

Background

Discovery: novel spray process for thick slurries called <u>Wave-</u> Augmented Varicose Explosions (WAVE)

Importance: this represents new "wave-augmented" atomization technology, where waves enhance the breakup of viscous, non-Newtonian fluids (which are difficult to atomize)

Applications:

- Manure slurry atomization for energy conversion + fertilizer
- Gelled propellant atomization for aerospace

Defining Terms:

- Non-Newtonian fluid: viscosity varies with shear force applied. Example: ketchup, which begins to flow more easily when it is being squeezed from a bottle.
- Atomization: breakup of a bulk continuous fluid into smaller droplets in a spray

Introduction

Objective: elucidate mechanisms driving disintegration of banana puree in novel WAVE spray nozzle

Significance: this is the *first ever* study of WAVE atomization, which is a revolutionary new spray process for viscous, non-Newtonian liquids (i.e., thick slurries like banana puree)

Pulsing Nature of System:

Highly periodic wave formation creates a <u>pulsing</u> spray at 1000 Hz frequency (periodic <u>explosions</u> of liquid)

Why Banana Puree?

- Highly viscous
- Non-Newtonian
- Fun!

Computational Study:

- Banana puree is used as a surrogate to represent a general class of viscous, non-Newtonian fluids
- Computer simulations model spray dynamics

Methods

Spray Nozzle Design:

- Annular puree flow is injected into a central high-velocity steam flow just before nozzle exit
- Low GLR of 2.7% (lower is better \rightarrow more efficient)

Modeling Banana Puree Viscosity:

- Described by Herschel–Bulkley model
- Shear-thinning beyond certain yield shear stress
- Viscosity lowers with increased temperature

CFD Model:

- 132 million cell mesh (more cells \rightarrow better resolution)
- 2000 computing processors (more processors \rightarrow faster)
- 3 of months running model
- This would take 125 years to compute on your laptop!

CFD = *Computational Fluid Dynamics*

GLR = Gas-Liquid Ratio (ratio of mass flow rates)

Exploding Banana Puree Ph.D. Student: Daniel Wilson, Advisor: Dr. Wayne Strasser

Results and Conclusions

Pulsing Pattern:

Stretch

Annular puree sheet stretches down while wave forms 2. <u>Bulge</u>

- Puree bulges around nozzle exit as wave collapses 3. Burst
 - Puree bursts radially in a violent explosion

Atomization Mechanisms:

Wave Impact Momentum

- Wave crashes into puree sheet
- Radial momentum flux rate = 1.7×10^5 kg/m s²
- Traps steam bubbles (effervescence)

2. Pressure Buildup

- Intense steam compression windward
- Large pressure gradient across puree sheet

3. Droplet Breakaway

- Increased area for steam to strip droplets
- Thinning, fingering at wave crest
- Steam penetrates wave (more effervescence)

Droplet Production:

Droplet sizes fluctuate spatiotemporally in a wave pattern

Christian Worldview

Intelligibility \rightarrow God created an intelligible universe that can be studied

2. Rationality \rightarrow God gave us the capacity to know Him and understand the world around us

3. Creativity \rightarrow God designed us to create by re-ordering that which is around us for new and useful purposes **4. Design** \rightarrow bananas are a wonderfully designed fruit

Future Work

Evaluate dependence of WAVE atomization on...

<u>Steam velocity</u>: lower steam velocity \rightarrow less steam usage \rightarrow more efficient atomization

2. <u>Non-Newtonian fluid</u>: compare response of Newtonian

fluid in spray nozzle to the present study

<u>Geometry</u>: alter geometry \rightarrow wave physics change \rightarrow nozzle design optimization

References

D. M. Wilson and W. Strasser, "A Spray of Puree: Wave-Augmented Transonic Airblast Non-Newtonian Atomization," Physics of Fluids 34 (7), (2022). D. M. Wilson and W. Strasser, "The Rise and Fall of Banana" Puree: Non-Newtonian Annular Wave Cycle in Transonic Self-Pulsating Flow," Physics of Fluids 34 (7), (2022). Strasser, W., Battaglia, F., "The Effects of Prefilming Length and Feed Rate on Compressible Flow in a Self-Pulsating Injector," Atomization and Sprays, 27(11), pp. 929-947, (2017).

Strasser, W., "Towards Atomization for Green Energy: Viscous Slurry Core Disruption By Feed Inversion," Atomization and Sprays, (2020).