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Abstract 

Quadtrees are a data structure that lend themselves well to image compression due to their ability 

to recursively decompose 2-dimensional space. Image compression algorithms that use quadtrees 

should be simple to parallelize; however, current image compression algorithms that use 

quadtrees rarely use parallel algorithms. An existing program to compress images using 

quadtrees was upgraded to use GPU acceleration with CUDA but experienced an average 

slowdown by a factor of 18 to 42. Another parallelization attempt utilized MPI to process 

contiguous chunks of an image in parallel and experienced an average speedup by a factor of 1.5 

to 3.7 compared to the unmodified program. 

 Keywords: image compression, quadtree, CUDA, MPI, parallelization, Python 
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Parallelized Quadtrees for Image Compression in CUDA and MPI 

In today’s age of information, both space and time are resources that are a concern for 

software developers and users alike. Data compression is an area of software development in 

which the software developer seeks to reduce the space footprint of data through various means, 

including removing redundant or unnecessary data. One source of information that can fill 

significant amounts of space is visual data, or images, which is the natural focus of image 

compression algorithms. Many such algorithms exist, though most do not use a type of data 

structure known as a quadtree, despite its usefulness as a method of representing an image for 

non-compression purposes and its potential utility as a method to compress similarly-colored 2-

dimensional regions of an image. There is, however, a computer program that does use quadtrees 

as a way to reduce local redundancy within image data, although it is not the final step but is 

rather a precursor to the data being processed by Lempel-Ziv-Markov chain algorithm (LZMA) 

and it is also quite slow, taking nearly ten seconds to process a moderately-sized image on 

current consumer hardware. As such, the primary aim of this project was to upgrade the existing 

quadtree image compression algorithm with modern parallelization and GPU-acceleration 

techniques. 

Literature Review 

Substantial work has been conducted in the past regarding the usage of quadtrees for 

image compression, as has some work on attempting to create parallelized versions of quadtrees, 

though most of the work concerning quadtrees is focused on using the data structure to facilitate 

fast querying of sparse point sets. None of the current standard image formats use quadtrees for 

compression but rather use discrete cosine transform or some variant of zip compression. 

Sources from the previous 15 years were preferred, although in some cases much older sources 
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were included due to their authority. Specifically concerning modern image formats, technical 

specifications or other information published by the original designers were selected. 

Modern Image Formats 

 Several image compression methods are used in current image formats. The most 

common image formats are Graphics Interchange Format (GIF), Joint Photographic Experts 

Group (JPEG), Portable Network Graphics (PNG), and, more recently, WebP (Google, 2023).  

Graphics Interchange Format 

 According to the technical specifications for GIF files (CompuServe, 1990), images 

encoded as a GIF file consist of multiple blocks of data, most of which have a predefined size. 

The format of a GIF file consists of a header, a logical screen descriptor, an optional global color 

table, any number of data blocks, and a trailer. Each individual data block is either a graphic 

block or a special purpose block, which includes both comments and application specific 

extensions. Graphic blocks consist of an optional control extension, then either a plain text 

extension for displaying text on the contained image, or a table-based image, which consists of 

an image descriptor, which describes, among other things, the dimensions of an image and 

whether or not the image uses the global color table or a local color table. The actual image data 

for table-based image blocks is stored in a series of up to 256-byte blocks which contain a one-

byte field to encode length and then up to 255 bytes of data compressed using lossless variable-

length-code Lempel-Ziv-Welch (LZW) compression. Multiple graphic blocks in conjunction 

with timing data included in graphic control extension blocks can be used to create an animated 

effect (CompuServe Incorporated, 1990).  
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Joint Photographic Experts Group 

 The compression algorithm used for JPEG images divides the image data into 8 x 8 

blocks which are then processed using the discrete cosine transform (DCT) (Hudson et al., 

2017). As large portions of the image data after being processed by DCT will have a value of 

zero or close to zero, the data can be further compressed by encoding it as a sequence of value 

pairs, where the first value is the number of data points until the next non-zero data point, and the 

second value is the number of bits required to represent the value of the next non-zero data point. 

Each value pair is then followed by the value of the corresponding non-zero data point. Finally, 

the sequence of value pairs is compressed with 2D Huffman coding for further compression 

gains (Hudson et al., 2017). 

Portable Network Graphics 

 The PNG image format was originally designed with the intent of completely replacing 

GIF, due to its many shortcomings (Adler et al., 1996). The most notable shortcomings of GIF at 

the time of PNG’s inception were the legal troubles surrounding its use of LZW, a patented 

algorithm, no support for truecolor images, and minimal support for transparency. PNG 

addressed those shortcomings while also adding further benefits in the form of error checking 

and other measures to prevent transmission errors as well as allowing sufficient room for future 

extension of the format while also retaining interchangeability (Adler et al., 1996). 

 The current specification (Adler et al., 2023) for the PNG image format defines a PNG 

image as consisting of the PNG signature, which defines the file as a PNG and includes 

countermeasures against being interpreted as a text file or certain sequences of bytes being 

changed by the operating system, one IHDR chunk, which defines important information such as 

image dimensions, color type, and underlying compression method, an optional PLTE chunk, 
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which defines an up to 256 entry color palette, any number of IDAT chunks, which contain the 

raw image data compressed using DEFLATE, a variation of LZ77 with Huffman coding, and one 

IEND chunk, which marks the end of the PNG file. The standard also allows for ancillary 

chunks, chunks that are not strictly necessary for a decoder to display an image, to be included in 

specific portions of the PNG file depending on the chunk type (Adler et al., 2023).  

WebP 

 The WebP image format was designed to further compress images compared to PNG or 

JPEG in order to reduce the amount of time for web pages to load, especially in the context of a 

mobile device (Google, 2023). Furthermore, the WebP format supports both lossy and lossless 

compression, full transparency, and true-color animations, all of which are existing features or 

improvements on existing features of the primary image formats: JPEG, PNG, and GIF. The 

lossy compression algorithm is based on key frame encoding of VP8, a video compression 

format designed by On2, which is now owned by Google. The underlying compression method 

for lossy WebP is, DCT, the same as used in JPEG, although further improvements are made by 

dividing the image into blocks and predicting block content based on prior data before 

compressing with DCT and then compressing with arithmetic entropy encoding instead of 

Huffman encoding (Google, 2023).  

 Lossless WebP, similarly to PNG, uses a variant of LZ77 with Huffman encoding; 

however, the image data is subjected to a variety of prediction transforms above and beyond the 

ones specified in the PNG specification (Google, 2023). Lossless WebP is also automatically 

able to switch the compression to use a local palette of 256 colors if there are that few unique 

colors in the image, or it can use color cache coding to further compress the image with a 

reconstructible dynamic palette. WebP also offers a hybrid format with lossy color and lossless 
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transparency, which yields an image sixty to seventy percent smaller than the corresponding 

PNG (Google, 2023). 

Quadtrees 

 Quadtrees, similarly to the more well-known binary tree, are a hierarchical data structure 

consisting of nodes that are either internal nodes, that is, nodes that have child nodes, or leaf 

nodes, and are typically defined such that each node has exactly zero children, in the case of a 

leaf node, or four children, in the case of an internal node (Hunter & Steiglitz, 1979). Quadtrees 

whose internal nodes always have exactly four child nodes are able to recursively decompose a 

dataset that represents a 2-dimensional space (Samet, 1984). This property allows quadtrees to be 

used for efficient storage and querying data whose key has two distinct portions, such as a point 

on a 2-dimensional coordinate plane. 

Similar to a binary tree and other related data structures, a quadtree can also be stored 

succinctly in an array instead of being scattered throughout a computer’s memory (de Bernardo 

et al., 2023). Assuming that each internal node has exactly four children and that there is only 

one level of the tree that does not have internal nodes, this is the most efficient way to store a 

quadtree in memory, as it eliminates the overhead associated with each node having four 

pointers, one for each child node. 

Image Representation 

 Due to the aforementioned properties, quadtrees are well suited to represent the pixel data 

of an image for certain tasks in a way that minimizes memory consumption and computational 

complexity for those tasks (Hunter & Steiglitz, 1979). A quadtree can be used to represent an 

image by recursively dividing the image into four sections until each section is a single pixel and 

can no longer be subdivided (Hunter & Steiglitz, 1979; Shusterman & Feder, 1994). If the 
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quadtree is stored succinctly in an array, further memory savings can be made when representing 

an image, since the size of the image is known before constructing the quadtree and can be used 

to calculate the amount of data to pre-allocate in a contiguous chunk of memory. 

Image Compression 

The aforementioned method in which quadtrees represent an image through recursive 

decomposition of the pixel data lends itself well to image compression, due to the computational 

simplicity of traversing the tree and the ease of comparing neighboring pixels. One can compress 

an image either by working from the bottom up, in which case one would compare sibling nodes 

using a similarity heuristic and then assigning the average value to the parent node, or, 

alternatively, one can work from the root node downwards, assuming each internal node has 

already been populated with the average value of its child nodes, and subdivide nodes based on a 

difference heuristic (Hunter & Steiglitz, 1979; Klinger & Dyer, 1976; Samet, 1984). The choice 

of heuristic as well as compression direction and number of iterations affect the efficiency of 

compression and whether the algorithm results in lossy or lossless compression. See Figure 1 and 

Figure 2 for a visual comparison of bottom-up versus top-down compression. 
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Figure 1 

Visualization of Bottom-Up Quadtree Compression 

 

Note. Grey nodes in this figure have no specific value assigned to them. 

Figure 2 

Visualization of Top-Down Quadtree Image Compression 

 

Note. Grey nodes in this figure are assigned the average value of their child nodes. 
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Lossless Compression. In lossless compression, the original image can always be 

perfectly reconstructed from its compressed form. With quadtrees this type of image 

compression is achieved by combining sibling nodes only when the value of each sibling node is 

equal to the value of each other sibling node. While lossless compression has some use cases, for 

images it is typically more useful to use lossy compression due to needing higher compression 

ratios and the general consideration that many images, especially photographs, frequently have 

large amounts of minor details that would not significantly affect the perception of the image if 

they were to be removed (Al Sideiri et al., 2020). 

Lossy Compression. While lossy compression methods are typically able to achieve 

higher compression ratios, a naïve approach, such as one in which sibling nodes are combined 

only if each of their values is within a predefined threshold of the mean of their values, will 

typically perform poorly in terms of rate-distortion, a key metric which is typically defined as the 

ratio between the number of bits per data point in the compressed data and the expected 

distortion of the data when decoded and is commonly used to compare the results of different 

image compression algorithms (Blau & Michaeli, 2019; Shukla et al., 2005; Shusterman & 

Feder, 1994). One way to improve performance is by combining neighboring nodes that do not 

share a direct parent (Shukla et al., 2005), while another method of improving performance 

involves using different combination thresholds that are optimized for different levels of a 

quadtree (Shusterman & Feder, 1994). Yet another method of improving performance, 

specifically when subdividing instead of combining, involves choosing a set number of iterations 

to run the algorithm and prioritizing regions of the image with high detail to be subdivided 

further into more granular detail (Inspiaaa, 2023). Finally, when quadtrees are used in video 

compression, the performance of the compression algorithm can be further enhanced by updating 
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combination thresholds based on previous frames of the video (Gao et al., 2016; Sullivan & 

Baker, 1994). 

Parallelization 

 One significant way in which an algorithm can be sped up is through parallelization, 

which is a technique that increases the efficiency of a program through writing the 

implementation of an algorithm in such a way that it can be duplicated and executed 

simultaneously on a cluster of interconnected computers or hardware that is designed to be 

parallel, such as a graphical processing unit (GPU) or a multicore variety of central processing 

unit (CPU) (Asanovic et al., 2006). Due to the wide variety in level of support and methods of 

implementation, fully leveraging parallelism for increasing the efficiency of a program is 

generally tied to the architecture for which one is writing the program (Asanovic et al., 2006). 

Parallel Computing Technologies 

 Options for parallel computing technology primarily consist of either clusters of 

computing devices connected to each other in some sort of network or specialized hardware, 

which typically is either a multicore CPU, a GPU, or a general-purpose GPU (GPGPU) (Dilliwar 

et al., 2013; Hernandez-Lopez & Muñiz-Pérez, 2022; Zhang et al., 2011). In the case of 

parallelization through clusters of computing devices, some form of synchronization is needed to 

ensure that the different computing devices in the cluster have the correct data, run the correct 

portions of the program, and share computational results at the right time, a task that is typically 

accomplished through implementing a specific library or protocol such as Message Passing 

Interface (MPI) (Dilliwar et al., 2013; Software in the Public Interest, 2023). Alternatively, in the 

case of specialized hardware, one would need to use a special software library, such as MPI, in 
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the case of multicore CPUs, or even another programming language entirely, such as CUDA, in 

the case of certain types of GPUs (Nickolls et al., 2008). 

CUDA. CUDA was designed by NVIDIA as an application programming interface (API) 

that would provide software developers a common platform to fully leverage parallel capabilities 

offered by GPUs produced by NVIDIA (NVIDIA Corporation, 2023). The CUDA API itself 

operates as a minimal extension of the C and C++ programming languages and allows the 

software developer to write a program that otherwise executes normally but is able to call 

parallel kernels, which can range in complexity from a few lines of a function to a full-blown 

program, that are then executed by the GPU instead of the CPU (Nickolls et al., 2008). This 

flexibility allows developers to write code that will utilize any GPU or GPGPU produced by 

NVIDIA, which consequently has resulted in CUDA being used by many projects that make use 

of parallelized code to run on many different kinds of GPUs or GPGPUs (Al Sideiri et al., 2020; 

Đurđević, & Tartalja, 2011; Hernandez-Lopez & Muñiz-Pérez, 2022; Temizel et al., 2011; 

Zhang et al., 2011). 

Message Passing Interface. Message Passing Interface, commonly abbreviated as MPI, 

is a standardized protocol that is primarily designed for concurrent programming on computer 

clusters with a distributed memory architecture but is also well-suited for use on a multicore 

CPU with a shared memory architecture instead (Software in the Public Interest, 2023). The 

standardization of the MPI protocol, its specific stated design of being used for concurrent 

programming on a distributed memory system, and the ease with which an implementation of 

MPI can be set up on a cluster are all properties that make it useful for parallelization projects 

that are designed to run in a high performance computing cluster environment (Burstedde, 2020; 

Hernandez-Lopez & Muñiz-Pérez, 2022; Teunissen & Keppens, 2019). 
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Parallelizing Quadtrees 

 All of the functionality needed to use quadtrees for image compression is able to be 

parallelized for either CPU or GPU parallel technologies (Hernandez-Lopez & Muñiz-Pérez, 

2022; Morrical & Edwards, 2017; Zhou et al., 2018). Depending on the chosen implementation 

and underlying technology the code is to be run on, the speedup ranges from six to thirty-seven 

times faster compared to a typical non-parallel implementation (Al Sideiri et al., 2020; Dilliwar 

et al., 2013; Hernandez-Lopez & Muñiz-Pérez, 2022; Zhang et al., 2011). 

The breakdown of that large range of six to thirty-seven is as follows. Al Sideiri et al. 

(2020) demonstrated a fractal image compression algorithm a speedup of 1.3 with smaller 

images but steadily increasing to a peak speed up of 6.4 with larger images on a GeForce GT 660 

M using CUDA compared to an Intel Core i5. Dilliwar et al. (2013) demonstrated a speedup of 

5.5 to 6.9 for 256 x 256 test images and 6.3 to 7.5 for 512 x 512 test images using Java Parallel 

Processing Framework to coordinate a fractal image compression algorithm across eight 

computing nodes. Hernandez-Lopez and Muñiz-Pérez (2022) demonstrated a speedup of 15 on a 

multicore CPU and a speedup of 25 on a GPU for running a fractal image compression algorithm 

with quadtrees. Finally, Zhang et al. (2011) demonstrated a speedup of 37 on a GPGPU 

implementation compared to a single-threaded CPU implementation of a program to encode 

geographic information systems (GIS) data. Notably, the speedup demonstrated by Zhang et al. 

(2011) was only six times faster than a multicore CPU version of the same program. 

Most of the research about parallelizing quadtrees for use in image compression algorithms is 

centered primarily around fractal image compression, a compression method that is focused on 

finding regions of the image to be compressed that are similar to other regions of the image. 

While fractal image compression is not the same as the image compression method proposed by 
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this researcher, as the method itself is more concerned with finding self-similarity between 

portions of the image, rather than combining neighboring regions of the same color, the research 

referenced from this area is still focused on the problem of parallelizing quadtrees, and therefore 

remains useful for this research project (Al Sideiri et al., 2020; Dilliwar et al., 2013; Hernandez-

Lopez & Muñiz-Pérez, 2022). Other research regarding parallelization of quadtrees is primarily 

centered on using quadtrees for object resolution and simulation of fluid dynamics or magneto-

hydrodynamics (Burstedde, 2020; Morrical & Edwards, 2017; Teunissen & Keppens, 2019). One 

more point of research worth noting is that Zhou et al. (2018) proposed, and provided an 

implementation of, a general-purpose, parallelized quadtree that would be usable for the image 

compression method proposed by this researcher as well as many other use cases mentioned in 

other research. 

Method 

 The purpose of this project was to compare the relative speedup of a parallelized quadtree 

image compression algorithm compared to the non-parallelized version. The code for this project 

went through three separate stages of attempted development before achieving the final, 

functional version. The final version of the code exists as multiple python scripts, some of which 

include the libraries MPI4Py and CuPy, both used for parallelization, among other libraries such 

as NumPy and Pillow, which were used for the actual image processing. The code itself was 

tested on an HP Pavilion gaming laptop running Windows 10 Home on an Intel Core i5 and an 

NVIDIA GeForce GTX 1650. 

Regarding testing and the acquisition of data, the various test cases were separated out 

into separate python scripts that could each be run individually, though the central procedure of 

each script was the same. Each script was given a list of file names, those names being the names 
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of the images to be compressed, and would iterate through the list, compressing each image and 

then decompressing it, timing both operations, and then writing the timing data and other 

pertinent information, such as the size of the compressed file, to an output CSV file. The test data 

itself consisted of a mix of photos taken by the researcher. 

Tools Used 

 The core of the final version of the code is a quadtree image compression library written 

in Python by Inspiaaa (2023). This library provided the backbone for this project to begin 

compressing test images within a reasonable amount of time, taking twenty seconds or less to 

compress a 2400 x 3200 photograph. The existing quadtree image compression library also had 

four main dependencies: Pillow, a library for opening an image as an array of pixels and vice 

versa, NumPy, a popular library for faster array operations as well as some type information and 

a simple interface with Pillow, tqdm, which provided a progress bar in the command line output, 

and Sorted Containers, which, among other things, provided an always sorted list that is used in 

part of the compression routine to prioritize the addition of detail in different subregions of the 

image. 

Additional libraries that were added in later were MPI4Py, which provided a simple 

wrapper for MPI functionality to be usable in a Python script, and CuPy, which provided an 

array library similar to NumPy but instead uses the GPU for operations. Additionally, in order to 

support the usage of MPI4Py and CuPy, the testing environment was also installed with 

Microsoft MPI 10.1.3 and CUDA Toolkit 12.3. Finally, the Python environment itself was 

Python 3.12.1. 
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Initial Design Attempts 

 The very first version of this project was written in C++ and started with the base of an 

earlier project that involved binary trees, which were easily extended to be quadtrees instead. 

However, that version of the project became a dead end due to the lack of success with 

integrating an image handling library into the project. Several separate attempts were made to 

install and use different image handling libraries, notably CImg, ImageMagick, and libpng, with 

no success. This lack of success with attempts to include any image handling library meant that 

no progress was made with implementing any form of image compression; therefore, there is no 

data for this first attempt. 

 The second attempt to write a quadtree image compression library began significantly 

more fruitfully, given that it at least compressed some of the test images successfully. This 

version of the code was written in Python instead of C++ and used both Pillow, for image 

handling, and NumPy, for faster array operations, some type information, and its ability to 

interface easily with Pillow. This version of the code was a naïve implementation of a bottom-up 

quadtree image compression algorithm and an exact similarity heuristic. What this means is that 

the algorithm begins at the lowest level of the quadtree, the level at which the pixels are, and 

combines regions of four sibling nodes into their parent node only if all four nodes have exactly 

the same value, ultimately resulting in lossless compression, at least theoretically. In practice, 

however, this naïve implementation initially resulted in even the output of a very basic test image 

to be sixty percent larger than the raw data and ten times larger than the equivalent PNG. 

 Much of the overage compared to the raw data was due to padding that had been 

introduced to make the test image have square dimensions of a power of two so that the quadtree 

could evenly subdivide the image. This was removed by ensuring that the padding was not 
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written to the output file, which ultimately led to some of the smaller test images resulting in an 

output smaller than the raw data or in some cases outperforming the PNG format. However, 

larger test images still did not fare well and furthermore, took over five minutes from start to 

finish to compress the quadtree representation and write the output file. 

 The output file itself consisted of the dimensions of the image and the number of 

channels in the image, followed by each channel of the image compressed separately. In order to 

store the trees in the file in a minimalistic manner, only leaf nodes were stored. As storing just 

the leaf nodes was not enough information to reconstruct a quadtree, especially since the 

compression algorithm resulted in some leaf nodes being further up in the tree, bit flags were 

also stored for the full tree. The bit flags were written as sets of eight bits and were interspersed 

among the output of the leaf nodes (see Figure 3 for a visualization). Further attempts to reduce 

the overhead due to the quadtree representation were unsuccessful. 
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Figure 3 

Diagram of Example Image Being Compressed Using Original Algorithm 

 

Note. The node values 00 and FF are black and white, respectively. 
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Parallelization of Existing Tool 

 After two unsuccessful attempts to create an original program to compress images with 

quadtrees, the focus of this project then shifted to using an existing program, upgrading it to use 

MPI and CUDA, and then comparing the results. The selected program (Inspiaaa, 2023) 

conformed to the general specifications of this project, meaning that it compressed images using 

a quadtree, and, conveniently, was able to do so in a reasonable amount of time, which facilitated 

testing. Regarding the specifics of the program, it used a top-down compression method, as 

opposed to the bottom-up method used in the prior attempt and ran for a set number of iterations 

instead of traversing the whole tree. It prioritized which nodes it would subdivide by sorting 

them by level of detail, as determined by the standard deviation of each child node from the 

mean value. Finally, it further compressed the output with LZMA, the compression algorithm 

used by 7-zip. These specific differences in implementation resulted in lossy compression that 

was both more efficient and significantly faster than the prior attempt. 

The process of parallelizing the code was rather straightforward, given that both kinds of 

parallelization were through existing Python libraries. The libraries themselves were not 

sufficient on their own, as they depended on existing implementations of MPI and CUDA to be 

installed on the testing environment. Open MPI had initially been the chosen implementation of 

MPI to be used for testing, however the original testing environment was not equipped with an 

NVIDIA GPU, and so the implementation of MPI was instead changed to Microsoft MPI, due to 

the new testing environment being Windows. 

Two different strategies were used for the attempt to parallelize the program with MPI 

and CUDA. In the version of the code that used MPI, in the form of the MPI4Py Python library, 

the image data was allocated into equal-sized contiguous chunks across each subprocess and then 
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the outputs of each subprocess were combined into one output file. The initial attempt to 

implement this strategy did not result in chunks that would have existed had the image been 

subdivided by the quadtree but rather divided the image into large bands, which resulted in 

unacceptable compression artifacts (see Figure 4 for visual example).  

Figure 4 

Visual Representation of Initial MPI Attempt Dividing into Four Chunks 

 

This initial attempt also caused the program to terminate if the number of pixels in the image was 

not evenly divisible by the number of processes running the program. The second attempt at 

parallelization with MPI instead calculated the indices for an array slice based on the rank of 

each process relative to the total number of processes and did not result in the same compression 

artifacts as before (see Figure 5 for visual explanation).  

Figure 5 

Visual Representation of Proper Chunking with MPI 
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The method used to parallelize the program with CUDA, using the CuPy Python library, was 

much simpler and involved replacing the usage of NumPy with CuPy instead. There was also 

another version of the program that included both MPI4Py and CuPy, but the data from that 

version was not included in the results because it terminated early without outputting data or 

leaving an error message. 

Results 

 The results of the MPI version of the image compression program were promising, with 

an average speedup of 2.44 with four subprocesses compared to the basic implementation, 

whereas the CUDA version of the program was not faster, but instead was 24.7x slower than the 

basic version. The image compression program was tested on an HP Pavilion Gaming laptop 

running Windows 10 Home 22H2. The laptop had an Intel Core i5-9300H CPU and an NVIDIA 

GeForce GTX 1650 GPU. The code was run on Python 3.12.1 and also depended on Microsoft 

MPI 10.1.3 and CUDA Toolkit 12.3. The test data consisted of five test images, each in three 

different square dimensions: 64 x 64, 256 x 256, and 1024 x 1024, for a total of fifteen test 

images. For each image tested, three relevant data points were collected: the time it took to 

compress the image, the ratio of the compressed image to the raw data, the ratio of the 

compressed image to the equivalent PNG, and the amount of time it took to decompress the 

image. 

Original Attempt 

 The attempt to write an original algorithm for compressing images with quadtrees was 

initially promising, at least in regard to time. The results of the original algorithm (see Table 1) 

tended to be around 16% larger than the raw data and ranged from 1.5 to 2.25 times larger than 
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the equivalent PNG. Furthermore, with larger input images, the original algorithm was much 

slower than even the unparallelized version of the external algorithm.  

Table 1 

Image Compression Data from Original Algorithm 

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG 

64 x 64 0.1332 0.0672 1.1662 1.5705 

256 x 256 1.7913 1.1168 1.1635 1.8028 

1024 x 1024 28.403 17.754 1.1633 2.2672 

 

Baseline Data 

 The baseline data, which was the base against which the later data was compared in order 

to calculate the speedup, was gathered from running a mostly unmodified version of the quadtree 

image compression library. The only modifications made to the program were adding calls to 

Python’s time module in order to time the process and also adding a loop to process each image 

sequentially and then write the collected data to a CSV file. The baseline data for the four images 

tested can be seen in Table 2. 

Table 2 

Single-Threaded Image Compression Data 

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG 

64 x 64 0.2982 0.0152 0.7937 1.0679 

256 x 256 4.3473 0.2518 0.7016 1.0846 

1024 x 1024 15.409 0.8690 0.1407 0.2722 

 

CUDA 

 The version of the program that was upgraded to use CUDA was largely the same as the 

base version, as far as general order of execution and the steps taken for the algorithm. The only 

difference, aside from the results, between the CUDA version and the base version is that the 
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CUDA version uses the CuPy array library for GPU-accelerated Python instead of NumPy. 

Regarding the results, the CUDA version of the program is significantly slower than the base 

version, which can be seen in Table 3. 

Table 3 

Image Compression with GPU-Accelerated Arrays 

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG 

64 x 64 5.4901 0.4330 0.7937 1.0679 

256 x 256 101.49 7.0648 0.7016 1.0846 

1024 x 1024 646.18 21.380 0.1407 0.2722 

 

The CUDA version of the program demonstrated an average slowdown by a factor of 29 for 

compression and 21 for decompression. 

MPI 

 The version of the image compression program that was upgraded to use MPI deviated 

significantly from the base version, and due to the peculiarities of how the data was combined 

between processes to output the compressed form produced output that was mutually 

incompatible with the base version and was partially larger due to extra metadata being 

necessary to correctly reconstruct the original image. The program was tested on four, nine, and 

sixteen processor cores, which resulted in the image being split into one separate chunk for each 

process, and the number of iterations to run the compression algorithm for was also divided by 

the number of processor cores. Results broken down by number of cores used by MPI can be 

seen in Table 4, Table 5, and Table 6.  
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Table 4 

Image Compression with MPI on 4 Cores 

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG 

64 x 64 0.1392 0.0096 0.8369 1.1263 

256 x 256 1.7740 0.1052 0.7107 1.0987 

1024 x 1024 5.5655 0.2982 0.1398 0.2707 

 

Table 5 

Image Compression with MPI on 9 Cores 

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG 

64 x 64 0.1144 0.0066 0.7161 0.9640 

256 x 256 1.1538 0.0724 0.5543 0.8572 

1024 x 1024 5.0614 0.3056 0.1397 0.2707 

 

Table 6 

Image Compression with MPI on 16 Cores 

Dimension Compression (s) Reconstruction (s) Output : Raw Output : PNG 

64 x 64 0.2338 0.0120 0.9721 1.3085 

256 x 256 1.4298 0.0966 0.7295 1.1277 

1024 x 1024 4.4650 0.2824 0.1399 0.2712 

 

The MPI version of the code exhibited an approximate speedup by a factor of 2.5 to 3.7, 

depending on the size of the image and number of cores (see Figure A2), although the 

compressed data was roughly 1% less compressed than the output of the base version of the 

program. 

Discussion 

 The overall results of this project are promising, although some portions of the project 

appeared to be closed off to further innovation. The base version of the project resulted in 
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compressed images with a significantly smaller data footprint than the raw data would be while 

also being somewhat smaller than the equivalent PNG or JPG file. The primary area with room 

for improvement was the execution time, which was moderately improved by a factor of 2.4 

using MPI on 4 cores, although a similar attempt at improvement with CUDA resulted in a 

significant increase in execution time by a factor of 28. This slowdown is likely due to a 

combination of two different factors. Firstly, CuPy has a large overhead for creating arrays, 

which is likely exacerbated by the program using many small arrays instead of one large array 

(Castillo, 2021; CuPy, n.d.; Maehashi, 2019). Secondly, three CuPy functions, sum, mean, and 

std, that are used four times throughout the process are reduction operations, which are known to 

be much slower operations (CuPy, n.d.; Entschev, 2019). 

Challenges and Limitations 

 Both the original algorithm and the pre-existing algorithm use the same data structure, a 

quadtree, to reduce redundant data within the image. However, the original implementation used 

a bottom-up approach, with lossless compression, whereas the borrowed implementation used a 

top-down approach with lossy compression instead. One other consequential difference between 

the two implementations is that the original implementation ran until it had checked every single 

node, whereas the borrowed implementation ran for a set number of iterations and prioritized 

nodes based on the level of detail, as defined by the deviation between the value of each child 

node and the value of the parent node. 

The inefficiency in execution time for the original implementation likely stems from two 

different, though connected, sources. One significant design decision for the original 

implementation involved storing the tree succinctly in an array rather than as a typical collection 

of nodes with pointers to each other in memory. This approach was chosen in order to maximize 
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memory efficiency during execution, but likely caused a significant slowdown due to how many 

memory accesses were needed for a large image. However, a significant number of memory 

accesses is not necessarily significant on its own. Due to the tree being stored in an array, with 

all of its levels stored contiguously with each other, a function was written to calculate the 

indices of a node’s four children, which, because of how it was implemented, is likely the major 

source of the significant slowdown for larger images. This specific method returned a 4-tuple 

containing the indices. In order to properly index into the array storing the tree, the returned tuple 

also had to be indexed into, effectively doubling the number of memory accesses. Furthermore, 

this function also performed five exponentiation operations, which are somewhat expensive, not 

to mention that this function was also executed at least once for every single node in the tree, 

which, because the algorithm processed each channel separately, was three times more than the 

number of pixels, which was yet more inefficient compared to the borrowed implementation. 

Significance 

 While the image compression algorithm demonstrated in this project showed moderate 

gains in compression ratio compared to modern image formats such as PNG or JPG, the 

execution time certainly could be improved. Even though the MPI version of the program 

demonstrated a moderate speedup, the program still took six seconds to compress a larger image, 

which is still orders of magnitude slower than most implementations of other image formats. It 

would be beneficial to further test this algorithm against other image compression algorithms on 

a level playing field, rather than as a pure Python script against library implementations of the 

other algorithms. 

 Similar studies in parallelizing quadtree image compression yielded an average speedup 

ranging from 5 to 15 with processor-based parallelization (Dilliwar et al., 2013; Hernandez-
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Lopez & Muñiz-Pérez, 2022; Zhang et al., 2011) which is much higher than the average speedup 

of 1.5 to 3.7 in this project. The exact reason for the discrepancy is uncertain, although it is likely 

due to the fact that most of the code used for this project was written in Python, which is known 

to be slower than equivalent code in a compiled language, hence the suggestion that further 

research be done to test the algorithm against other image compression algorithms on a level 

playing field. 

Conclusion 

 There are many image compression algorithms currently in common usage, but none of 

them use parallelized quadtrees as the central part of their procedure. The unmodified version of 

a Python script to compress images using a quadtree took approximately fifteen seconds to 

compress a moderately large image, but also exhibited a moderate increase in compression 

efficiency compared to the equivalent PNG or JPG file. Two separate attempts were made to 

improve the execution time of the compression algorithm. One modification attempted to 

leverage GPU acceleration with CUDA through using the CuPy Python library but resulted in a 

net slowdown by a factor of 28. Another modification attempted to use Microsoft MPI through 

the MPI4Py Python library and resulted in a net speedup ranging from 1.5 to 3.7. In conclusion, 

further work would be beneficial in exploring the efficiency of this implementation on more 

equal ground compared to contemporary image compression algorithms. 
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Appendix A 

Figure A1 

Comparison of Compression Times for Original, Single-Threaded, and MPI 

 

Note. CUDA results were excluded from the graph because they would have increased the scale 

such that there would be no observable difference between the other data points. 
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Figure A2 

Relative Speedup of MPI across 4, 9, and 16 Cores Compared to Single-Threaded 
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Figure A3 

Comparison of Compression Ratio Compared to Raw Data 

 

Note. CUDA is not portrayed on this graph because the compression ratio is the same as for 

single-threaded. 
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Appendix B 

 The code for this project can be found at https://github.com/FyreByrd/honors-qt-

compression.  

 

 

https://github.com/FyreByrd/honors-qt-compression
https://github.com/FyreByrd/honors-qt-compression

