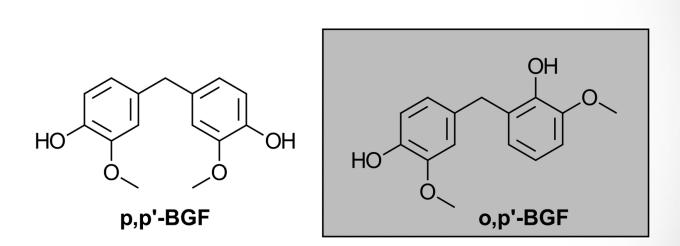


Figure 11. BGF Isomers (Created by Dr. Stephen Hobson)

Figure 10. Column Chromatography (Photo by Jessica Bryant)

Acknowledgements

We gratefully acknowledge:

- Faculty Advisor: Stephen T. Hobson, Ph.D. Liberty University
- the Biology and Chemistry Department at Liberty University
- Initial work supported by Liberty University via PRI Grant #1821

References

- 1. Hernandez, E.D., Bassett, A.W., Sadler, J.M., La Scala, J.J. and Stanzione III, J.F.Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. *ACS Sustainable Chemistry & Engineering*, **2016**, *4*(*8*), pp.4328-4339.
- 2. Vandenberg, L. N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W. V. Human exposure to bisphenol A (BPA). *Reproductive Toxicology*, **2007** *24*, 139-177.
- 3. Peng, Y.; Nicastro, K. H.; Epps, T. H.; Wu, C. Evaluation of Estrogenic Activity of Novel Bisphenol A Alternatives, Four Bioinspired Bisguaiacol F Specimens, by in Vitro Assays. *Journal of Agricultural Food Chemistry*, **2018**, *66*, 11775-11783.
- 4. Rochester, J. R. Bisphenol A and human health: A review of the literature. *Reproductive Toxicology*. **2013**, *42*, 132-155.
- 5. Ben-Jonathan, N., & Steinmetz, R. (1998). Xenoestrogens: The emerging story of bisphenol A. ScienceDirect, 9(3), 124-128. doi:https://doi.org/10.1016/S1043-2760(98)00029-0
- 6. Periyasamy, T., Asrafali, S. P., Muthusamy, S., & Kim, S. (2017). Replacing bisphenol-A with bisguaiacol-F to synthesize polybenzoxazines for a pollution-free environment Royal Society of Chemistry (RSC). doi:10.1039/c6nj02242a

Questions?