
PARALLEL IMAGE COMPRESSION 1

Parallelized Quadtrees for Image Compression in CUDA and MPI

Aidan E. Jones

A Senior Thesis submitted in partial fulfillment

of the requirements for graduation

in the Honors Program

Liberty University

Spring 2024

PARALLEL IMAGE COMPRESSION 2

Acceptance of Senior Honors Thesis

This Senior Honors Thesis is accepted in partial

fulfillment of the requirements for graduation from the

Honors Program of Liberty University.

Mark S. Merry, Ph.D.

Thesis Chair

Frank Tuzi, Ph.D.

Committee Member

Emily C. Knowles, D.B.A.

Assistant Honors Director

Date

PARALLEL IMAGE COMPRESSION 3

Abstract

Quadtrees are a data structure that lend themselves well to image compression due to their ability

to recursively decompose 2-dimensional space. Image compression algorithms that use quadtrees

should be simple to parallelize; however, current image compression algorithms that use

quadtrees rarely use parallel algorithms. An existing program to compress images using

quadtrees was upgraded to use GPU acceleration with CUDA but experienced an average

slowdown by a factor of 18 to 42. Another parallelization attempt utilized MPI to process

contiguous chunks of an image in parallel and experienced an average speedup by a factor of 1.5

to 3.7 compared to the unmodified program.

 Keywords: image compression, quadtree, CUDA, MPI, parallelization, Python

PARALLEL IMAGE COMPRESSION 4

Parallelized Quadtrees for Image Compression in CUDA and MPI

In today’s age of information, both space and time are resources that are a concern for

software developers and users alike. Data compression is an area of software development in

which the software developer seeks to reduce the space footprint of data through various means,

including removing redundant or unnecessary data. One source of information that can fill

significant amounts of space is visual data, or images, which is the natural focus of image

compression algorithms. Many such algorithms exist, though most do not use a type of data

structure known as a quadtree, despite its usefulness as a method of representing an image for

non-compression purposes and its potential utility as a method to compress similarly-colored 2-

dimensional regions of an image. There is, however, a computer program that does use quadtrees

as a way to reduce local redundancy within image data, although it is not the final step but is

rather a precursor to the data being processed by Lempel-Ziv-Markov chain algorithm (LZMA)

and it is also quite slow, taking nearly ten seconds to process a moderately-sized image on

current consumer hardware. As such, the primary aim of this project was to upgrade the existing

quadtree image compression algorithm with modern parallelization and GPU-acceleration

techniques.

Literature Review

Substantial work has been conducted in the past regarding the usage of quadtrees for

image compression, as has some work on attempting to create parallelized versions of quadtrees,

though most of the work concerning quadtrees is focused on using the data structure to facilitate

fast querying of sparse point sets. None of the current standard image formats use quadtrees for

compression but rather use discrete cosine transform or some variant of zip compression.

Sources from the previous 15 years were preferred, although in some cases much older sources

PARALLEL IMAGE COMPRESSION 5

were included due to their authority. Specifically concerning modern image formats, technical

specifications or other information published by the original designers were selected.

Modern Image Formats

 Several image compression methods are used in current image formats. The most

common image formats are Graphics Interchange Format (GIF), Joint Photographic Experts

Group (JPEG), Portable Network Graphics (PNG), and, more recently, WebP (Google, 2023).

Graphics Interchange Format

 According to the technical specifications for GIF files (CompuServe, 1990), images

encoded as a GIF file consist of multiple blocks of data, most of which have a predefined size.

The format of a GIF file consists of a header, a logical screen descriptor, an optional global color

table, any number of data blocks, and a trailer. Each individual data block is either a graphic

block or a special purpose block, which includes both comments and application specific

extensions. Graphic blocks consist of an optional control extension, then either a plain text

extension for displaying text on the contained image, or a table-based image, which consists of

an image descriptor, which describes, among other things, the dimensions of an image and

whether or not the image uses the global color table or a local color table. The actual image data

for table-based image blocks is stored in a series of up to 256-byte blocks which contain a one-

byte field to encode length and then up to 255 bytes of data compressed using lossless variable-

length-code Lempel-Ziv-Welch (LZW) compression. Multiple graphic blocks in conjunction

with timing data included in graphic control extension blocks can be used to create an animated

effect (CompuServe Incorporated, 1990).

PARALLEL IMAGE COMPRESSION 6

Joint Photographic Experts Group

 The compression algorithm used for JPEG images divides the image data into 8 x 8

blocks which are then processed using the discrete cosine transform (DCT) (Hudson et al.,

2017). As large portions of the image data after being processed by DCT will have a value of

zero or close to zero, the data can be further compressed by encoding it as a sequence of value

pairs, where the first value is the number of data points until the next non-zero data point, and the

second value is the number of bits required to represent the value of the next non-zero data point.

Each value pair is then followed by the value of the corresponding non-zero data point. Finally,

the sequence of value pairs is compressed with 2D Huffman coding for further compression

gains (Hudson et al., 2017).

Portable Network Graphics

 The PNG image format was originally designed with the intent of completely replacing

GIF, due to its many shortcomings (Adler et al., 1996). The most notable shortcomings of GIF at

the time of PNG’s inception were the legal troubles surrounding its use of LZW, a patented

algorithm, no support for truecolor images, and minimal support for transparency. PNG

addressed those shortcomings while also adding further benefits in the form of error checking

and other measures to prevent transmission errors as well as allowing sufficient room for future

extension of the format while also retaining interchangeability (Adler et al., 1996).

 The current specification (Adler et al., 2023) for the PNG image format defines a PNG

image as consisting of the PNG signature, which defines the file as a PNG and includes

countermeasures against being interpreted as a text file or certain sequences of bytes being

changed by the operating system, one IHDR chunk, which defines important information such as

image dimensions, color type, and underlying compression method, an optional PLTE chunk,

PARALLEL IMAGE COMPRESSION 7

which defines an up to 256 entry color palette, any number of IDAT chunks, which contain the

raw image data compressed using DEFLATE, a variation of LZ77 with Huffman coding, and one

IEND chunk, which marks the end of the PNG file. The standard also allows for ancillary

chunks, chunks that are not strictly necessary for a decoder to display an image, to be included in

specific portions of the PNG file depending on the chunk type (Adler et al., 2023).

WebP

 The WebP image format was designed to further compress images compared to PNG or

JPEG in order to reduce the amount of time for web pages to load, especially in the context of a

mobile device (Google, 2023). Furthermore, the WebP format supports both lossy and lossless

compression, full transparency, and true-color animations, all of which are existing features or

improvements on existing features of the primary image formats: JPEG, PNG, and GIF. The

lossy compression algorithm is based on key frame encoding of VP8, a video compression

format designed by On2, which is now owned by Google. The underlying compression method

for lossy WebP is, DCT, the same as used in JPEG, although further improvements are made by

dividing the image into blocks and predicting block content based on prior data before

compressing with DCT and then compressing with arithmetic entropy encoding instead of

Huffman encoding (Google, 2023).

 Lossless WebP, similarly to PNG, uses a variant of LZ77 with Huffman encoding;

however, the image data is subjected to a variety of prediction transforms above and beyond the

ones specified in the PNG specification (Google, 2023). Lossless WebP is also automatically

able to switch the compression to use a local palette of 256 colors if there are that few unique

colors in the image, or it can use color cache coding to further compress the image with a

reconstructible dynamic palette. WebP also offers a hybrid format with lossy color and lossless

PARALLEL IMAGE COMPRESSION 8

transparency, which yields an image sixty to seventy percent smaller than the corresponding

PNG (Google, 2023).

Quadtrees

 Quadtrees, similarly to the more well-known binary tree, are a hierarchical data structure

consisting of nodes that are either internal nodes, that is, nodes that have child nodes, or leaf

nodes, and are typically defined such that each node has exactly zero children, in the case of a

leaf node, or four children, in the case of an internal node (Hunter & Steiglitz, 1979). Quadtrees

whose internal nodes always have exactly four child nodes are able to recursively decompose a

dataset that represents a 2-dimensional space (Samet, 1984). This property allows quadtrees to be

used for efficient storage and querying data whose key has two distinct portions, such as a point

on a 2-dimensional coordinate plane.

Similar to a binary tree and other related data structures, a quadtree can also be stored

succinctly in an array instead of being scattered throughout a computer’s memory (de Bernardo

et al., 2023). Assuming that each internal node has exactly four children and that there is only

one level of the tree that does not have internal nodes, this is the most efficient way to store a

quadtree in memory, as it eliminates the overhead associated with each node having four

pointers, one for each child node.

Image Representation

 Due to the aforementioned properties, quadtrees are well suited to represent the pixel data

of an image for certain tasks in a way that minimizes memory consumption and computational

complexity for those tasks (Hunter & Steiglitz, 1979). A quadtree can be used to represent an

image by recursively dividing the image into four sections until each section is a single pixel and

can no longer be subdivided (Hunter & Steiglitz, 1979; Shusterman & Feder, 1994). If the

PARALLEL IMAGE COMPRESSION 9

quadtree is stored succinctly in an array, further memory savings can be made when representing

an image, since the size of the image is known before constructing the quadtree and can be used

to calculate the amount of data to pre-allocate in a contiguous chunk of memory.

Image Compression

The aforementioned method in which quadtrees represent an image through recursive

decomposition of the pixel data lends itself well to image compression, due to the computational

simplicity of traversing the tree and the ease of comparing neighboring pixels. One can compress

an image either by working from the bottom up, in which case one would compare sibling nodes

using a similarity heuristic and then assigning the average value to the parent node, or,

alternatively, one can work from the root node downwards, assuming each internal node has

already been populated with the average value of its child nodes, and subdivide nodes based on a

difference heuristic (Hunter & Steiglitz, 1979; Klinger & Dyer, 1976; Samet, 1984). The choice

of heuristic as well as compression direction and number of iterations affect the efficiency of

compression and whether the algorithm results in lossy or lossless compression. See Figure 1 and

Figure 2 for a visual comparison of bottom-up versus top-down compression.

PARALLEL IMAGE COMPRESSION 10

Figure 1

Visualization of Bottom-Up Quadtree Compression

Note. Grey nodes in this figure have no specific value assigned to them.

Figure 2

Visualization of Top-Down Quadtree Image Compression

Note. Grey nodes in this figure are assigned the average value of their child nodes.

PARALLEL IMAGE COMPRESSION 11

Lossless Compression. In lossless compression, the original image can always be

perfectly reconstructed from its compressed form. With quadtrees this type of image

compression is achieved by combining sibling nodes only when the value of each sibling node is

equal to the value of each other sibling node. While lossless compression has some use cases, for

images it is typically more useful to use lossy compression due to needing higher compression

ratios and the general consideration that many images, especially photographs, frequently have

large amounts of minor details that would not significantly affect the perception of the image if

they were to be removed (Al Sideiri et al., 2020).

Lossy Compression. While lossy compression methods are typically able to achieve

higher compression ratios, a naïve approach, such as one in which sibling nodes are combined

only if each of their values is within a predefined threshold of the mean of their values, will

typically perform poorly in terms of rate-distortion, a key metric which is typically defined as the

ratio between the number of bits per data point in the compressed data and the expected

distortion of the data when decoded and is commonly used to compare the results of different

image compression algorithms (Blau & Michaeli, 2019; Shukla et al., 2005; Shusterman &

Feder, 1994). One way to improve performance is by combining neighboring nodes that do not

share a direct parent (Shukla et al., 2005), while another method of improving performance

involves using different combination thresholds that are optimized for different levels of a

quadtree (Shusterman & Feder, 1994). Yet another method of improving performance,

specifically when subdividing instead of combining, involves choosing a set number of iterations

to run the algorithm and prioritizing regions of the image with high detail to be subdivided

further into more granular detail (Inspiaaa, 2023). Finally, when quadtrees are used in video

compression, the performance of the compression algorithm can be further enhanced by updating

PARALLEL IMAGE COMPRESSION 12

combination thresholds based on previous frames of the video (Gao et al., 2016; Sullivan &

Baker, 1994).

Parallelization

 One significant way in which an algorithm can be sped up is through parallelization,

which is a technique that increases the efficiency of a program through writing the

implementation of an algorithm in such a way that it can be duplicated and executed

simultaneously on a cluster of interconnected computers or hardware that is designed to be

parallel, such as a graphical processing unit (GPU) or a multicore variety of central processing

unit (CPU) (Asanovic et al., 2006). Due to the wide variety in level of support and methods of

implementation, fully leveraging parallelism for increasing the efficiency of a program is

generally tied to the architecture for which one is writing the program (Asanovic et al., 2006).

Parallel Computing Technologies

 Options for parallel computing technology primarily consist of either clusters of

computing devices connected to each other in some sort of network or specialized hardware,

which typically is either a multicore CPU, a GPU, or a general-purpose GPU (GPGPU) (Dilliwar

et al., 2013; Hernandez-Lopez & Muñiz-Pérez, 2022; Zhang et al., 2011). In the case of

parallelization through clusters of computing devices, some form of synchronization is needed to

ensure that the different computing devices in the cluster have the correct data, run the correct

portions of the program, and share computational results at the right time, a task that is typically

accomplished through implementing a specific library or protocol such as Message Passing

Interface (MPI) (Dilliwar et al., 2013; Software in the Public Interest, 2023). Alternatively, in the

case of specialized hardware, one would need to use a special software library, such as MPI, in

PARALLEL IMAGE COMPRESSION 13

the case of multicore CPUs, or even another programming language entirely, such as CUDA, in

the case of certain types of GPUs (Nickolls et al., 2008).

CUDA. CUDA was designed by NVIDIA as an application programming interface (API)

that would provide software developers a common platform to fully leverage parallel capabilities

offered by GPUs produced by NVIDIA (NVIDIA Corporation, 2023). The CUDA API itself

operates as a minimal extension of the C and C++ programming languages and allows the

software developer to write a program that otherwise executes normally but is able to call

parallel kernels, which can range in complexity from a few lines of a function to a full-blown

program, that are then executed by the GPU instead of the CPU (Nickolls et al., 2008). This

flexibility allows developers to write code that will utilize any GPU or GPGPU produced by

NVIDIA, which consequently has resulted in CUDA being used by many projects that make use

of parallelized code to run on many different kinds of GPUs or GPGPUs (Al Sideiri et al., 2020;

Đurđević, & Tartalja, 2011; Hernandez-Lopez & Muñiz-Pérez, 2022; Temizel et al., 2011;

Zhang et al., 2011).

Message Passing Interface. Message Passing Interface, commonly abbreviated as MPI,

is a standardized protocol that is primarily designed for concurrent programming on computer

clusters with a distributed memory architecture but is also well-suited for use on a multicore

CPU with a shared memory architecture instead (Software in the Public Interest, 2023). The

standardization of the MPI protocol, its specific stated design of being used for concurrent

programming on a distributed memory system, and the ease with which an implementation of

MPI can be set up on a cluster are all properties that make it useful for parallelization projects

that are designed to run in a high performance computing cluster environment (Burstedde, 2020;

Hernandez-Lopez & Muñiz-Pérez, 2022; Teunissen & Keppens, 2019).

PARALLEL IMAGE COMPRESSION 14

Parallelizing Quadtrees

 All of the functionality needed to use quadtrees for image compression is able to be

parallelized for either CPU or GPU parallel technologies (Hernandez-Lopez & Muñiz-Pérez,

2022; Morrical & Edwards, 2017; Zhou et al., 2018). Depending on the chosen implementation

and underlying technology the code is to be run on, the speedup ranges from six to thirty-seven

times faster compared to a typical non-parallel implementation (Al Sideiri et al., 2020; Dilliwar

et al., 2013; Hernandez-Lopez & Muñiz-Pérez, 2022; Zhang et al., 2011).

The breakdown of that large range of six to thirty-seven is as follows. Al Sideiri et al.

(2020) demonstrated a fractal image compression algorithm a speedup of 1.3 with smaller

images but steadily increasing to a peak speed up of 6.4 with larger images on a GeForce GT 660

M using CUDA compared to an Intel Core i5. Dilliwar et al. (2013) demonstrated a speedup of

5.5 to 6.9 for 256 x 256 test images and 6.3 to 7.5 for 512 x 512 test images using Java Parallel

Processing Framework to coordinate a fractal image compression algorithm across eight

computing nodes. Hernandez-Lopez and Muñiz-Pérez (2022) demonstrated a speedup of 15 on a

multicore CPU and a speedup of 25 on a GPU for running a fractal image compression algorithm

with quadtrees. Finally, Zhang et al. (2011) demonstrated a speedup of 37 on a GPGPU

implementation compared to a single-threaded CPU implementation of a program to encode

geographic information systems (GIS) data. Notably, the speedup demonstrated by Zhang et al.

(2011) was only six times faster than a multicore CPU version of the same program.

Most of the research about parallelizing quadtrees for use in image compression algorithms is

centered primarily around fractal image compression, a compression method that is focused on

finding regions of the image to be compressed that are similar to other regions of the image.

While fractal image compression is not the same as the image compression method proposed by

PARALLEL IMAGE COMPRESSION 15

this researcher, as the method itself is more concerned with finding self-similarity between

portions of the image, rather than combining neighboring regions of the same color, the research

referenced from this area is still focused on the problem of parallelizing quadtrees, and therefore

remains useful for this research project (Al Sideiri et al., 2020; Dilliwar et al., 2013; Hernandez-

Lopez & Muñiz-Pérez, 2022). Other research regarding parallelization of quadtrees is primarily

centered on using quadtrees for object resolution and simulation of fluid dynamics or magneto-

hydrodynamics (Burstedde, 2020; Morrical & Edwards, 2017; Teunissen & Keppens, 2019). One

more point of research worth noting is that Zhou et al. (2018) proposed, and provided an

implementation of, a general-purpose, parallelized quadtree that would be usable for the image

compression method proposed by this researcher as well as many other use cases mentioned in

other research.

Method

 The purpose of this project was to compare the relative speedup of a parallelized quadtree

image compression algorithm compared to the non-parallelized version. The code for this project

went through three separate stages of attempted development before achieving the final,

functional version. The final version of the code exists as multiple python scripts, some of which

include the libraries MPI4Py and CuPy, both used for parallelization, among other libraries such

as NumPy and Pillow, which were used for the actual image processing. The code itself was

tested on an HP Pavilion gaming laptop running Windows 10 Home on an Intel Core i5 and an

NVIDIA GeForce GTX 1650.

Regarding testing and the acquisition of data, the various test cases were separated out

into separate python scripts that could each be run individually, though the central procedure of

each script was the same. Each script was given a list of file names, those names being the names

PARALLEL IMAGE COMPRESSION 16

of the images to be compressed, and would iterate through the list, compressing each image and

then decompressing it, timing both operations, and then writing the timing data and other

pertinent information, such as the size of the compressed file, to an output CSV file. The test data

itself consisted of a mix of photos taken by the researcher.

Tools Used

 The core of the final version of the code is a quadtree image compression library written

in Python by Inspiaaa (2023). This library provided the backbone for this project to begin

compressing test images within a reasonable amount of time, taking twenty seconds or less to

compress a 2400 x 3200 photograph. The existing quadtree image compression library also had

four main dependencies: Pillow, a library for opening an image as an array of pixels and vice

versa, NumPy, a popular library for faster array operations as well as some type information and

a simple interface with Pillow, tqdm, which provided a progress bar in the command line output,

and Sorted Containers, which, among other things, provided an always sorted list that is used in

part of the compression routine to prioritize the addition of detail in different subregions of the

image.

Additional libraries that were added in later were MPI4Py, which provided a simple

wrapper for MPI functionality to be usable in a Python script, and CuPy, which provided an

array library similar to NumPy but instead uses the GPU for operations. Additionally, in order to

support the usage of MPI4Py and CuPy, the testing environment was also installed with

Microsoft MPI 10.1.3 and CUDA Toolkit 12.3. Finally, the Python environment itself was

Python 3.12.1.

PARALLEL IMAGE COMPRESSION 17

Initial Design Attempts

 The very first version of this project was written in C++ and started with the base of an

earlier project that involved binary trees, which were easily extended to be quadtrees instead.

However, that version of the project became a dead end due to the lack of success with

integrating an image handling library into the project. Several separate attempts were made to

install and use different image handling libraries, notably CImg, ImageMagick, and libpng, with

no success. This lack of success with attempts to include any image handling library meant that

no progress was made with implementing any form of image compression; therefore, there is no

data for this first attempt.

 The second attempt to write a quadtree image compression library began significantly

more fruitfully, given that it at least compressed some of the test images successfully. This

version of the code was written in Python instead of C++ and used both Pillow, for image

handling, and NumPy, for faster array operations, some type information, and its ability to

interface easily with Pillow. This version of the code was a naïve implementation of a bottom-up

quadtree image compression algorithm and an exact similarity heuristic. What this means is that

the algorithm begins at the lowest level of the quadtree, the level at which the pixels are, and

combines regions of four sibling nodes into their parent node only if all four nodes have exactly

the same value, ultimately resulting in lossless compression, at least theoretically. In practice,

however, this naïve implementation initially resulted in even the output of a very basic test image

to be sixty percent larger than the raw data and ten times larger than the equivalent PNG.

 Much of the overage compared to the raw data was due to padding that had been

introduced to make the test image have square dimensions of a power of two so that the quadtree

could evenly subdivide the image. This was removed by ensuring that the padding was not

PARALLEL IMAGE COMPRESSION 18

written to the output file, which ultimately led to some of the smaller test images resulting in an

output smaller than the raw data or in some cases outperforming the PNG format. However,

larger test images still did not fare well and furthermore, took over five minutes from start to

finish to compress the quadtree representation and write the output file.

 The output file itself consisted of the dimensions of the image and the number of

channels in the image, followed by each channel of the image compressed separately. In order to

store the trees in the file in a minimalistic manner, only leaf nodes were stored. As storing just

the leaf nodes was not enough information to reconstruct a quadtree, especially since the

compression algorithm resulted in some leaf nodes being further up in the tree, bit flags were

also stored for the full tree. The bit flags were written as sets of eight bits and were interspersed

among the output of the leaf nodes (see Figure 3 for a visualization). Further attempts to reduce

the overhead due to the quadtree representation were unsuccessful.

PARALLEL IMAGE COMPRESSION 19

Figure 3

Diagram of Example Image Being Compressed Using Original Algorithm

Note. The node values 00 and FF are black and white, respectively.

PARALLEL IMAGE COMPRESSION 20

Parallelization of Existing Tool

 After two unsuccessful attempts to create an original program to compress images with

quadtrees, the focus of this project then shifted to using an existing program, upgrading it to use

MPI and CUDA, and then comparing the results. The selected program (Inspiaaa, 2023)

conformed to the general specifications of this project, meaning that it compressed images using

a quadtree, and, conveniently, was able to do so in a reasonable amount of time, which facilitated

testing. Regarding the specifics of the program, it used a top-down compression method, as

opposed to the bottom-up method used in the prior attempt and ran for a set number of iterations

instead of traversing the whole tree. It prioritized which nodes it would subdivide by sorting

them by level of detail, as determined by the standard deviation of each child node from the

mean value. Finally, it further compressed the output with LZMA, the compression algorithm

used by 7-zip. These specific differences in implementation resulted in lossy compression that

was both more efficient and significantly faster than the prior attempt.

The process of parallelizing the code was rather straightforward, given that both kinds of

parallelization were through existing Python libraries. The libraries themselves were not

sufficient on their own, as they depended on existing implementations of MPI and CUDA to be

installed on the testing environment. Open MPI had initially been the chosen implementation of

MPI to be used for testing, however the original testing environment was not equipped with an

NVIDIA GPU, and so the implementation of MPI was instead changed to Microsoft MPI, due to

the new testing environment being Windows.

Two different strategies were used for the attempt to parallelize the program with MPI

and CUDA. In the version of the code that used MPI, in the form of the MPI4Py Python library,

the image data was allocated into equal-sized contiguous chunks across each subprocess and then

PARALLEL IMAGE COMPRESSION 21

the outputs of each subprocess were combined into one output file. The initial attempt to

implement this strategy did not result in chunks that would have existed had the image been

subdivided by the quadtree but rather divided the image into large bands, which resulted in

unacceptable compression artifacts (see Figure 4 for visual example).

Figure 4

Visual Representation of Initial MPI Attempt Dividing into Four Chunks

This initial attempt also caused the program to terminate if the number of pixels in the image was

not evenly divisible by the number of processes running the program. The second attempt at

parallelization with MPI instead calculated the indices for an array slice based on the rank of

each process relative to the total number of processes and did not result in the same compression

artifacts as before (see Figure 5 for visual explanation).

Figure 5

Visual Representation of Proper Chunking with MPI

PARALLEL IMAGE COMPRESSION 22

The method used to parallelize the program with CUDA, using the CuPy Python library, was

much simpler and involved replacing the usage of NumPy with CuPy instead. There was also

another version of the program that included both MPI4Py and CuPy, but the data from that

version was not included in the results because it terminated early without outputting data or

leaving an error message.

Results

 The results of the MPI version of the image compression program were promising, with

an average speedup of 2.44 with four subprocesses compared to the basic implementation,

whereas the CUDA version of the program was not faster, but instead was 24.7x slower than the

basic version. The image compression program was tested on an HP Pavilion Gaming laptop

running Windows 10 Home 22H2. The laptop had an Intel Core i5-9300H CPU and an NVIDIA

GeForce GTX 1650 GPU. The code was run on Python 3.12.1 and also depended on Microsoft

MPI 10.1.3 and CUDA Toolkit 12.3. The test data consisted of five test images, each in three

different square dimensions: 64 x 64, 256 x 256, and 1024 x 1024, for a total of fifteen test

images. For each image tested, three relevant data points were collected: the time it took to

compress the image, the ratio of the compressed image to the raw data, the ratio of the

compressed image to the equivalent PNG, and the amount of time it took to decompress the

image.

Original Attempt

 The attempt to write an original algorithm for compressing images with quadtrees was

initially promising, at least in regard to time. The results of the original algorithm (see Table 1)

tended to be around 16% larger than the raw data and ranged from 1.5 to 2.25 times larger than

PARALLEL IMAGE COMPRESSION 23

the equivalent PNG. Furthermore, with larger input images, the original algorithm was much

slower than even the unparallelized version of the external algorithm.

Table 1

Image Compression Data from Original Algorithm

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG

64 x 64 0.1332 0.0672 1.1662 1.5705

256 x 256 1.7913 1.1168 1.1635 1.8028

1024 x 1024 28.403 17.754 1.1633 2.2672

Baseline Data

 The baseline data, which was the base against which the later data was compared in order

to calculate the speedup, was gathered from running a mostly unmodified version of the quadtree

image compression library. The only modifications made to the program were adding calls to

Python’s time module in order to time the process and also adding a loop to process each image

sequentially and then write the collected data to a CSV file. The baseline data for the four images

tested can be seen in Table 2.

Table 2

Single-Threaded Image Compression Data

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG

64 x 64 0.2982 0.0152 0.7937 1.0679

256 x 256 4.3473 0.2518 0.7016 1.0846

1024 x 1024 15.409 0.8690 0.1407 0.2722

CUDA

 The version of the program that was upgraded to use CUDA was largely the same as the

base version, as far as general order of execution and the steps taken for the algorithm. The only

difference, aside from the results, between the CUDA version and the base version is that the

PARALLEL IMAGE COMPRESSION 24

CUDA version uses the CuPy array library for GPU-accelerated Python instead of NumPy.

Regarding the results, the CUDA version of the program is significantly slower than the base

version, which can be seen in Table 3.

Table 3

Image Compression with GPU-Accelerated Arrays

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG

64 x 64 5.4901 0.4330 0.7937 1.0679

256 x 256 101.49 7.0648 0.7016 1.0846

1024 x 1024 646.18 21.380 0.1407 0.2722

The CUDA version of the program demonstrated an average slowdown by a factor of 29 for

compression and 21 for decompression.

MPI

 The version of the image compression program that was upgraded to use MPI deviated

significantly from the base version, and due to the peculiarities of how the data was combined

between processes to output the compressed form produced output that was mutually

incompatible with the base version and was partially larger due to extra metadata being

necessary to correctly reconstruct the original image. The program was tested on four, nine, and

sixteen processor cores, which resulted in the image being split into one separate chunk for each

process, and the number of iterations to run the compression algorithm for was also divided by

the number of processor cores. Results broken down by number of cores used by MPI can be

seen in Table 4, Table 5, and Table 6.

PARALLEL IMAGE COMPRESSION 25

Table 4

Image Compression with MPI on 4 Cores

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG

64 x 64 0.1392 0.0096 0.8369 1.1263

256 x 256 1.7740 0.1052 0.7107 1.0987

1024 x 1024 5.5655 0.2982 0.1398 0.2707

Table 5

Image Compression with MPI on 9 Cores

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG

64 x 64 0.1144 0.0066 0.7161 0.9640

256 x 256 1.1538 0.0724 0.5543 0.8572

1024 x 1024 5.0614 0.3056 0.1397 0.2707

Table 6

Image Compression with MPI on 16 Cores

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG

64 x 64 0.2338 0.0120 0.9721 1.3085

256 x 256 1.4298 0.0966 0.7295 1.1277

1024 x 1024 4.4650 0.2824 0.1399 0.2712

The MPI version of the code exhibited an approximate speedup by a factor of 2.5 to 3.7,

depending on the size of the image and number of cores (see Figure A2), although the

compressed data was roughly 1% less compressed than the output of the base version of the

program.

Discussion

 The overall results of this project are promising, although some portions of the project

appeared to be closed off to further innovation. The base version of the project resulted in

PARALLEL IMAGE COMPRESSION 26

compressed images with a significantly smaller data footprint than the raw data would be while

also being somewhat smaller than the equivalent PNG or JPG file. The primary area with room

for improvement was the execution time, which was moderately improved by a factor of 2.4

using MPI on 4 cores, although a similar attempt at improvement with CUDA resulted in a

significant increase in execution time by a factor of 28. This slowdown is likely due to a

combination of two different factors. Firstly, CuPy has a large overhead for creating arrays,

which is likely exacerbated by the program using many small arrays instead of one large array

(Castillo, 2021; CuPy, n.d.; Maehashi, 2019). Secondly, three CuPy functions, sum, mean, and

std, that are used four times throughout the process are reduction operations, which are known to

be much slower operations (CuPy, n.d.; Entschev, 2019).

Challenges and Limitations

 Both the original algorithm and the pre-existing algorithm use the same data structure, a

quadtree, to reduce redundant data within the image. However, the original implementation used

a bottom-up approach, with lossless compression, whereas the borrowed implementation used a

top-down approach with lossy compression instead. One other consequential difference between

the two implementations is that the original implementation ran until it had checked every single

node, whereas the borrowed implementation ran for a set number of iterations and prioritized

nodes based on the level of detail, as defined by the deviation between the value of each child

node and the value of the parent node.

The inefficiency in execution time for the original implementation likely stems from two

different, though connected, sources. One significant design decision for the original

implementation involved storing the tree succinctly in an array rather than as a typical collection

of nodes with pointers to each other in memory. This approach was chosen in order to maximize

PARALLEL IMAGE COMPRESSION 27

memory efficiency during execution, but likely caused a significant slowdown due to how many

memory accesses were needed for a large image. However, a significant number of memory

accesses is not necessarily significant on its own. Due to the tree being stored in an array, with

all of its levels stored contiguously with each other, a function was written to calculate the

indices of a node’s four children, which, because of how it was implemented, is likely the major

source of the significant slowdown for larger images. This specific method returned a 4-tuple

containing the indices. In order to properly index into the array storing the tree, the returned tuple

also had to be indexed into, effectively doubling the number of memory accesses. Furthermore,

this function also performed five exponentiation operations, which are somewhat expensive, not

to mention that this function was also executed at least once for every single node in the tree,

which, because the algorithm processed each channel separately, was three times more than the

number of pixels, which was yet more inefficient compared to the borrowed implementation.

Significance

 While the image compression algorithm demonstrated in this project showed moderate

gains in compression ratio compared to modern image formats such as PNG or JPG, the

execution time certainly could be improved. Even though the MPI version of the program

demonstrated a moderate speedup, the program still took six seconds to compress a larger image,

which is still orders of magnitude slower than most implementations of other image formats. It

would be beneficial to further test this algorithm against other image compression algorithms on

a level playing field, rather than as a pure Python script against library implementations of the

other algorithms.

 Similar studies in parallelizing quadtree image compression yielded an average speedup

ranging from 5 to 15 with processor-based parallelization (Dilliwar et al., 2013; Hernandez-

PARALLEL IMAGE COMPRESSION 28

Lopez & Muñiz-Pérez, 2022; Zhang et al., 2011) which is much higher than the average speedup

of 1.5 to 3.7 in this project. The exact reason for the discrepancy is uncertain, although it is likely

due to the fact that most of the code used for this project was written in Python, which is known

to be slower than equivalent code in a compiled language, hence the suggestion that further

research be done to test the algorithm against other image compression algorithms on a level

playing field.

Conclusion

 There are many image compression algorithms currently in common usage, but none of

them use parallelized quadtrees as the central part of their procedure. The unmodified version of

a Python script to compress images using a quadtree took approximately fifteen seconds to

compress a moderately large image, but also exhibited a moderate increase in compression

efficiency compared to the equivalent PNG or JPG file. Two separate attempts were made to

improve the execution time of the compression algorithm. One modification attempted to

leverage GPU acceleration with CUDA through using the CuPy Python library but resulted in a

net slowdown by a factor of 28. Another modification attempted to use Microsoft MPI through

the MPI4Py Python library and resulted in a net speedup ranging from 1.5 to 3.7. In conclusion,

further work would be beneficial in exploring the efficiency of this implementation on more

equal ground compared to contemporary image compression algorithms.

PARALLEL IMAGE COMPRESSION 29

References

Adler, M., Boutell, T., Bowler, J., Brunschen, C., Costello, A. M., Crocker, L. D., Dilger, A.,

Fromme, O., Gailly, J., Herborth, C., Jakulin, A., Kettler, N., Lane, T., Lehmann, A.,

Lilley, C., Martindale, D., Mortenson, O., Parmenter, S., Pickens, K. S., … Wohl, J.

(2023). Portable network graphics (PNG) specification (3rd ed.). World Wide Web

Consortium. https://www.w3.org/TR/png/

Adler, M., Boutell, T., Brunschen, C., Costello, A. M., Crocker, L. D., Dilger, A., Fromme, O.,

Gailly, J., Herborth, C., Jakulin, A., Kettler, N., Lane, T., Lehmann, A., Lilley, C.,

Martindale, D., Mortenson, O., Pickens, K. S., Poole, R. P., Randers-Pehrson, G., …

Wohl, J. (1996). PNG (portable network graphics) specification: Version 1.0. World

Wide Web Consortium. https://www.w3.org/TR/REC-png-961001

Al Sideiri, A., Alzeidi, N., Al Hammoshi, M., Chauhan, M. S., & AlFharsi, G. (2020). CUDA

implementation of fractal image compression. Journal of Real-Time Image Processing,

17(1), 1375-1387. https://doi.org/10.1007/s11554-019-00894-7

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Patterson, D.

A. Plishker, W. L., Shalf, J., Williams, S. W., & Yelick, K. A. (2006). The landscape of

parallel computing research: A view from Berkeley. Berkeley EECS Technical Report

Series. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

Blau, Y., & Michaeli, T. (2019). Rethinking lossy compression: The rate-distortion-perception

tradeoff. Proceedings of the 36th International Conference on Machine Learning.

https://proceedings.mlr.press/v97/blau19a/blau19a.pdf

Burstedde, C. (2020). Parallel tree algorithms for AMR and non-standard data access. ACM

Transactions on Mathematical Software, 46(4), 1-31. https://doi.org/10.1145/3401990

PARALLEL IMAGE COMPRESSION 30

Castillo, E. M. [@emcastillo]. (2021, February 28). This is expected, array creation with CPU

data is pretty heavy since you have to create the array first in [Comment]. GitHub.

https://github.com/cupy/cupy/issues/4767

CompuServe Incorporated. (1990). Graphics interchange format(sm): Version 89a. W3.

https://www.w3.org/Graphics/GIF/spec-gif89a.txt

CuPy. (n.d.). Performance best practices.

https://docs.cupy.dev/en/v12.3.0/user_guide/performance.html

de Bernardo, G., Gagie, T., Ladra, S., Navarro, G., & Seco, D. (2023). Faster compressed

quadtrees. Journal of Computer and System Sciences, 131(1), 86-104.

https://doi.org/10.1016/j.jcss.2022.09.001

Dilliwar, V., Sinha, G. R., & Verma, S. (2013). Efficient fractal image compression using

parallel architecture. i-Manager’s Journal on Communication and Engineering Systems,

2(3), 13-22.

https://go.openathens.net/redirector/liberty.edu?url=https://www.proquest.com/scholarly-

journals/efficient-fractal-image-compression-using/docview/1476284294/se-2

Đurđević, M. Đ & Tartalja, I. I. (2011). Domino tiling: A new method of real-time conforming

mesh construction for rendering changeable height fields. Journal of Computer Science

and Technology, 26, 971-987. https://doi.org/10.1007/s11390-011-1194-8

Entschev, P. A. (2019, July 23). Single-GPU CuPy speedups. Medium.

https://medium.com/rapids-ai/single-gpu-cupy-speedups-ea99cbbb0cbb

Gao, Y., Liu, P., Wu, Y., & Jia, K. (2016). Quadtree degeneration for HEVC. IEEE Transactions

on Multimedia, 18(12), 2321-2330. https://doi.org/10.1109/TMM.2016.2598481

PARALLEL IMAGE COMPRESSION 31

Google. (2023). Compression techniques.

https://developers.google.com/speed/webp/docs/compression

Hernandez-Lopez, F. J., & Muñiz-Pérez, O. (2022). Parallel fractal image compression using

quadtree partition with task and dynamic parallelism. Journal of Real-Time Image

Processing, 19(1), 391-402. https://link.springer.com/article/10.1007/s11554-021-01193-

w

Hudson, G., Léger, A., Niss, B., & Sebestyén, I. (2017). JPEG at 25: Still going strong, IEEE

MultiMedia, 24(2), 96-103. https://doi.org/10.1109/MMUL.2017.38

Hunter, G. M., & Steiglitz, K. (1979). Operations on images using quadtrees, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 1(2), 145-153.

https://doi.org/10.1109/TPAMI.1979.4766900

Inspiaaa. (2023, January 9). QuadTreeImageCompression. GitHub.

https://github.com/Inspiaaa/QuadTreeImageCompression

Klinger, A., & Dyer, C. R. (1976). Experiments on picture representation using regular

decomposition. Computer Graphics and Image Processing, 5(1), 68-105.

https://doi.org/10.1016/S0146-664X(76)80006-8

Maehashi, K. (2019, February 18). GPU computations are not always guaranteed to be faster

than CPU. In your use-case I guess your dataset is too [Comment]. GitHub.

https://github.com/cupy/cupy/issues/2025

Morrical, N., & Edwards, J. (2017). Parallel quadtree construction on collections of objects.

Computers & Graphics, 66(1), 162-168. https://doi.org/10.1016/j.cag.2017.05.024

PARALLEL IMAGE COMPRESSION 32

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable parallel programming with

CUDA: Is CUDA the parallel programming model that application developers have been

waiting for? Queue, 6(2), 40-53. https://dl.acm.org/doi/10.1145/1365490.1365500

NVIDIA Corporation. (2023). About CUDA. NVIDIA Developer.

https://developer.nvidia.com/about-cuda

Samet, H. (1984). The quadtree and related hierarchical data structures. Computing Surveys,

16(2), 187-260. https://doi.org/10.1145/356924.356930

Shukla, R., Dragotti, P. L., Do, M. N., & Vetterli, M. (2005). Rate-distortion optimized tree-

structured compression algorithms for piecewise polynomial images. IEEE Transactions

on Image Processing, 14(3), 343-359. https://doi.org/10.1109/TIP.2004.840710

Shusterman, E., & Feder, M. (1994). Image compression via improved quadtree decomposition

algorithms. IEEE Transactions on Image Processing, 3(2), 207-215.

https://doi.org/10.1109/83.277901

Software in the Public Interest. (2023, February 23). Open MPI v4.1.5 documentation. Open-

MPI. https://www.open-mpi.org/doc/v4.1/

Sullivan, G. J., & Baker, R. L. (1994). Efficient quadtree coding of images and video. IEEE

Transactions on Image Processing, 3(3), 327-331. https://doi.org/10.1109/83.287030

Temizel, A., Halici, T., Logoglu, B., Temizel, T. T., & Omruuzun, F. (2011). Chapter 34 –

Experiences on image and video processing with CUDA and OpenCL. In W. W. Hwu

(Eds.), GPU computing gems: Emerald edition (pp. 547-567). Morgan Kaufmann.

https://doi.org/10.1016/B978-0-12-384988-5.00034-6

PARALLEL IMAGE COMPRESSION 33

Teunissen, J., & Keppens, R. (2019). A geometric multigrid library for quadtree/octree AMR

grids coupled to MPI-AMRVAC. Computer Physics Communications, 245.

https://doi.org/10.1016/j.cpc.2019.106866

Zhang, J., You, S., & Gruenwald, L. (2011). Parallel quadtree coding of large-scale raster

geospatial data on GPGPUs. GIS ’11: Proceedings of the 19th ACM SIGSPATIAL

International Conference on Advances in Geographic Information, 457-460.

https://doi.org/10.1145/2093973.2094047

Zhou, K., Tan, G., & Zhou, W. (2018). Quadboost: A scalable concurrent quadtree. IEEE

Transactions on Parallel and Distributed Systems, 29(3), 673-686.

https://doi.org/10.1109/TPDS.2017.2762298

PARALLEL IMAGE COMPRESSION 34

Appendix A

Figure A1

Comparison of Compression Times for Original, Single-Threaded, and MPI

Note. CUDA results were excluded from the graph because they would have increased the scale

such that there would be no observable difference between the other data points.

PARALLEL IMAGE COMPRESSION 35

Figure A2

Relative Speedup of MPI across 4, 9, and 16 Cores Compared to Single-Threaded

PARALLEL IMAGE COMPRESSION 36

Figure A3

Comparison of Compression Ratio Compared to Raw Data

Note. CUDA is not portrayed on this graph because the compression ratio is the same as for

single-threaded.

PARALLEL IMAGE COMPRESSION 37

Appendix B

 The code for this project can be found at https://github.com/FyreByrd/honors-qt-

compression.

https://github.com/FyreByrd/honors-qt-compression
https://github.com/FyreByrd/honors-qt-compression

