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Abstract 

 

Intracellular calcium as a signaling molecule is a pervasive feature of cellular pathways, 

especially those that manage internal homeostasis and transitions through the cell cycle, so much 

so that regulated, responsive calcium flux between the endoplasmic reticulum (ER) and the 

mitochondria has been suggested to play a major role in cancer development. Another factor 

commonly implicated in tumorigenesis is RAS, an oncogene that controls signaling for many 

pathways that are also regulated by calcium. While both calcium and oncogenic RAS signaling 

are implicated in cancer development, possible links between them have yet to be determined. 

The identification of these links will provide a further understanding of the mechanisms of 

cancer development and potential therapeutic targets for cancer treatment. 
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Investigation of Oncogenic RAS and Endoplasmic Reticulum-Mitochondria Calcium Flux 

and Their Relationship in the Context of Tumorigenesis 

Cancer cells hold several characteristics in common, including increased proliferation 

and decreased sensitivity to apoptosis. Several causes of these changes in oncogenic 

transformation have been suggested; one commonly implicated cause is the deregulation of 

calcium signaling, because of its centrality to the control of cell cycle transitions and 

metabolism. Oncogenes like RAS, a monomeric GTPase that plays an integral role in signal 

transduction in the cell, are also closely linked to tumorigenesis and the deregulation of these 

foundational cell pathways. The processes associated with both calcium flux and RAS are 

complex and nuanced, producing a high likelihood for overlap between the two pathways. 

Identification of a connection between deregulated calcium flux and oncogenic RAS could 

provide a therapeutic target for the treatment of cancers with RAS mutations. This paper will 

explore the existing body of knowledge regarding calcium flux and RAS in both healthy and 

cancerous cells with the goal of identifying connections between the two processes.  

Calcium Flux Between the Endoplasmic Reticulum and the Mitochondria 

Cancer research has called special attention to calcium flux in the cell and the various 

roles it plays, but the impacts of calcium are fundamental to cell life even apart from 

tumorigenesis. The first part of this paper will describe the current body of literature regarding 

calcium flux and its role in regulating cellular processes.  

Nearly all the organelles in the cell are involved in calcium signaling, but the two most 

important organelles for calcium homeostasis are the mitochondria and the ER, with the 

mitochondria being the main site of ATP synthesis in a healthy cell. The tricarboxylic acid 

(TCA) cycle and the electron transport chain (ETC) are housed by the mitochondria and perform 
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oxidative phosphorylation for the efficient production of ATP. Functional mitochondria are also 

central to most major cell events, including cell cycle progression and apoptosis. The 

mitochondria are not fixed organelles; rather, they make up a network that is continually 

remodeled by fusion and fission. This dynamic situation is made possible by the cytoskeleton, 

especially the proteins dynein and kinesin moving with mitochondria on microtubules and actin 

filaments. The protein phosphatidylinositol 3-kinase (PI3K) is also implicated in this process (1). 

This association between mitochondria and the cytoskeleton means that any cytoskeletal 

construction and deconstruction (especially the remodeling that takes place during cell 

proliferation) has a dramatic impact not only on the movement of the mitochondria but also on 

its functions. As the main player in metabolism, the mitochondria adapt to the metabolic needs of 

the cell by responding to cytoskeletal changes.  

The endoplasmic reticulum (ER) is also intimately involved in calcium signaling in the 

cell. The main roles of the ER are protein and lipid production and sorting, signal regulation, 

calcium storage, and transport within the cell. Like the mitochondria, the ER is not fixed but a 

dynamic collection of tubes heavily involved in vesicular transport and associated with the 

cytoskeleton with bidirectional regulation (2,3). The many functions of the ER provide it with 

the means to sense and respond to changes in the cell, which it does using calcium signals in a 

variety of ways. 

These two organelles, the mitochondria and the ER, are closely linked. This connection 

allows for the fluctuation of signals between the two organelles, especially signals mediated by 

calcium. Calcium, a major second messenger in the cell, is stored in the ER and controls many of 

the processes in the mitochondria as well as throughout the cell. The mitochondria have a low 

affinity for the uptake of calcium, too low to allow for uptake from the low cytoplasmic 
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concentrations. Mitochondrial-associated membranes (MAMs), areas of very close association 

between the ER and the mitochondria, provide localized increases in cytoplasmic calcium 

concentration large enough to allow for mitochondrial uptake of the second messenger. Tethers 

connect the outer mitochondrial membrane to nearby ER tubules at a distance of between 9nm 

and 30nm depending on the ribosomal content of the ER (4); these distances have also been 

reported to be as low as or lower than 8.7+/-2.4nm (5). These tethers are clustered together to 

form very specific pockets of association. Separating the ER and the mitochondria by proteolysis 

at the MAMs has been demonstrated to completely halt calcium signals between the two 

organelles, whereas causing even closer association has dramatically improved the calcium 

signals transmitted to the point of promoting mitochondrial calcium overload (4). Thus, the 

specific width of the MAMs is integral in determining the quality of the calcium signal, the ratio 

between the localized concentration of calcium and the total calcium concentration in the 

cytoplasm (6). 

Control of Calcium Flux at MAMs 

Specific proteins and signals provide a means of control over calcium flux at MAMs. The 

number of proteins at one region of association has been estimated to reach one thousand (7), but 

this estimate likely includes impure and overlapping proteins. 115 unique proteins is a more 

accurate estimate of MAM protein content (8). This number includes proteins explicitly for use 

in calcium transfer as well as apoptosis regulators, linking proteins, and regulatory proteins for 

the mediation of autophagy, inflammation, apoptosis, metabolism, and many other cellular 

processes. The roles, regulations, and impacts of this collection of proteins have not been fully 

determined; even though a vast amount of knowledge about the MAMs has been gained in recent 

years, much remains to be learned. Many of these components are commonly altered in cancer 
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cells in a manner dependent on the type of cancer (9). The proteins at the MAMs compose a 

finely tuned mechanism of control, but very small changes can cause it to malfunction with far-

reaching effects on the life of the cell. 

While MAMs serve several purposes in the cell, their primary function is the mediation 

of calcium flux. Calcium as a second messenger controls exocrine and endocrine secretion, 

gluconeogenesis, embryo development and cell differentiation, transcription, nerve growth, 

migration, muscle contraction, and protein folding in the ER (10), as well as internal homeostatic 

processes like autophagy (11). Calcium signals specifically directed to the mitochondria act to 

control the TCA cycle, oxidative phosphorylation, and apoptosis. Dysregulated calcium flux has 

been linked to Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, ataxias, 

and autism (12), as well as every hallmark of cancer either directly or indirectly (13,14,15). 

Calcium can propagate signals within one cell, among a few neighboring cells, or even on a more 

global level across an entire organ. The regulation and control of calcium flux in the cell, 

especially between the ER and the mitochondria, is incredibly important for the maintenance of 

proper cellular function. 

IP3Rs: The Primary Calcium Release Channel 

Calcium in the cell is mainly stored in the ER at a concentration of 100-500µM (16). The 

little calcium that does reside in the cytoplasm exists at a concentration of around 10-100nM (16) 

and is predominantly bound to buffers or other molecules. Because cytoplasmic calcium is not 

free, it travels slowly and works more efficiently as a local signal than across the whole cell (12). 

MAMs provide the perfect setting for calcium to work in this manner. The ER is home to a 

variety of calcium release channels, some of which work through passive leak while others 

utilize stimulation by a signal molecule (17). The most important of these channels for the 
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function of the MAMs is the inositol 1,4,5-trisphosphate receptor (IP3R). The membrane-

spanning section of this channel is near the C-terminus of the protein; the N-terminus of the 

protein is the site of signal reception (18). Each channel is a tetramer, composed of four identical 

proteins. IP3Rs mainly reside in the membrane of the ER, with the majority of their protein mass 

on the cytoplasmic side of the membrane. The six transmembrane domains of each of the four 

subunits surround the ion channel and form a filter on the cytoplasmic end to allow for 

selectivity (12). Many factors influence the selectivity, opening, and closing of the channel, and 

most of these are still under active investigation. Three isoforms of IP3R exist and play unique 

roles in mediating calcium release to regulate apoptosis, secretion, and metabolism with varying 

sensitivity to stimuli (19,20,21,22,23,24,25). One isoform is usually expressed more highly than 

the others in a manner dependent on cell type.  

IP3Rs in the ER membrane are localized to areas that require elevated calcium flux, such 

as the MAMs, but whether they are physically involved in the link between the ER and 

mitochondria at MAMs is uncertain. Some research demonstrates that the space between the 

organelles at MAMs is too small for the large cytoplasmic portion of IP3Rs, so the channels are 

located on ER tubules very near to MAMs instead (5). This would allow for localized calcium 

flux, but the tethers that form MAMs would be formed independently of IP3Rs (4). However, 

much of the literature points to a tethering system that does involve IP3Rs (17); GRP75 is 

generally assumed to physically connect IP3Rs to mitochondrial proteins in the MAM, as shown 

in Figure 1 (26). Because the proteins at the MAM are diverse and not fully characterized, 

further research is required to determine whether IP3Rs play a role in tethering the ER to the 

mitochondria. Additionally, IP3Rs are not fixed within the ER membrane. Rather, like the ER 

and mitochondria themselves, IP3Rs move in association with the cytoskeleton through the lipid 
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bilayer of the ER, forming small clusters of around eight tetrameric channels as they travel. 

These clusters allow the effective release of calcium in a localized manner (24); calcium released 

from a cluster of IP3Rs is called a calcium puff. The localization and mobility of IP3Rs, in 

addition to the isoform composition, determine the target of a given release of calcium from the 

ER (17).  

 

 

 

 

Regulation of IP3Rs is mediated by a variety of signal molecules. The primary stimulus 

molecule is inositol 1,4,5-trisphosphate (IP3), as implied by the name of the receptor. IP3 is 

released by the action of phospholipase C (PLC), which hydrolyzes phosphatidylinositol-4,5-

bisphosphate (PIP2) at the plasma membrane to form diacylglycerol and IP3. IP3Rs are also 

regulated by calcium itself, with low concentrations of calcium stimulating further calcium 

release and high concentrations inhibiting calcium release. ATP also regulates IP3Rs (27), along 

with cAMP, hydrogen ions, NADH, the redox state of the cell (28,29), phosphorylation, 

ubiquitination, transglutaminase-mediated cross-linking of Gln-Lys residues, nitrosylation (12), 

proteolysis, and the Bcl-2 family of proteins (27). With the plethora of regulation demonstrated, 

Figure 1. Simplified depiction of proteins at the MAM. Calcium stored in the ER lumen is 

released through IP3Rs into the MAM on stimulus from IP3 or other signaling molecules. It 

then travels through the voltage dependent anion channel (VDAC) and finally the 

mitochondrial calcium uniporter (MCU) into the mitochondrial matrix where it signals for a 

variety of cell responses. These proteins are closely associated at the MAM to allow for 

successful uptake of calcium by low-affinity channels on the mitochondrial membrane. 
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IP3Rs function as a central control hub for every aspect of cell life and situates them at the head 

of a robust response system that allows the cell to determine its fate in response to any given 

situation. Because of the delicate position that IP3Rs hold, however, dysregulation in any of these 

converging pathways can cause disease in the other pathways. This is commonly the source of 

the extensive list of pathologies connected to calcium flux. 

To initiate a calcium signal, IP3 binds to the IP3 binding core on the cytoplasmic side of 

an IP3R. Stimulation of the receptor requires four IP3 molecules, one for each subunit in the 

tetramer. The phosphate molecules on the fourth and fifth carbons of IP3 bind to Arg and Lys 

residues on the receptor (12). Calcium binding sites and sites for regulation by other molecules 

are less established, but they are known to be present. The binding of IP3 or any other stimulatory 

molecule opens the channel, allowing calcium to flow out of the ER and into the cytoplasm. 

Other Proteins Involved in ER-Mitochondria Calcium Flux 

After calcium is released from the ER into the cytoplasm at a MAM, it travels through a 

voltage dependent anion channel (VDAC), an uptake channel on the outer mitochondrial 

membrane (OMM) as depicted in Figure 1 (16). Calcium then passes through the mitochondrial 

calcium uniporter (MCU) into the mitochondrial matrix, a low affinity process that requires the 

high localized calcium concentration provided by the MAM (16). Once in the mitochondrial 

matrix, calcium can carry out its intended purpose, mediating signals to bring about a variety of 

cellular events. Calcium acts as a main signal to determine cellular life or death; overload of 

calcium signals can cause the mitochondria to stimulate either metabolism or apoptosis. Other 

signals also contribute to the decision between life or death, including ATP levels, oxidative 

stress, and inorganic phosphate levels, as well as signals coming directly from the mitochondria 
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(16). Any of these signals, especially calcium flux, can be dysregulated in cancerous cells, and 

could potentially be the target of treatment to restore signaling to normal levels (13).  

IP3Rs are not the only players in cellular calcium homeostasis; proteins like the Bcl-2 

family exert control over calcium flux and provide another layer of control over apoptosis versus 

cell survival. Each molecule in this family of proteins has a unique function, but many of them 

are suspected to regulate IP3Rs for the indirect control of apoptosis. For example, Bcl-2 itself can 

prevent apoptosis by either impacting IP3Rs to prevent sustained high levels of calcium release 

from the ER (30,31) or lowering ER calcium concentration by enabling passive leak of ER 

calcium without inciting a signal (32). Many other proteins in the Bcl-2 family bind to IP3Rs and 

impact their stability and ability to allow for calcium flux (17). These proteins are commonly 

mutated in cancerous cells due to their centrality to processes that control cell fate. 

Other Points of Control Over Calcium Flux 

Another facet of calcium homeostasis is transport of the electrolyte into and out of the 

cell. The calcium concentration gradient from the ER to the cytoplasm must be maintained for 

functional signaling, so transport on this level is integral to calcium signaling. Several pathways 

allow for this transport to happen. Sodium/calcium exchange and plasma membrane calcium-

ATPases (PMCAs) are designed to pump calcium out of the cell to keep cytoplasmic calcium 

levels low (13). Transient receptor potential (TRP) proteins act as channels to bring calcium into 

the cell, along with store operated calcium entry (SOCE), the primary method of cellular calcium 

intake. As calcium is released from the ER via IP3Rs, luminal concentration decreases, activating 

stromal interaction molecule 1 (STIM1), which collects at the edge of the ER closest to the 

plasma membrane to work with ORAI-1, a channel in the plasma membrane that opens on 

stimulation to allow calcium into the cell (12). SOCE, specifically mediated by these two 
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molecules, is intimately tied to IP3R-mediated calcium release (12, 24,33). All of these processes 

can be dysregulated in cancer at any of these points, as well as at many other protein steps that 

have been omitted from this summary (13).  

After calcium is brought into the cytoplasm, it must be transported into the lumen of the 

ER for storage. The SERCA pump (sarco-endoplasmic reticulum calcium transport ATP-ase) 

mediates this transport, using ATP hydrolysis to pump calcium into the more highly concentrated 

ER lumen and further increase the concentration gradient (10). A number of SERCA pump 

isoforms exist; like isoforms of IP3Rs, SERCA pump isoforms have different functions and 

operate in responses to different stimuli. Because SERCA pumps control levels of ER calcium 

intake, they also control the amount of calcium available for release from the ER, providing the 

cell with a point of control over calcium release. SERCA pumps are commonly downregulated in 

cancer cells (10,34,35), which decreases the likelihood of sustained high levels of calcium 

release to cause apoptosis while still allowing for metabolic signaling to progress as normal.  

When these transport mechanisms are performing properly to maintain cell homeostasis, 

calcium can fulfill its role as a second messenger in nearly every cellular process. Most 

importantly for this discussion, calcium is intimately involved in the control of metabolism, 

mitotic division, and apoptosis. Calcium stimulates TCA cycle dehydrogenases in the 

mitochondria and works with asparagine/glutamine transporters to allow for healthy metabolism 

(36). Additionally, it acts as a regulator to allow the cell to progress through checkpoints in the 

cell cycle or to induce senescence (37). Calcium can also act as a signal for apoptosis at several 

points. These three pathways are commonly dysregulated in cancer, allowing cancer cells to 

increase metabolism for sustained high levels of proliferation while simultaneously avoiding 

apoptosis.  
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Oncogenic RAS and Cancer Development 

Calcium signals are clearly key players in causing cells to become cancerous, but they are 

not the only factor involved. Oncogenes are another major cause of transformation. One of the 

most common oncogenes is RAS, a protein that becomes oncogenic on mutation. RAS is related 

to a vast number of pathways in the cell, and many of these connections are still unclear. 

However, many of the signaling pathways implicated in dysregulated RAS signaling are the 

same as those impacted by calcium flux, suggesting a potential connection between the two 

causes of transformation. This section will explore the basics of oncogenic RAS so that 

connections between aberrant RAS signals and calcium signaling can be identified.  

RAS was originally discovered in retroviruses in the 1960s and 1970s as one of the first 

human oncogenes – genes with the power to transform a healthy cell into a cancer cell (38). The 

RAS gene codes for four proteins: HRAS, NRAS, KRAS-4A, and KRAS-4B. Thirty percent of 

all human cancers demonstrate a mutation in one of these proteins, and eighty six percent of 

those mutations are in the KRAS protein (39). Thus, while most initial studies focused on HRAS, 

studies involving KRAS are more relevant to the current search for a cure for cancer. It has been 

estimated that over two hundred sixty thousand copies of RAS exist in a single cell, with KRAS 

being the most abundant form among those copies. With an oncogenic mutation, this copy 

number increases, magnifying the oncogenic effect (40).  

Overview of RAS Function 

RAS is a monomeric GTPase, a protein that assists in signal transduction across the 

plasma membrane (41). To activate RAS, a growth factor must first bind a receptor on the 

outside of the cell, often a receptor tyrosine kinase (RTK) or a G-protein coupled receptor 
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(GPCR), although cytokine receptors and extracellular matrix receptors have also been shown to 

receive growth factors that stimulate RAS (38). As a GTPase, RAS is active when bound to 

GTP, but inactive when bound to GDP. Receptor activation by an extracellular growth factor 

triggers the binding of growth factor receptor-bound protein 2 (GRB2) to the receptor itself on 

one end and on the other end to a guanine nucleotide exchange factor (GEF), giving the GEF 

protein an affinity for RAS (42). The GEF proteins, most often a protein called son of sevenless 

(SOS), facilitate the exchange of GDP on an inactive RAS protein for GTP (see Figure 2), 

activating RAS by a conformational change in the switch I and II domains that gives RAS a 

greater affinity for its effectors and allows for the activation of pathways downstream of  RAS 

(43). Binding to GRB2 on growth factor reception activates GEFs to perform this function. This 

is one side of the GTPase cycle that RAS undergoes.  

To inactivate RAS and carry out the other side of the cycle, GTPase activating proteins 

(GAPs) bind to RAS to facilitate the dephosphorylation of bound GTP and form bound GDP (see 

Figure 2). This reverses the conformational change in RAS, lowering its affinity for its effectors 

and silencing pathways downstream of this signal. One of the most common GAPs is 

neurofibromin 1 (NF1) (38). While GEFs and GAPs play a major role in cycling RAS to allow 

for signal transduction, some intrinsic nucleotide exchange and hydrolysis does occur without 

the assistance of these enzymes, allowing RAS to slowly cycle between active and inactive states 

even without another enzyme (44).  
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The localization of RAS near the plasma membrane makes possible the signal 

transduction for which RAS is famous. RAS carries a localization signal at its C terminus that 

triggers the addition of a lipid chain by farnesyltransferase (45). After an initial lipid chain is 

added, RAS is moved to the ER and then the Golgi for further lipid modifications and finally an 

acylation step which sends the protein to the plasma membrane, its final destination (45). While 

localization to the plasma membrane is the accepted prerequisite for RAS function, some studies 

have demonstrated functional pools of RAS in the cytoplasm. A farnesylated cytoplasmic pool of 

NRAS was demonstrated to be permanent, rather than simply a stage in the processing and 

transport of RAS to the cell periphery (46). That cytoplasmic pool may make a significant 

contribution to the signal that RAS generates. For this to be possible, several other proteins must 

be present, a requirement that has been demonstrated by the presence of membrane-less protein 

granules that allow for the activation of RAS without a lipid membrane (47). The presence of 

Figure 2. Cycling of RAS through active and inactive states. Exchange of GDP bound to 

inactive RAS for GTP by a guanine exchange factor (GEF) activates RAS for the activation of 

several downstream effectors. This step is reversed by a GTP-ase activating protein (GAP) 

that provides stabilization for the hydrolysis of GTP to GDP, inactivating RAS to its effector 

proteins.  
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RAS in the cytoplasm is an unexpected development, and the coordination of the cytoplasmic 

signal with the signal from the plasma membrane as well as the implications of that coordination 

have yet to be determined. 

Mutations of RAS 

When functioning normally, RAS stands as a gatekeeper at the head of a multitude of 

pathways. A mutation in the RAS gene significantly impacts that role. Most of the RAS 

mutations are found in loop 4 near the gamma-phosphate of GTP, the location of GAP binding 

for GTP hydrolysis (38). Ninety-eight percent of oncogenic RAS mutations are found at Gly12, 

Gly13, and Gln61. These three residues are in the GTP and GAP binding pocket and each 

includes a single missense point mutation. While these three mutations are the most common, 

many mutations have been demonstrated in different types of cancers. The specific mutation and 

its impact depend heavily on the cell and cancer type as well as on a variety of external factors 

such as the tumor microenvironment (48).  

Replacing either Gly12 or Gly13 adds a side chain regardless of the specific mutation and 

impairs the binding of a GAP by blocking the arginine finger domain commonly found on GAPs. 

This domain binds next to the gamma-phosphate of GTP, stabilizing the intermediate to allow 

for efficient hydrolysis. With a side chain at the twelfth or thirteenth residue, GAPs cannot bind, 

and RAS is effectively locked into the active form bound to GTP (49). Mutations of NF1 (the 

most common GAP protein) are often found as a co-mutation when Gly13 is mutated in RAS; 

while some Gly13-mutant RAS molecules retain some level of functionality, the impacts of that 

activity are dependent on the activity of NF1 (50).  

Instead of impacting the binding of a GAP like Gly12 and Gly13 mutations, a mutation at 

Gln61 directly inhibits the hydrolysis of GTP. For the initiation of this reaction with wild-type 
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RAS, a catalytic water is situated between Thr35 and Gln61 near the gamma-phosphate of the 

GTP molecule that is bound to RAS. This water attacks the gamma-phosphate to remove it and 

form inorganic phosphate. This inorganic phosphate, however, cannot form stably without a 

proton transfer reaction. The proton transfer reaction is the primary function of Gln61; this 

residue takes on its imine form with proton transfer, aided in stabilization by Lys16 on RAS and 

the arginine finger domain from GAP. After the reaction is complete, the amide form of Gln61 is 

regenerated (51). Any mutation in Gln61 would impede imine formation and thus proton 

transfer, making GTP hydrolysis virtually impossible (49). Without the ability to perform this 

reaction, RAS does not revert to its inactive form. 

These mutations do not physically lock GTP into RAS, but rather prevent its hydrolysis 

to GDP, implying that RAS could still release GDP and bind GTP in its stead. The potential for 

this exchange depends on the relative concentrations of GDP and GTP and on the affinity of 

RAS for each of them, which usually favors GTP. Additionally, mutated proteins retain some 

level of intrinsic GAP-like activity, and some mutated proteins still demonstrate low levels of 

GAP-mediated hydrolysis (39,44). Instead of being statically or constitutively active in the 

mutated form, mutated RAS is more accurately described as hyperexcitable (52). Additionally, 

not every tumor with a RAS mutation is dependent on that oncogene. Co-mutations sometimes 

play an even bigger role in transformation than RAS does; the determination of the mutation 

with the most weight is heavily reliant on external factors such as the tumor microenvironment 

(48). A co-mutation could mask the effects of constitutively active RAS, but another mutation 

could also display the same effects as constitutive RAS activation without any mutation in the 

RAS gene. Mutations in this category could include increased RTK activation of GEFs like SOS, 



RAS AND CALCIUM FLUX IN TUMORIGENESIS        

 

18 

mutation or loss of GAPs such as NF1, or any other change that alters the equilibrium between 

GDP and GTP binding to RAS. 

Signal Transduction Downstream of RAS 

Once RAS has been activated, it causes a variety of downstream signaling cascades. It is 

the constitutive activation of these pathways that causes the oncogenic effects of a RAS 

mutation. The two main effector pathways of RAS are the RAF-MEK-ERK pathway and the 

PI3K-Akt pathway; together, these pathways signal for growth, proliferation, differentiation, 

migration, and apoptosis (43). These are not the only pathways downstream of RAS; the list of 

effector molecules for RAS continues to grow as further relationships are discovered. All facets 

of oncogenic RAS signaling combine to cause the characteristic traits of cancer, namely 

uncontrolled cell growth and proliferation and avoidance of apoptosis, which are the topics of 

this paper. 

The RAF-MEK-ERK Pathway 

One of the most influential pathways downstream of RAS is the RAF-MEK-ERK 

pathway, a simplified version of which is depicted in Figure 3. This pathway requires receptor-

mediated RAS activation by extracellular growth factors, cytokines, hormones, heat, or oxidative 

stress mediated across the plasma membrane by a receptor that activates RAS (53). Activated 

RAS brings Raf to the plasma membrane, where it is phosphorylated and activated by other 

protein kinases in the vicinity. In addition to Raf being activated by RAS, Raf can also be 

activated in a number of other ways (54). Activated Raf then phosphorylates and activates MEK 

(55). Inactive MEK is bound to ERK in the cytoplasm; when MEK is activated, these two 

proteins dissociate and MEK subsequently phosphorylates and activates ERK (53). This process 
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is integrated at every step with accessory proteins that form a scaffold and allow for proper 

docking and anchoring of enzymes and substrates. 

 

 

 

 

 

The protein ERK carries out the downstream actions that are connected to the RAF-

MEK-ERK pathway. Once activated, ERK can be moved to the nucleus, where it phosphorylates 

nuclear transcription factors (TFs) such as c-Fos, c-Jun, Elk-1, and c-Myc (54) to stimulate cell 

cycle entry, angiogenesis, and cell survival (53). ERK can also activate ribosomal S6 kinase 

(RSK) and MAPK-interacting ser/thr kinase (MNK) (53,56), which work for tumor invasion, 

metastasis, cell proliferation, survival, migration, and glycolytic flux (57,58,59,60). ERK can 

negatively regulate SOS, Raf, and MEK (54), and also to regulate the Bcl-2 family of proteins 

that control the balance of apoptotic signals at the mitochondria (53). ERK usually works for cell 

survival, growth, and proliferation, but because of its intimate relationship with the Bcl-2 family 

of proteins it can also cause apoptosis (61). ERK is not necessarily a pro-survival signal, but 

rather represents the balance of signals that allows the cell to choose between proliferation, 

Figure 3. The RAF-MEK-ERK pathway downstream of RAS. After localization to the  

plasma membrane by RAS and activation by protein kinases (PKs), Raf activates MEK, 

breaking its bond with ERK and allowing it to phosphorylate and activate ERK. After 

activation, ERK moves to the nucleus and acts as a transcription factor for several genes. 
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senescence, and death. Inactivation of the RAF-MEK-ERK pathway is mediated by 

phosphatases, and there are several points of negative feedback built into the system (53). 

Constitutive activation of this pathway with an oncogenic RAS mutation can cause 

transformation in cells by allowing increased proliferation; inhibition of this pathway can reverse 

transformation (54).  

The PI3K-Akt Pathway 

The other pathway central to RAS signaling is the PI3K-Akt pathway, shown in 

simplified form in Figure 4. Phosphatidylinositol 3-kinases (PI3Ks) are a family of proteins that 

work as lipid kinases with a primarily regulatory role. These proteins can be activated by RAS at 

the plasma membrane in conjunction with allosteric activation by an RTK (43). Many other 

paths of activation have been demonstrated for PI3Ks, making it difficult to determine the 

specific impacts of RAS activation. Regardless of the means of activation, PI3K phosphorylates 

phosphatidylinositol 4,5-bisphosphate (PIP2), forming phosphatidylinositol 3,4,5-trisphosphate 

(PIP3) which then brings Akt, other similar molecules, and 3-phosphoinositide-dependent protein 

kinase 1 (PDK1) to the plasma membrane. PDK1 acts as an activator of Akt and similar 

molecules. Akt then requires phosphorylation by a complex of proteins, called mTORC2, to be 

fully activated, at which point it can cause several downstream effects (43).  
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The targets of Akt generally function to promote cell growth and apoptosis evasion (55). 

RSK is a target of Akt as well as ERK; activation by either pathway allows for the stimulation of 

protein synthesis and cell proliferation. Glycogen synthase kinase-3 (GSK-3) is another target of 

Akt; Akt inhibits this effector to control the expression of cell cycle regulators and thus 

progression through the cell cycle (43). Akt inhibits several other molecules, including FOXO 

(forkhead box transcription factors), to inhibit apoptosis and cell cycle arrest, proapoptotic 

members of the Bcl-2 family such as BAD and BAX, and p53. NF𝜅B is activated by Akt to 

allow for cancer progression (43). The PI3K-Akt pathway downstream of RAS uses these 

effectors to make proliferation feasible by allowing progression through cell cycle checkpoints 

and by allowing the cell to avoid apoptosis. This pathway is most important for cells during 

development, because of the high levels of cell growth and division during that stage. While this 

pathway plays a significant role in adult life as well, that role is different in action and in 

Figure 4. The PI3K-Akt pathway downstream of RAS. After activation by RAS, PI3K 

phosphorylates PIP2 to form PIP3, which acts in association with mTORC2 to activate Akt directly 

and via PDK1. Akt then modifies the various effector molecules of this pathway. 



RAS AND CALCIUM FLUX IN TUMORIGENESIS        

 

22 

activation. The PI3K-Akt pathway also mediates insulin signaling in the cell (62,63) and signal 

responses to thyroid hormone (64). The endocrine role of this pathway is intimately connected 

with its oncogenic role; increased glucose intake and metabolism, usually in response to insulin, 

is easily dysregulated in cells with unchecked PI3K-Akt activity downstream of RAS. This 

impact of constitutive RAS activation allows the cell to signal for growth in total disregard of the 

nutrients available. 

Metabolic Remodeling 

These two pathways represent the most clearly defined impacts of constitutive RAS 

activation. Other impacts of RAS are much less clear in their specific connections to aberrant 

RAS signaling but are experimentally connected to mutant RAS in cancer cells. One of these 

impacts is metabolic remodeling. In healthy cells, oxidative phosphorylation is the primary 

means of energy production. This process uses NADH produced in the TCA cycle to produce 

ATP with the highest efficiency possible. Glycolysis is not usually the  first choice for ATP 

production because it is less efficient than oxidative phosphorylation and because it leads to 

significant lactate production. Only cells in a hypoxic environment and during times of increased 

growth and proliferation use glycolysis preferentially over oxidative phosphorylation. A healthy 

cell will not undergo proliferation without the appropriate signals to confirm that sufficient 

nutrients are available; when these signals are present, efficient ATP production is not a primary 

concern for the cell because growth factors confirm that glucose is available in excess to provide 

energy through glycolysis. A cell undergoing proliferation has an increased need for carbon-

skeleton intermediates for the construction of new cell parts, most of which derive from 

pathways connected to glycolysis. On a signal from growth factors, a cell can begin to proliferate 
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by remodeling its metabolism to emphasize glycolysis; this provides enough ATP for the cell 

while also providing the necessary carbon-skeleton intermediates (65).  

Healthy cells only make this switch to glycolysis on the signal from growth factors for 

proliferation. Cancer cells, on the other hand, remodel their metabolism even without growth 

factor stimulation. This anomaly is called the Warburg effect (65,66). The proliferating cell 

carefully regulates its internal ATP levels using ATP/ADP and AMP/ATP ratios (65,67,68), 

sensing how much energy is required and how much is present through a variety of pathways. 

This allows the cell to maintain its energy supply even when the means of energy production is 

not the same as usual. 

RAS clearly plays a role in metabolic remodeling in cancer cells, but the nature and 

specifics of that role are not explicitly clear. One suggested mechanism utilizes the PI3K-Akt 

pathway. Because this pathway is so intimately connected to glucose uptake and use (note its 

connection to insulin signaling), it is logical that the deregulation of this pathway could increase 

glycolysis by increasing expression of glucose transporters, the access of hexokinase to glucose, 

and the activation of phosphofructokinase (65). This overemphasis on glucose caused by 

constitutive activation of Akt results in cancer cells that are addicted to and dependent on 

glucose, to the point that withdrawal of glucose can cause cell death because the cell can no 

longer signal for oxidative phosphorylation to fulfill its energy needs (69). This mechanism is by 

no means the only connection between RAS and the regulation of metabolism; the many 

effectors of RAS make its impact multifaceted, and our understanding of the impact of RAS is 

still developing. Regardless, RAS does play some role in the remodeling of metabolism in cancer 

cells during oncogenic transformation.  
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Cell Cycle Progression 

In addition to metabolic remodeling, RAS has a dramatic impact on cell cycle 

progression – the root of the connection between RAS and increased proliferation. In healthy 

cells, growth factor activation causes this increased progression, but constitutive RAS activation 

in cancer cells allows progression to occur in the absence of growth factors. HRAS specifically 

has been demonstrated to shorten the cell cycle, cutting the time spent in G1 phase in half. This 

change is associated with a significant increase in cyclin D and a slight increase in cyclins E and 

A (70,71). Activation of these cyclins is likely performed by pathways other than RAS; the role 

of RAS is simply to upregulate their production, and to remove the necessity for platelet-derived 

growth factor for passage through cell cycle checkpoints (71). RAS is required to make this 

possible, but other pathways are at work to enhance its effect. ERK has also been demonstrated 

as necessary to progression to S phase (54), but not sequentially after RAS as would be expected 

(72), providing further evidence that RAS through the ERK pathway is not the only means of 

RAS action in cell cycle progression.  

The PI3K pathway is also involved and is likely the primary means of the influence of 

RAS here. This pathway is known to act at several points in the cell cycle, including during G1 

phase and in the mediation of platelet derived growth factor progression to S phase (73). 

However, the exact steps of the PI3K pathway and their relationship to cell cycle progression are 

unclear; this pathway is likely redundant with the ERK pathway and other pathways for the same 

signaling processes, and the observable changes in protein levels are likely more connected than 

not. Alternatively, perhaps redundant pathways impact different aspects of  G1 phase and allow 

progression together but in unique ways. The balance among these signals depends heavily on 

environment and cell type. Regardless of the pathways used, the process of stimulation for cell 
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cycle progression has been described as wavelike, a system of positive and negative feedback 

mechanisms working with growth factors and their receptors to create a rhythm that allows the 

cell to move through the cell cycle (74). Because of its relationship to several of the pathways 

regulating the cell cycle, an oncogenic RAS mutation does impact on the speed and timing of 

this rhythm. Its impact can be large enough to be transformative, but likely is not as direct as 

expected. A shorter cell cycle and increased progression through that cycle, regardless of the 

specific pathway that brings it about, allows oncogenic RAS to increase cell proliferation to 

cause the development and progression of cancer. 

All of these pathways and the broader impacts of RAS, in addition to others that are even 

less characterized, contribute to its oncogenic effects. As emphasized in the discussion of every 

pathway thus far, the impact of RAS is not limited to one clear stepwise process, but rather is 

nuanced and multifaceted. Despite this, the overall impact of mutated RAS is clear: oncogenic 

transformation and tumor growth through the dysregulation of normal cellular processes. 

Current Therapeutic Strategies for the Treatment of RAS-mutant Cancers 

Because of the complexity of RAS signaling, treatment of RAS-mutant cancers has 

proven quite difficult. RAS has even been dubbed undruggable because no attempt to treat it has 

proven successful. The key difficulty with a direct treatment of RAS is the lack of allosteric 

pockets for regulation on the surface of the protein – an inhibitory molecule cannot be designed 

for a binding pocket that does not exist. Recent advances have been made in developing drugs to 

directly target RAS, specifically KRAS with a G12C mutation. These small molecules are 

designed to bind directly to the mutated amino acid; this is ideal because they do not impact the 

wild-type protein. Binding of these drugs to RAS causes preferential binding to GDP rather than 

GTP and disrupts the ability of mutant RAS to bind to its effector Raf. These drugs target RAS 
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while it is bound to GDP, its more flexible state (44). Essentially, this inactivates all mutated 

RAS molecules, allowing them to avoid the constitutively active state caused by the mutation 

(75, 52). Several small molecules based on this principle have been developed and are in various 

stages of trials. While G12C is not the most common RAS mutation, development of these drugs 

provides hope that others may be developed to target other mutations in the future. Perhaps RAS 

will not be undruggable for long. 

Many other therapeutic strategies exist that do not target RAS directly; this has been the 

most common method of treatment for RAS-mutated cancers. One strategy is to interfere with 

localization of the enzyme. Every step involved in localization, from farnesylation to acylation, 

could be targeted to prevent localization and minimize functionality of mutant RAS simply by 

removal from proximity to the plasma membrane and the receptors that it interacts with there. 

Farnesyltransferase inhibitors (FTIs) are the drugs commonly used for this purpose, inhibiting 

the first step of the process to prevent it from happening at all (45). These drugs, however, have 

proven to be mostly ineffectual, likely because of the ability of the cell to bypass this step using 

other enzymes. Another potential reason for the failure of this strategy is the recently discovered 

cytoplasmic pool of functional, active, and sensitive RAS (46,47); if RAS does not require 

localization to the plasma membrane for activity, inhibiting the localization process would have 

no impact on the functionality of RAS. 

Targeted degradation has also been explored as a therapeutic strategy for mutant RAS. 

Proteasomal degradation specific to RAS can effectively downregulate RAS signaling pathways, 

allowing for growth inhibition and apoptosis initiation to occur in contrast to the commonly 

demonstrated effects of constitutively activated RAS (39). 
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Targeting of downstream effectors is another commonly utilized therapeutic approach. 

Instead of directly inhibiting RAS, drugs have been created to target proteins that are activated or 

deactivated by RAS or its effectors, such as any protein in the RAF-MEK-ERK pathway or the 

PI3K-Akt pathway. This strategy is limited by adaptive resistance; by targeting the pathway so 

close to its end, this strategy allows the cell to bypass the inhibited steps using other pathways. 

Many feedback mechanisms exist in the RAS pathways, along with differences in action between 

the isoforms of RAS. Because so little is known about the intricacies of these pathways, the 

impacts of effector inhibition can have unexpected and far-reaching effects. 

Combination therapy has proven to be the most successful method of treatment thus far. 

This strategy targets several points in the RAS pathways, and various combinations of drugs 

have proven effective. For example, PI3K/mTOR and MEK are commonly inhibited 

simultaneously; MEK and the anti-apoptotic protein Bcl-xL are another common combination 

therapy for all KRAS mutations. Either of these combinations (or any other) can be combined 

with a direct RAS inhibitor like the G12C inhibitors previously mentioned, dramatically 

increasing the effectiveness of the therapy (76). The benefit of this strategy is its avoidance of 

feedback inhibition by the utilization of a strategy called vertical inhibition. Combination therapy 

will grow even more prominent as inhibitors for each point in the known pathways are designed, 

as more is learned about the details of the pathways downstream of RAS, and as more direct 

inhibitors for RAS are designed. 

Connections Between Calcium Flux and Oncogenic RAS 

Calcium flux pathways and RAS pathways are complex and not fully characterized, but 

because they interact with similar processes in the cell, the potential for connections between 

them is significant. Identifying a link between these two pathways would allow the exploitation 
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of that link for therapeutic purposes. On a general level, it has been demonstrated that oncogenic 

KRAS is associated with remodeled calcium homeostasis (77). But RAS mutations have also 

been demonstrated to have effects on a more specific level. One of these is modification of ER 

calcium content. Bcl-2 could be the mediator of these changes, but research disagrees on this 

topic. Further clarification of the role of Bcl-2 in mediating ER calcium content could provide a 

point of contact between oncogenic RAS pathways and the regulation of calcium flux. ER 

calcium content could also be impacted through calcium influx into the cell and then into the ER. 

SOCE, the process that brings calcium into the cell on depletion of the ER calcium store, has 

been demonstrated to be downregulated in RAS-mutant cells (78), decreasing the amount of 

calcium in the cell. RAS has also been demonstrated to effect STIM1 and ORAI-1, which control 

SOCE and are closely linked to cell cycle transitions. Both of these are localized to the ER and 

are downstream of ERK, providing a connection between RAS signaling and calcium flux to and 

from the ER (78). Thus, calcium uptake via SOCE could provide a potential connection between 

RAS and calcium flux.  

The release of calcium from the ER lumen could likewise connect RAS and calcium 

signaling. Akt, downstream of RAS via PI3K, has been demonstrated to phosphorylate IP3Rs on 

the C-terminus in the cytoplasm, minimizing apoptosis by preventing normal interaction with 

caspase-3 that would allow for sustained calcium release to trigger opening of the mitochondrial 

permeability transition pore and the stimulation of apoptosis (79,80). This phosphorylation does 

not change normal calcium flux, but rather prevents extreme calcium flux that could initiate 

apoptosis, stopping the apoptosis cascade before it begins but allowing normal calcium signaling 

for homeostatic processes like metabolism to continue (79). Akt can also phosphorylate the 

regulatory unit of the MCU, which acts as a gatekeeper for the entire calcium content of the 
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mitochondria. This phosphorylation destabilizes the MCU, allowing for ROS production and 

tumor progression (81). Akt generally is not assumed to be localized to the ER, but its 

relationship to IP3R regulation indicates that perhaps its role there is more influential than 

expected. IP3R phosphorylation by Akt is just one example of signal integration at IP3Rs, but it is 

an important one because it places the regulation of calcium release directly downstream of 

RAS. 

Calcium release from the ER can be impacted in a variety of other ways as well. 

Increased plasma membrane receptor expression can allow for a greater number of signals to be 

transmitted, increasing calcium release to allow for heightened metabolism and progression 

through the cell cycle. Changing IP3R levels can also dramatically impact calcium release. PLCε, 

the molecule that releases IP3 to activate IP3Rs, is stimulated by the RAF-MEK-ERK pathway 

downstream of RAS. This connection is part of the way that RAS signals for increased 

proliferation, increasing IP3 levels to allow for increased calcium flux (83, 82). Changes in the 

relative abundance of IP3R isoforms can also play a major role in regulating calcium release, 

because each isoform allows for different types of calcium signals (84). The relative abundance 

of IP3R isoforms varies by cell type, so a general rule for the impact of RAS on this ratio is 

difficult to establish although a connection is known to exist. RAS has, however, been 

demonstrated to play some role in regulating the relationship between the isoforms in cancerous 

cells. Any alteration of the effect of RAS on these elements of calcium signaling with an 

oncogenic RAS mutation could act to mediate the oncogenic effects of RAS and be a potential 

therapeutic target. 

Metabolism is another piece of oncogenic transformation that is impacted by both 

calcium flux and mutant RAS. Metabolic processes are themselves a complex regulatory system, 
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impacted by several external factors as well as feedback regulation at many points. The TCA 

cycle dehydrogenases are regulated by calcium; any change in calcium flux will impact their 

activity. Any impact of mutant RAS on calcium flux between the ER and the mitochondria thus 

also directly influences the TCA cycle and the balance of metabolism in the cell; this can lead to 

oncogenic transformation by causing the cell to switch to an emphasis on glycolysis. Of course, 

this is not the only possible means of influence that RAS has on metabolism. At any point in this 

complex regulatory system, a pathway downstream of RAS could alter metabolism to bring 

about oncogenic transformation. 

The cytoskeleton provides another potential connection between the balance of calcium 

in the cell and the oncogenic activities of RAS. The location and orientation of organelles is what 

allows them to have any meaningful function at all. This is especially true of the ER and the 

mitochondria. The association between those two organelles and the orientation of the ER 

primarily allow for functional calcium flux and other signaling cascades. As previously 

mentioned, the cytoskeleton plays a key role in regulating these things, in addition to the fusion 

and fission of the mitochondria. Individual proteins also require accurate localization for 

functionality. IP3Rs are one example of this. Because they are not uniformly distributed on the 

surface of the ER, the movement of the cytoskeleton in orienting IP3Rs is pivotal to their 

function. Mediating this connection is a protein called KRAS-induced actin binding protein 

(KRAP), which works with intermediate filaments of the cytoskeleton to allow for localization of 

IP3Rs to the ER in general and to some regions in specific in order to fulfill functions unique to 

each isoform (85,87). This protein is another potential point of connection that allows mutant 

RAS to play a role in calcium flux. 



RAS AND CALCIUM FLUX IN TUMORIGENESIS        

 

31 

These are only a few of the potential connections between the calcium and RAS 

pathways, two of the most nuanced pathways in the cell. Further research will reveal more 

significant details about the nature of each of these pathways, allowing researchers to identify 

functional overlaps between the pathways. A point of connection such as this would prove to be 

an ideal target for drugs that treat RAS-mutant cancers. This field holds much promise for cancer 

research in the future; the discovery of a practical target for such drugs would provide hope for a 

large percentage of patients with cancers deemed untreatable by professionals.  
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