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Abstract

In 1906, the Russian probabilist A.A. Markov proved that the independence of a sequence of

random variables is not a necessary condition for a law of large numbers to exist on that sequence.

Markov’s sequences – today known as Markov chains – touch several deep results in dynamical

systems theory and have found wide application in bibliometrics, linguistics, artificial intelligence,

and statistical mechanics. After developing the appropriate background, we prove a modern

formulation of the law of large numbers (fundamental theorem) for simple countable Markov

chains and develop an elementary notion of ergodicity. Then, we apply these chain convergence

results to study PageRank and the Google matrix.

Keywords: Markov chains, stochastic processes, dynamical systems, law of large numbers.
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The Fundamental Limit Theorem of Countable Markov Chains

The law of large numbers dates to the very nascence of probability theory, with the

posthumous Ars Conjectandi of Jacob Bernoulli (1713). Published when Bayes was just 11 years

old, Bernoulli’s thoughts on convergence were threaded through mathematical discourse by many

pioneers of probability (Seneta, 2013). In its modern statement, we define a sequence of

independent and identically distributed random variables (X𝑛). Then endow each element X𝑛 with

finite mean E(X𝑛) := 𝜇. In the strong law of large numbers, the sample mean X𝑛 converges almost

surely to 𝜇. That is, the set of exceptions might not be empty, but it carries no probability mass:

P
(

lim
𝑛→∞

X𝑛 ≠ 𝜇

)
= 0 . (1)

Sequences of independent and identically distributed random variables are a special case of

stationary sequences (Fristedt & Gray, 1997), and a rich theory has developed around the

asymptotic properties of such sequences. This thesis proves a law of large numbers (fundamental

limit theorem) for a special stationary sequence – the positive recurrent Markov chain.

During the time of A.A. Markov (1856-1922), probabilists were attempting to generalize

the conditions under which a law of large numbers would exist on a sequence. In 1902, the

Russian probabalist P.A. Nekrasov (1853-1924) asserted that pairwise independence of the (X𝑛)

was necessary for the law of large numbers; there could be no futher generalization. However,

Markov – one of Chebyshev’s distinguished disciples – detested Nekrasov and endeavored to

prove him wrong (Seneta, 1996). In his famous 1906 paper, Markov incisively constructed a

counterexample for Nekrasov.

A modern formulation of this counterexample considers a surfer on a network that has
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only two pages, 𝑝1 and 𝑝2. Each page has a single link on it. Every so often, the surfer clicks the

link on the current page. Suppose the link on page 𝑝1 has probability 𝑝 of sending the surfer to

𝑝2, and probability (1− 𝑝) of sending the surfer back to 𝑝1. Let 𝑞 be the analogous probability for

the link on 𝑝2. To track the surfer through time, we can construct a random variable X𝑡 for each

timestep 𝑡. Each of these random variables, valued over 𝑝1 and 𝑝2, gives the probability that the

surfer is on that page during the given time.

Unlike the classic coin-flipping experiment, this demonstration does not quite consist of

independent and identically distributed trials. Because the probabilities of transition are not

necessarily equal for each page, the probability of landing on 𝑝1 or 𝑝2 in the next timestep

depends upon the page currently visited. Markov (1951) thus concluded, “independence of

quantities does not constitute a necessary condition for the law of large numbers” (p. 507).

Basic Theory

Markov originally studied finite chains – those with a finite state space. A theory of

countable chains waited until 1936, with a paper of Komolgorov (Derman, 1955). Around this

time, more than a decade after his death, Markov’s chains were first named in his honor (Seneta,

2006). Markov’s creation resembled the modern form of the Markov chain, the modern

mathematical object that bears his name. A discrete-time Markov chain M :=
(
(X𝑛),S,P

)
is a

discrete sequence of random variables (X𝑛) on a countable state space S such that for all states

𝑠 ∈ S over all times 𝑡, the Markov property holds:

P (X𝑡 = 𝑠𝑡 | X𝑖 = 𝑠𝑖, 0 ≤ 𝑖 < 𝑡) = P (X𝑡 = 𝑠𝑡 | X𝑡−1 = 𝑠𝑡−1) . (2)
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A homogeneous chain is described by a transition matrix P ∈ R|S|×|S|, where for all 𝑡,

(P)𝑖, 𝑗 := P
(
X𝑡+1 = 𝑠 𝑗 | X𝑡 = 𝑠𝑖

)
. (3)

A Markov chain selects a new state at each timestep – even if the current state is rechosen.

Thus, for a state 𝑠 𝑗 over all times 𝑡,

∑︁
𝑠𝑖∈S
P

(
X𝑡+1 = 𝑠𝑖 | X𝑡 = 𝑠 𝑗

)
= 1 . (4)

Equivalently, the rows P must sum to unity, thus ensuring that P is a (row) stochastic matrix.

Since the Perron-Frobenius theory of nonnegative matrices developed alongside Markov’s

theory of chains (Seneta, 2006), his seminal papers did not use concepts of recurrence,

irreducibility, and periodicity – the major ideas in this thesis. Although Markov did not rigorously

address the convergence concerns thus imposed, he eventually anticipated much of the requisite

matrix theory in 1908 – four years before Frobenius’s landmark paper (Schneider, 1977). In this

thesis, we take a probabilistic approach to the fundamental theorem (law of large numbers) for

Markov chains, but we will retrofit the useful graph-theoretical structure developed since Markov.

Transition Matrices

Unless stated otherwise, henceforth let a homogeneous discrete-time Markov chain(
(X𝑛),S,P

)
be given. For all times 𝑡, the 𝑘 th transition matrix P (𝑘) ∈ R|S|×|S| is given by

(
P (𝑘)

)
𝑖, 𝑗

:= P
(
X𝑡+𝑘 = 𝑠 𝑗 | X𝑡 = 𝑠𝑖

)
. (5)

The well-known Chapman-Kolmogorov equations, named after the two pioneering probabilists

who independently discovered them, finds its elegant expression through the language of matrix
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multiplication. For a transition matrix P and some times 𝑡 and 𝑡′,

(
P (𝑡+𝑡 ′)

)
𝑖, 𝑗

=

(
P𝑡P𝑡 ′

)
𝑖, 𝑗

=

(
P𝑡+𝑡 ′

)
𝑖, 𝑗

. (6)

Dynkin (1989) examines rigorous proofs of this elementary fact, which implies we have P (0) as

the identity matrix. In other words, for a state 𝑠 𝑗 , we have the tautology

P
(
𝑋𝑡 = 𝑠 𝑗 | 𝑋𝑡 = 𝑠 𝑗

)
= 1 . (7)

Return to our simple Web surfer, which has transition matrix

P :=

[
P1,1 P1,2

P2,1 P2,2

]
=

[
1 − 𝑝 𝑝

𝑞 1 − 𝑞

]
. (8)

As shown in Figure 1, the transition matrix can be viewed as a directed graph, where the weight of

the edge between states 𝑠𝑖 and 𝑠 𝑗 is simply (P)𝑖, 𝑗 . Understanding a chain as a graph produces a

useful classification of states. State 𝑠 𝑗 is reachable from state 𝑠𝑖 if there is some time 𝑡 > 0

whereby
(
P𝑡

)
𝑖, 𝑗

> 0. This is a directed 𝑡-path of positive probability from 𝑠𝑖 to 𝑠 𝑗 , so

∞∑︁
𝑡=0
P

(
X𝑡 = 𝑠 𝑗 | X0 = 𝑠𝑖

)
> 0 . (9)

This sum will become more useful later.

Communication of States

States 𝑠𝑖 and 𝑠 𝑗 communicate if each is reachable from the other. Communication of states

forms an equivalence relation. Since (P0) 𝑗 , 𝑗 = 1 for all states, communication is reflexive.

Symmetry follows directly from the definition. For transitivity, let states 𝑠𝑖 and 𝑠 𝑗 communicate,

and let 𝑠 𝑗 and 𝑠𝑘 communicate. So there is a time 𝑡 such that
(
P𝑡

)
𝑖, 𝑗

> 0 and a time 𝑡′ such that(
P𝑡 ′

)
𝑗 ,𝑘

> 0. Note that
(
P𝑡+𝑡 ′)

𝑖,𝑘
gives the total probability of transition from 𝑠𝑖 to 𝑠𝑘 across all
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Figure 1

Transition Graph for Random Web Surfer

𝑝1 𝑝2

𝑝

𝑞

(1 − 𝑝) (1 − 𝑞)

(𝑡 + 𝑡′)-paths, and so this probability must be at least the probability of such a transition by a more

specific path – specifically, the path that first visits 𝑠 𝑗 . Thus,

(
P𝑡+𝑡 ′

)
𝑖,𝑘

≥
(
P𝑡

)
𝑖, 𝑗

(
P𝑡 ′

)
𝑗 ,𝑘

> 0 . (10)

Reversing the order of 𝑠𝑖 and 𝑠𝑘 finishes the argument for transitivity, and thus proves that these

two states comunicate. Because of this equivalence relation, a chain’s state space can be

partitioned into classes of communicating states.

Reducibility

An important class of infinite-state examples in Markov theory are the random walks

(Levin, Peres, & Wilmer, 2008), and we consider several forms of the simple (one-dimensional)

random walk. Such a random walk is a Markov chain with states 𝑠 ∈ Z where

P (X𝑡+1 = 𝑠 + 1 | X𝑡 = 𝑠) := 𝑝 , (11)

P (X𝑡+1 = 𝑠 − 1 | X𝑡 = 𝑠) := 1 − 𝑝 (12)

for some probability 𝑝, with zeros elsewhere. The symmetric simple random walk has 𝑝 = 1
2 .

Simple random walks can have reflecting boundaries – states with transitions like the above but
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with endpoints 𝛼, 𝛽 ∈ Z:

P (X𝑡+1 = 𝛼 + 1 | X𝑡 = 𝛼) := 𝑝𝛼 , (13)

P (X𝑡+1 = 𝛽 − 1 | X𝑡 = 𝛽) := 𝑝𝛽 . (14)

Figure 2 illustrates these situations. When 𝑝𝛼 = 𝑝𝛽 = 1, the chain has absorbing boundaries.

These random walks are reducible: They can be broken into disjoint communicating classes – a

trivial (absorbing) class for each absorbing state, and a reflecting boundary walk for the inner

states. An irreducible chain, on the other hand, has a strongly connected graph. The simple

random walk is irreducible, since

P
(
X|𝑠𝑖−𝑠 𝑗 | = 𝑠𝑖

��X0 = 𝑠 𝑗

)
= 𝑝 |𝑠𝑖−𝑠 𝑗 | . (15)

Periodicity

Note that once a state is visited in a simple random walk, that state can only be visited again

in a multiple of two timesteps from the current time. In general, let 𝑠 𝑗 be a state in an arbitrary

chain, and define the period of 𝑠 𝑗 as the greatest common divisor of the possible return times:

𝛾 𝑗 := gcd
( {
𝑛 ≥ 1 : P

(
X𝑛 = 𝑠 𝑗 | X0 = 𝑠 𝑗

)
> 0

} )
, (16)

with the convention that gcd {∅} is infinite. If 𝛾 𝑗 = 1, then 𝑠 𝑗 is aperiodic. Proving that

periodicity is a class property involves some tedious number theory, but Levin et al. (2008)

presents the standard proof. Recall that irreducibility only requires that, for each pair of states,

there is a time 𝑡 such that a 𝑡-step transition between them may occur. A standard result of

aperiodicity is the following: For all pairs of states, there is a time 𝑡′ such that for this time and all
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Figure 2

Random Walks on Z (X0 = 0)

(a) No Boundaries

−1 0 1· · · · · ·
𝑝

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 − 𝑝

𝑝

1 − 𝑝

(b) Reflecting (𝛼 < 𝛽)

0· · · · · ·𝛼 𝛽

(1 − 𝑝𝛼) (1 − 𝑝𝛽)

𝑝𝛼

(1 − 𝑝)

𝑝

(1 − 𝑝)

𝑝

(1 − 𝑝)

𝑝

𝑝𝛽

times thereafter, a transition from one to the other may occur. An aperiodic chain ensures there is

a time past which any state may be visited from any other state.

Recurrence

It is natural to ask how often and at what rate individual states are revisited inside a

communicating class. The total number of visits to state 𝑠 𝑗 is the random variable

V𝑗 :=
∞∑︁
𝑡=0

𝛿
(
X𝑡 = 𝑠 𝑗 | X0 = 𝑠 𝑗

)
, (17)

where 𝛿(X𝑡 = 𝑠 𝑗 | X0 = 𝑠 𝑗 ) := 1 when the event {X𝑡 = 𝑠 𝑗 | X0 = 𝑠 𝑗 } occurs

𝛿(X𝑡 = 𝑠 𝑗 | X0 = 𝑠 𝑗 ) :=


1 , when the event

{
X𝑡 = 𝑠 𝑗 | X0 = 𝑠 𝑗

}
occurs;

0 , otherwise.

(18)
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For 𝑛 ≥ 0, the 𝑛th return time of state 𝑠 𝑗 is

T𝑗 (𝑛) :=


min

{
𝑡 > T𝑗 (𝑛−1) ��X𝑡 = 𝑠 𝑗 , X0 = 𝑠 𝑗

}
, when 𝑛 > 0 ;

0 , when 𝑛 = 0 .

(19)

By convention, the quantity min{∅} is infinite. Note that, for all 𝑘 ≥ 0,

T𝑗 (𝑘) > T𝑗 (𝑘−1) > 0. (20)

Analyzing Return Times

The Markov property was stated in terms of a fixed time 𝑡, but rather than fixing the time

when a state is visited, we could instead state the Markov property in terms of a stopping time 𝑇 .

This is a possibly infinite random variable such that, for some time 𝑚, the states up to time 𝑚

completely determine the stopping event {𝑇 = 𝑚}; no knowledge of the future is required. Return

times are stopping times, since for a chain starting in state 𝑠 𝑗 , we have the event{
T𝑗 (1) = 𝑛

}
:=

{
X𝑘 = 𝑠 𝑗 ; Xℓ ≠ 𝑠 𝑗 , 1 ≤ ℓ < 𝑘; X0 = 𝑠 𝑗

}
. (21)

The chain satisfies the strong Markov property if the Markov property holds for the finite

stopping time 𝑇 : The chain at X𝑇 is the same chain as the one at X0. It is rather tedious to show

that a discrete-time chain must be strongly Markovian, but a continuous-time chain need not be

(Shalizi & Kontorovich, 2007). Thus, in our case, the sequence
(
T𝑗 (𝑛)

)
over 𝑛 is independent and

identically distributed when T𝑗 (1) is finite with probability 1, We thus adopt the shorthand

T𝑗 (1) := T𝑗 . (22)

Now, the probability that 𝑠 𝑗 is revisited in finite time is

P
(
T𝑗 < ∞

)
=

∞∑︁
𝑛=0
P

(
T𝑗 (𝑛) = 𝑛

)
. (23)
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From this fact, we can tie together V𝑗 and T𝑗 for a standard but interesting result (Ross, 2019).

Since the return times are independent and identically distributed, we repeatedly apply T𝑗 :

P
(
V𝑗 = 𝑘

)
=

(
𝑘∏
𝑡=1
P

(
T𝑗 (𝑡) < ∞

)) (
1 − P

(
T𝑗 (𝑘+1) < ∞

) )
(24)

=
(
P

(
T𝑗 < ∞

) ) 𝑘 (1 − P
(
T𝑗 < ∞

) )
. (25)

The visits V𝑗 have geometric probability density with 𝑝 = P
(
T𝑗 < ∞

)
. Observe that

E
(
𝛿(X𝑡 = 𝑠 𝑗 )

)
=

(
0 · P

(
X𝑡 ≠ 𝑠 𝑗

) )
+

(
1 · P

(
X𝑡 = 𝑠 𝑗

) )
= P

(
X𝑡 = 𝑠 𝑗

)
. (26)

Since V𝑗 is distributed geometrically, this random variable has mean

E(V𝑗 ) = lim
𝑡→∞
E

(
𝑡∑︁

𝑘=1
𝛿(X𝑘 = 𝑠 𝑗 )

)
= lim

𝑡→∞

𝑡∑︁
𝑘=1
P

(
X𝑘 = 𝑠 𝑗

)
=

1
1 − P

(
T𝑗 < ∞

) . (27)

Thus, E(V𝑗 ) diverges if and only if P
(
T𝑗 < ∞

)
approaches 1 from the left. Since we have a

probability, we only care about this limit. A state 𝑠 𝑗 is recurrent if P
(
T𝑗 < ∞

)
= 1 and transient if

P
(
T𝑗 < ∞

)
< 1. Intuitively, a recurrent state will be visited infinitely often in asymptotic time, so

P
(
V𝑗 = 𝑘

)
= 0 (28)

for all finite 𝑘 . A transient state will be visited only finitely many times. Table 1 shows how (27)

gives multiple ways to understand recurrence.

Just like reducibility, the classifications of recurrence have nice communication properties.

Let state 𝑠𝑖 be recurrent and communicate with 𝑠 𝑗 . Thus, there are times 𝑡 and 𝑡′ such that(
P𝑡

)
> 0 and

(
P𝑡 ′

)
> 0. Now let 𝑡′′ be an arbitrary time. By an argument like that in (10),

∞∑︁
𝑡 ′′=0

(
P𝑡+𝑡 ′+𝑡 ′′

)
𝑗 , 𝑗

≥
(
P𝑡 ′

)
𝑗 ,𝑖

(
∞∑︁

𝑡 ′′=0

(
P𝑡 ′′

)
𝑖,𝑖

) (
P𝑡

)
𝑖, 𝑗

. (29)
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Table 1

Comparison of Conditions for Recurrence and Transience

Recurrence P
(
T𝑗 < ∞

)
= 1 ⇐⇒ E(V𝑗 ) infinite ⇐⇒

∞∑︁
𝑡=1
P

(
X𝑡 = 𝑠 𝑗

)
diverges =⇒ lim

𝑡→∞
P

(
X𝑡 = 𝑠 𝑗

)
> 0

Transience P
(
T𝑗 < ∞

)
< 1 ⇐⇒ E(V𝑗 ) finite ⇐⇒

∞∑︁
𝑡=1
P

(
X𝑡 = 𝑠 𝑗

)
converges =⇒ lim

𝑡→∞
P

(
X𝑡 = 𝑠 𝑗

)
= 0

Because 𝑠𝑖 is recurrent, the right-hand side diverges. The left-hand side then also diverges by

comparison, and so 𝑠 𝑗 is also recurrent. Hence, recurrence is a class property. An entirely parallel

argument shows the same for transience. With these results, an irreducible chain will be

referenced as simply a recurrent or transient chain.

Specifying Recurrence

When an arbitrary state 𝑠 𝑗 is transient, the convergence of the respective sum requires

lim
𝑡→∞
P

(
X𝑡 = 𝑠 𝑗

)
= 0 . (30)

The converse is not true, because having the terms of a sequence approach zero is necessary but

not sufficient for the respective series to converge. So a state may have its probability of visitation

vanish but not vanish fast enough; that is, it may still be recurrent. Since we already know that the

symmetric simple walk is irreducible, we will show its recurrence by considering an arbitrary

state 𝑠 𝑗 ∈ Z with X0 = 𝑠 𝑗 . Since steps in this walk are taken one unit at a time, the chain only

returns to 𝑠 through an equal number of moves left and right. Hence, for times 𝑡 > 0,

P
(
X𝑡 = 𝑠 𝑗

)
=


(
2𝑡
𝑡

)
𝑝𝑡 (1 − 𝑝)𝑡 , when 2 | 𝑡 ;

0 , when 2 - 𝑡 .

(31)



FUNDAMENTAL MARKOV THEOREM 14

Here, Levin et al. (2008) present a useful simplification based upon Stirling’s

approximation of the factorial:

lim
𝑛→∞

𝑛!
𝑛𝑛𝑒−𝑛

√
2𝜋𝑛

= 1 . (32)

That is, the quantity
(
𝑛𝑛𝑒−𝑛

√
2𝜋𝑛

)
is asymptotically 𝑛!. The notation → will denote this

relationship. Taking the walk as a series of Bernoulli experiments, the approximation yields

0 ≤ P (X𝑡 = 𝑠) =
(
2𝑡
𝑡

)
𝑝𝑡 (1 − 𝑝)𝑡 → 22𝑡

√
𝑡𝜋

𝑝𝑡 (1 − 𝑝)𝑡 =
(
4𝑝(1 − 𝑝)

) 𝑡
√
𝑡𝜋

≤
(
4𝑝(1 − 𝑝)

) 𝑡
. (33)

When 𝑝 ≠ 1
2 (the non-symmetric case), we have 4𝑝(1 − 𝑝) < 1. So

∞∑︁
𝑡=0
P (X𝑡 = 𝑠) ≤

∞∑︁
𝑡=0

4𝑝(1 − 𝑝)𝑡 = 1
1 − 4𝑝(1 − 𝑝) . (34)

Hence the state 0 will be visited a finite number of times, so the non-symmetric simple random

walk is transient. As Figure 3a shows, such transience becomes evident with even a
1
2

%

asymmetry in 𝑝: The example walks wander off toward negative infinity and on average will never

be positive.

In the symmetric case, however, we have 4𝑝(1 − 𝑝) = 1. Hence,

0 ≤ P (X𝑡 = 0) =
(
2𝑡
𝑡

) (
1
2

)2𝑡
→ 1

√
𝑡𝜋

. (35)

Then,

∞∑︁
𝑡=0
P (X𝑡 = 𝑠) ≥

∞∑︁
𝑡=0

1
𝑡
, (36)

which is the divergent harmonic series. Hence the state will be visited infinitely often. As Figure

3b illustrates, the symmetric simple random walk is recurrent. In fact, Pólya (1921) also proved
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Figure 3

Empirical Illustrations of Simple Random Walks

(a) Transient Simple Random Walks (𝑝 = 0.495; 𝑋0 = 0)

(b) Recurrent Simple Random Walks (𝑝 = 0.500; 𝑋0 = 0)

that the symmetric random walk on Z2 is also recurrent but transient on Z3. In the

one-dimensional recurrent case,

lim
𝑡→∞
P (X𝑡 = 𝑠) → lim

𝑡→∞
1

√
𝑡𝜋

= 0 . (37)

This is a state that falls on the edge of recurrence and transience. Refining our definition of

recurrence will provoke a deep understanding of a chain’s asymptotic behavior.
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Recurrence and Generating Functions

We follow Zelen (2005) in presenting a probabality generating function result to more

finely define recurrence. For a nonnegative sequence (𝑎𝑛) of real numbers and 𝑠 ∈ R such that

|𝑠 | ≤ 1, a generating function is a power series with unit radius of convergence:

𝐺 (𝑠) :=
∞∑︁
𝑛=0

𝑎𝑛𝑠
𝑛 . (38)

First, by Abel’s theorem for power series, we have the left-hand limit

lim
𝑠→1

𝐺 (𝑠) =
∞∑︁
𝑘=0

𝑎𝑘 . (39)

Recall from analysis if (𝑏𝑛) is a sequence of real numbers with

lim
𝑛→∞

𝑏𝑛 = 𝑏 , (40)

then also the Cesàro sum also converges:

∞∑︁
𝑛=0

𝑏𝑛

𝑛 + 1
= 𝑏 . (41)

Hence, when the limit exists, by (41) we have

lim
𝑛→∞

𝑛∑︁
𝑘=0

𝑎𝑘

𝑛 + 1
= lim

𝑛→∞
1

𝑛 + 1

(
𝑛∑︁

𝑘=0
𝑎𝑘

)
= lim

𝑠→1
𝐺 (𝑠) . (42)

Zelen (2005) proves that if a sequence (𝑏𝑛) has limit 𝑏, then the left-hand limit

lim
𝑠→1

(
(1 − 𝑠)

∞∑︁
𝑛=0

𝑏𝑛𝑠
𝑛

)
= 𝑏. (43)

When the limits exist, then, we combine (42) and (43) to obtain

∞∑︁
𝑘=0

𝑎𝑘

𝑘 + 1
= lim

𝑠→1

(
(1 − 𝑠)𝐺 (𝑠)

)
. (44)
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We will soon use this result powerfully.

First, however, apply (21) and the Markov property to obtain the separate result

(P𝑛) 𝑗 , 𝑗 =
𝑛∑︁

𝑘=1
P

(
T𝑗 = 𝑘

)
·
(
P𝑛−𝑘

)
𝑗 , 𝑗

. (45)

For 𝑠 ∈ (0, 1), define the generating functions

𝑇 (𝑠) :=
∞∑︁
𝑛=0
P

(
T𝑗 = 𝑛

)
𝑠𝑛 , (46)

𝑃(𝑠) :=
∞∑︁
𝑛=0

(P𝑛) 𝑗 , 𝑗 𝑠𝑛 . (47)

As expected from the properties of generating functions, note that by (23),

lim
𝑠→1

𝑇 (𝑠) =
∞∑︁
𝑛=1
P

(
T𝑗 = 𝑛

)
= P

(
T𝑗 < ∞

)
, (48)

lim
𝑠→1

𝑇 ′(𝑠) =
∞∑︁
𝑛=1

𝑛P
(
T𝑗 = 𝑛

)
= E(T𝑗 ) . (49)

We say that a state 𝑠 𝑗 is positive recurrent if E(T𝑗 ) is finite, and the state is null recurrent

otherwise. By combining the identity in (45) with the given probability generation functions, we

can derive the important identities

𝑃(𝑠) − 1 = 𝑇 (𝑠)𝑃(𝑠) , (50)

𝑃(𝑠) = 1
1 − 𝑇 (𝑠) . (51)

In the symmetric simple random walk example, we follow Mez (2013) to calculate a nice

closed-form expression for 𝑃(𝑠) from the Taylor expansion of P
(
X𝑡 = 𝑠 𝑗

)
:

𝑃(𝑠) = 1 +
∞∑︁
𝑛=1

(
2𝑡
𝑡

)
𝑝𝑡 (1 − 𝑝)𝑡 = 1√︁

1 − 4𝑝(1 − 𝑝)𝑠2
, when |𝑠 | < 1√︁

4𝑝(1 − 𝑝)
. (52)
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Then, using the identity of (50),

𝑇 (𝑠) = 1 −
√︃

1 − 4𝑝(1 − 𝑝)𝑠2 . (53)

Substituting into (49), and using the fact that 𝑝 =
1
2

,

lim
𝑠→1

𝑇 ′(𝑠) =
∞∑︁
𝑛=1

𝑛P
(
T𝑗 = 𝑛

)
= lim

𝑠→1

𝑠
√

1 − 𝑠2
, (54)

which does not exist for |𝑠 | ≤ 1. Thus, E(T𝑗 ) is infinite, and so the symmetric random walk is null

recurrent. It remains to show that positive and null recurrence are also class properties, but

showing those facts will take us to the heart of our target result.

Distributions

We can collect the chain’s marginal distribution at time 𝑡 into a row vector 𝝂(𝒕) ∈ R|𝑆 | with

unit sum. The vector 𝝂(0) is the initial distribution of the chain. Now, given a distribution for X𝑡 ,

(𝝂(𝒕+1)) 𝑗 =
∑︁
𝑠𝑖∈S

(
P (X𝑡 = 𝑠𝑖) · P

(
X𝑡+1 = 𝑠 𝑗 | X𝑡 = 𝑠𝑖

) )
=

∑︁
𝑠𝑖∈S

(
(𝝂(𝒕))𝑖 · (P)𝑖, 𝑗

)
(55)

by the Markov property. Figure 4 shows how the marginal distribution for the random web surfer

evolves through time for various initializations of 𝑝 and 𝑞. Using Chapman-Kolmogorov, the

calculation scales inductively to render a distribution for an arbitrarily future time. In matrix form,

𝝂(𝒕+𝒌) = 𝝂(𝒕)P𝑘 . (56)

A stationary distribution is invariant under P; it is an eigenvector of P with unit eigenvalue.

For an irreducible chain, define the sequence

(
𝑆𝑡 ( 𝑗)

)
:=

(
1
𝑡

𝑡∑︁
𝑘=1

𝛿
(
X𝑘 = 𝑠 𝑗

))
. (57)
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Figure 4

Evolving Marginal Distributions for Random Web Surfer

(a) 𝑝 = 0.3, 𝑞 = 0.5
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(b) 𝑝 = 0.9, 𝑞 = 0.8
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Note that 0 ≤ 𝑆𝑡 ≤ 𝑆𝑡+1 for all times 𝑡. When the limits exist, let 𝝆 ∈ R|𝑆 | be a vector of limiting

proportions of time that the chain spends in each state 𝑠 𝑗 , defined elementwise by

𝜌 𝑗 := lim
𝑡→∞

𝑆𝑡 ( 𝑗) . (58)

Note that the event
{
X𝑘 = 𝑠 𝑗

}
does not depend upon an initial state. Thus, a vector of limiting

proportions exists if and only if the component limits exist independent of starting state. When all

its components exist, the vector 𝝆 is indeed a probability distribution because the chain by

definition visits a state at each timestep, so the long-run proportions of time must sum to unity.

Many books jump from the stationary distribution to the limiting distribution discussed below, but

we follow Sigman (2009) in treating the vector of limiting proportions first.

Asymptotic Distributions

We now present a more intuitive characterization of the vector of limiting proportions.

Recall that if (X𝑛) is a monotone sequence of nonnegative random variables, then

E
(

lim
𝑛→∞

X𝑛

)
= lim

𝑛→∞
E(X𝑛) . (59)
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Wolpert (2018) presents the elementary proof for expectations of Lebesgue’s general result – the

bounded convergence theorem. Now, let 𝝆 be a vector of limiting proportions, and take the

expectation of coordinate 𝜌 𝑗 . By (59) and then (26),

𝜌 𝑗 = E

(
lim
𝑡→∞

1
𝑡

1∑︁
𝑘=1

𝛿(X𝑘 = 𝑠 𝑗 )
)
= lim

𝑡→∞
1
𝑡

𝑡∑︁
𝑘=1
E

(
𝛿(X𝑘 = 𝑠 𝑗 )

)
= lim

𝑡→∞
1
𝑡

𝑡∑︁
𝑘=1
P
(
X𝑘 = 𝑠 𝑗

)
. (60)

Now, by (44), we transition to the generating function:

𝜌 𝑗 = lim
𝑡→∞

𝑡∑︁
𝑘=0

P
(
X𝑘 = 𝑠 𝑗

)
𝑡 + 1

= lim
𝑠→1

(1 − 𝑠)
(

1
1 − 𝑇 (𝑠)

)
. (61)

When 𝑠 𝑗 is transient so P
(
T𝑗 < ∞

)
< 1, the limit vanishes. However, when 𝑠 𝑗 is recurrent

we have the indeterminate form 0
0 . Note that, when the chain has period 𝑑,

lim
𝑠→1

𝑇 ′(𝑠) = lim
𝑠→1

d
d𝑠

(
∞∑︁
𝑘=0
P

(
T𝑗 = 𝑘

)
𝑠𝑘𝑑

)
= 𝑑 ·

∞∑︁
𝑘=0

𝑘P
(
T𝑗 = 𝑘

)
= 𝑑 · E(T𝑗 ) . (62)

Using L’Hôpital’s rule to continue from (61),

𝜌 𝑗 = lim
𝑠→1

1
𝑇 ′(𝑠) =

𝑑

E(T𝑗 )
. (63)

When 𝑠𝑖 is null recurrent so E(T𝑗 ) is infinite, the limit also vanishes. Thus, 𝝆 forms a valid

probability distribution if and only if all the represented states are positive recurrent. By

Chapman-Komolgorov, we may expand the convergence to the entire transition matrix. That is, a

vector of limiting proportions exists if and only if

lim
𝑡→∞

1
𝑡

(
P𝑡

)
=


𝜌0 𝜌1 · · ·
𝜌0 𝜌1 · · ·
· · · · · · . . .

 =


𝝆

𝝆
...

 . (64)

Now, consider another distribution 𝜌′ that is also a stationary distribution. Then,

𝝆′ = 𝝆′P = 𝝆′
(
lim
𝑡→∞

1
𝑡

(
P𝑡

) )
= 𝝆′


𝜌0 𝜌1 · · ·
𝜌0 𝜌1 · · ·
· · · · · · . . .

 . (65)



FUNDAMENTAL MARKOV THEOREM 21

Considering an arbitrary component, we obtain

𝜌′𝑗 =

(∑︁
𝑠𝑖∈S

𝜌′𝑖

)
𝜌 𝑗 = 𝜌 𝑗 , (66)

since 𝜌′ is also a distribution and so its components must sum to unity. Thus, when it exists, the

vector of limiting proportions is the unique stationary distribution for the chain. When the chain

starts with initial distribution 𝜌, the distribution will thus remain unchanged throughout time. We

will soon glimpse the nice properties that such stationarity provides. The preceding arguments for

the stationarity and uniqueness of the vector of limiting proportions are inuitively compelling, but

Karlin and Taylor (2014) present more rigorous proofs.

Impacts of Periodicity

We ultimately seek to analyze the conditions under which the chain evolves an arbitrary

starting distribution into a limiting distribution 𝝅 such that, independent of initial state,

𝜋 𝑗 := lim
𝑡→∞
P
(
X𝑡 = 𝑠 𝑗

)
. (67)

Note that the element 𝜌 𝑗 contains a Cesàro sum of the sequence
{
P

(
X𝑡 = 𝑠 𝑗

)}
. Since (40) implies

(41) but the converse is not true, it is not surprising that convergence to a limiting distribution is

also strictly stronger than convergence to a vector of limiting proportions. When the limiting

distribution exists, the vector of limiting proportions will coincide with it.

When the chain has period 𝑑 > 1, this convergence holds only for the times 𝑑N. If we

wish to consider all time, we must perform a time average of the probabilities. To see this, note

that when 𝑑 > 1, we may choose a subsequence {𝑛𝑘 } of times that contain no return times of 𝑠 𝑗 .

Since (P𝑛𝑘 ) 𝑗 , 𝑗 = 0, convergence to 𝜋 𝑗 > 0 cannot hold along the subsequence, so the limiting

probability of (67) fails to exist. Hence, aperiodicity is strictly stronger than irreducibility. To see
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an example of such behavior, consider the random Web surfer again but let 𝑝 = 𝑞 = 1. Then, for

𝑛 ≥ 1, the chain has 𝑛-step transitions

(P𝑛) =


[
0 1
1 0

]
when 2 | 𝑛 ,[

1 0
0 1

]
when 2 - 𝑛 .

(68)

For example, we have the sequence

(
(P𝑛)1,1

)
= (1, 0, 1, 0, · · · ) , (69)

which does not converge, but the sequence of arithmetic means( (P𝑛)1,1

𝑛

)
=

(
1
1
,
1
2
,
2
3
,
2
4
, · · ·

)
(70)

converges to 1
2 . Overall, we have vector of limiting proportions

𝝂 =

[
1
2

1
2

]
. (71)

The limits of all the non-averaged component sequences like (69) do not exist, and the

chain forever depends upon its starting state. It cannot reach a distribution independent of that

state, so the limiting distribution does not exist.

Further Examples

Our Web surfer chain is actually the smallest simple random walk with reflecting

boundaries – a clearly recurrent chain. For this case, having a stationary distribution 𝝂 requires

𝜈0 = (1 − 𝑝)𝜈0 + 𝑞𝜈1 =⇒ 𝑝𝜈0 = 𝑞𝜈1 ; (72)

𝜈1 = 𝑝𝜈0 + (1 − 𝑞)𝜈1 =⇒ 𝑞𝜈0 = 𝑝𝜈1 . (73)
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We have the further constraint 𝜈0 + 𝜈1 = 1. Hence, the stationary distribution is simply

𝝂 =

(
𝑞

𝑝 + 𝑞
,

𝑝

𝑝 + 𝑞

)
. (74)

By induction on the transition matrix, this 𝜈 can be shown to be the chain’s limiting distribution.

For the simple random walk with no boundaries, however, we have for an arbitrary time 𝑡,

𝜈 𝑗 =
∑︁
𝑖∈Z

(
𝜈𝑖 · (P)𝑖, 𝑗

)
= 𝑝𝜈 𝑗+1 + 𝑝𝜈 𝑗−1 . (75)

Because of the problem’s symmetry across Z, we have that · · · = 𝜋−1 = 𝜋0 = 𝜋1 = · · · . However,

when 𝜋0 > 0, an infinite sum of this constant cannot converge. When 𝜋0 = 0, we would not

generate a valid distribution. Thus, in either the null recurrent (symmetric) or transient

(non-symmetric) case, this chain does not have a stationary distribution.

Now consider the case of a simple random walk with absorbing boundaries. For this

reducible chain, we have stationary distributions

𝝂𝝋 =

[
1 0 · · · 0 0

]
and (76)

𝝂𝝍 =

[
0 0 · · · 0 1

]
. (77)

If we modify the transition probabilities so the intermediate states are a closed communicating

class, we can form a trivial chain M on each endpoint and a random walk with reflecting

boundary on the inner states. Let 𝜈 be the stationary distribution of this sub-chain. Then, for

𝛼, 𝛽 ∈ [0, 1], by considering the block transition matrices we have that

[
𝛼𝝂𝝋 𝛽𝝂 (1 − 𝛼 − 𝛽)𝝂𝝍

] 
1 0 · · · 0 0

0 0 · · · 0 1


PM (78)
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provides a stationary distribution of the overall chain. Generally speaking, a reducible chain does

not have a unique stationary distribution because the constituent stationary distributions may be

linearly combined in infinitely many ways.

Ergodicity and the Strong Law of Large Numbers

A Markov chain is a stochastic dynamical system (stochastic process) – dynamical,

because it has a state (a point in a given state space), and a set of transition functions which evolve

the state through time; stochastic, because its state progresses through random choices governed

by transition probabilities (M. Brin & Stuck, 2002). Ludwig Boltzmann (1844-1906) noted that in

an isolated system with constant energy, one particle’s trajectory followed through enough time

will fill the entire state space. Such an insight was his ergodic hypothesis – a portmanteau of the

Greek ἔργον (work) and ὁδός (path). The idea of tracking points through time – ultimately

identifying time averages with space averages – proved useful for analyzing complex physical

systems. For this, Boltzmann has been widely recognized as the founder of statistical mechanics,

of which dynamical system theory is an abstraction. In 1893, the French mathematician and

physicist J. Henri Poincaré (1854-1912) argued that “if [a] system has a fixed total energy that

restricts its dynamics to bounded subsets of its [state] space, the system will eventually return as

closely as you like to any given initial set of molecular positions and velocities” (Levermore,

2001). The deep Poincaré recurrence theorem remained unproven until 1919, when measure

theory had sufficiently matured (Antoniou, 2002).

Return again to the idea of stationary sequences. A sequence {X𝑛} is stationary if, for each

𝑗 ≥ 0, the shifted sequence
{
X𝑗+𝑛

}
has the same distribution as the original sequence. That is, all

the finite joint distributions
(
X𝑛1 ,X𝑛2 , · · · ,X𝑛𝑘

)
match the respective shifted joint distributions
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X𝑗+𝑛1 ,X𝑗+𝑛2 , · · · ,X𝑗+𝑛𝑘

)
. A stationary sequence {X𝑛} is ergodic if the sequence cannot be

expressed as a union of two distinct stationary sequences. Independently and identically

distributed sequences and, as we shall soon see, positive recurrent Markov chains are ergodic

sequences. The 1931 Birkhoff-Khinchin ergodic theorem extends the form of (1) to all stationary

sequences, and thus presents a much stronger statement than the strong law of large numbers

(Sokol & Rønn-Nielsen, 2014). Although ergodicity inheres generally in measure-preserving

dynamical systems, measure theory falls outside the scope of this thesis. The generating function

approach has provided an elementary argument for such fundamental convergence in Markov

chains. We will now see how applying the strong law of large numbers itself yields a more

intuitive understanding for the special case of positive recurrent chains.

The Fundamental Theorem

Now, we will show (63) again, using the strong law of large numbers as in Sigman (2009).

Take an aperiodic recurrent chain and an arbitrary state 𝑠 𝑗 inside it. For 𝑛 ≥ 1, define

Y𝑗
(𝑛) := T𝑗 (𝑛) − T𝑗 (𝑛−1) (79)

as the 𝑛th interarrival time of 𝑠 𝑗 , so

T𝑗 (𝑘) =
𝑘∑︁
𝑡=1

Y𝑗
(𝑡) . (80)

By the strong Markov property, the sequence
(
Y𝑗

(𝑛)
)

is independent and indentically distributed.

In the original definition, we took the limiting proportion with respect to the elapsing time 𝑡 in the

chain. Now, however, we pass to the limiting proportion with respect to the number of visits to
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each state 𝑠 𝑗 . Since there are exactly 𝑛 visits to 𝑠 𝑗 at the time T𝑗 (𝑛) ,

lim
𝑡→∞

1
𝑡

𝑡∑︁
𝑘=1

𝛿(X𝑘 = 𝑠 𝑗 ) = lim
𝑛→∞

𝑛
𝑛∑︁

𝑘=1
Y𝑗

(𝑘)
= lim

𝑛→∞
𝑛

T𝑗 (𝑛)
. (81)

Customarily the vector 𝜋 is used for the quantity of (81) across the state space. We thus

have the limit of a reciprocal sample mean, so by the strong law of large numbers,

P

(
𝜋 𝑗 =

1
E

(
T𝑗

) ) = 1 . (82)

The state 𝑠 𝑗 will, with probability 1, be visited every E
(
T𝑗

)
timesteps. In the transient case, the

limiting proportions of time spent in each state all vanish in the limit. In the null recurrent case,

the states are visited infinitely often through time, but too infrequently to support any probability

mass. Thus, the vector of limiting proportions cannot exist in either case. Since the representation

of each 𝜋 𝑗 is unique, the vector of limiting proportions exists if and only if 𝑠 𝑗 is positive recurrent.

Further Results

To establish that positive and null recurrence are communication class properties, and thus

that these finer definitions of recurrence are consistent, Breuer (2007) uses the inequality method

already seen in (10) and (29). Thus, in total, all states of a communicating class must have the

same period and together be transient, positive recurrent, or null recurrent. In particular, a finite

irreducible chain must be positive recurrent. Consider an irreducible chain with null recurrent

state 𝑠𝑖, so all states are null recurrent. By definition, then,

∑︁
𝑠 𝑗∈S
P

(
X𝑡 = 𝑠 𝑗 | X0 = 𝑠𝑖

)
= 1 , (83)

lim
𝑡→∞
P

(
X𝑡 = 𝑠 𝑗 | X0 = 𝑠𝑖

)
= 0 . (84)



FUNDAMENTAL MARKOV THEOREM 27

Since we only have finitely many states, the transition probabilities cannot vanish while still

summing to unity. So only infinite chains can have null recurrent states.

In an unfortunate quirk of mathematical history, positive recurrent chains are not called

ergodic chains (Sigman, 2018). Instead, the Markovian label of ergodicity is reserved for chains

that converge to the limiting distribution – the non-averaged limiting probability of being in state

𝑠 𝑗 . As the example of (69), positive recurrence is not sufficient to guarantee such convergence.

An aperiodic positive recurrent chain is called an ergodic chain. However, we saw in (66) that

ergodicity deals with the time averages of the vector of limiting proportions; aperiodicity is not

necessary to exploit the ergodic properties of positive recurrent Markov chains.

The Google Matrix

In the 1895 paper “For the Relative Valuation of Tournament Results,” Edmund Landau

(1877-1938) corrected a fundamental inconsistency in the era’s chess ranking system (Vigna,

2019). Landau showed that naïve power iteration would generate unstable rankings and

unbreakable ties sensitive to the number of iterations performed. Instead, he realized that “valor

derives from beating strong opponents” (as cited in Boccard, 2020, p. 2). Beating a strong

opponent – an opponent with a high probability of triumph – should make oneself stronger than

beating a weak opponent, but that strong opponent was made strong by beating other strong

opponents, and so on. One’s strength consists of the weighted strengths of one’s past opponents.

In 1976, Pinski and Narin presented a “self-consistent” methodology of bibliometrics,

employing the full strength of the Perron-Frobenius theory that had developed since Landau.

During the early days of the public Internet, search engines still relied upon classical techniques to

rank all the different aspects of a Web page for response to a search query. By 1998, two Stanford
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students – Sergey Brin and Larry Page – endeavored to bring order to the Web. The students’

graduate project, then hosted at google.stanford.edu, did not rely on simple heuristics like

URL length or date of publication; their program used the link structure of the Web itself to

decide a page’s relevance to queries. Their application of ergodic theory to the Internet formed the

foundation of the Google enterprise: PageRank.

Exploring PageRank

Like before, each vertex of Figure 5 represents a Web page. Each edge represents the

existence of at least one hyperlink between pages 𝑝𝑖 and 𝑝 𝑗 . We seek to calculate the importance

of a Web page, and we can view a hyperlink to that page as an endorsement from the linking page.

Let 𝑁−
𝑖

represent the set of 𝑝𝑖’s predecessors, and let 𝑁+
𝑖

represent the set of 𝑝𝑖’s successors, so

|𝑁+
𝑖
| gives the out-degree of 𝑝𝑖. S. Brin and Page (1998) thus defined the score of page 𝑝𝑖:

𝜋𝑖 :=
∑︁

𝑝 𝑗∈𝑁−
𝑖

𝜋 𝑗

|𝑁+
𝑖
| . (85)

We encode the system thus given in a hyperlink matrix 𝐻:

(𝐻)𝑖, 𝑗 :=


1/|𝑁+

𝑖
| , if 𝑝𝑖 ∈ 𝑁−

𝑗
;

0 , otherwise .

(86)

The hyperlink matrix gives an adjacency matrix weighted to ensure that the probability of

transition is 1, as required by the definition of a Markov chain. These marginal distributions need
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Figure 5

A Sample Network for Developing the Google Matrix

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6𝑝×

not be uniform. In the current example, the hyperlink matrix is

𝐻 =



0 1
3

1
3

1
3 0 0

0 0 0 0 1 0
1
2

1
2 0 0 0 0

0 1
5

1
5

1
5

1
5

1
5

0 1
2

1
2 0 0 0

0 0 0 0 0 0


, (87)

and this matrix defines a Markov chain over the Web pages. Using the fundamental theorem, we

will develop a self-consistent ranking of pages in Figure 5.

First, note that the disconnected node 𝑝× may be safely removed from our analysis because

it has neither inlinks nor outlinks. Page 𝑝6 also has no outlinks; it is a dangling page. However,

because it has an inlink, we may not simply discard it. We must connect it to the other pages.

Consider a vector 𝝋, where 𝜑𝑖 := 1 if page 𝑝𝑖 dangles and 𝜑𝑖 := 0 otherwise. Thus, in our example,

𝝋 =

[
0 0 0 0 0 1

]
. (88)

Deriving a limiting distribution from the Web graph still requires more work, for the real

Web is quite reducible (Broder et al., 2000). Let 𝝂 be a distribution over all pages in the Web
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graph. Then, the matrix

𝑆 := 𝐻 + 𝝋𝝂T (89)

gives an irreducible form of Figure 5. The chain given by 𝑆 is thus positive recurrent. For the 𝐻

given above, this transformation will put
1
6

in each entry of the last row.

If an ideal random surfer hits a dangling page, it chooses based upon the distribution 𝝂

what page to next visit. Hence, the Markov chain induced by 𝑆 is irreducible. However, human

Web surfers would often get bored. They will not follow a linear path through the Web; they

might suddenly elect to “teleport” – shift course altogether and visit a page on whim. Let 𝝆 be the

distribution of teleportation probabilities across the Web, and let 𝑇 be the rank-one matrix

𝑇 := 𝒆𝝆T , (90)

where 𝒆 is the vector of ones. The original PageRank used a uniform 𝝆, but external factors – a

user’s search preferences or browsing habits or a search engine’s fiat against suspected abusers –

can influence the teleportation probabilities. Incorporating a teleportation factor allows the Web

chain to become aperiodic. Consider a convex combination of 𝑆 (irreducible Web structure) and 𝑇

(teleportation structure) with real damping factor 𝛼 ∈ [0, 1]:

𝐺 := 𝛼𝑆 +
(
1 − 𝛼

)
𝑇 = 𝛼

(
𝐻 + 𝝋𝝂T

)
+ (1 − 𝛼)

(
𝒆𝝆T) . (91)

The matrix 𝐺 is the Google matrix. In Perron-Frobenius terms it is primitive and thus has

dominant eigenvalue 𝜆1 = 1. Since the number of pages on the Web is finite, the induced chain

must be positive recurrent. Table 2 presents the example Google matrix for 𝛼 = 0.15, which

S. Brin and Page (1998) originally used. We can iterate to approximate the unique limiting
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Table 2

Google Matrix for Figure 5 (𝛼 = 0.15)

𝐺 ≈



0.14 0.19 0.19 0.19 0.14 0.14
0.14 0.14 0.14 0.14 0.29 0.14
0.22 0.22 0.14 0.14 0.14 0.14
0.14 0.18 0.18 0.14 0.18 0.18
0.14 0.22 0.22 0.14 0.14 0.14
0.17 0.17 0.17 0.17 0.17 0.17


distribution of the induced chain. As Table 3 shows, the limiting probabilities stabilize quickly.

Moreover, a consistent ranking emerges by the second (𝑘 = 2) iteration:

𝜋2 > 𝜋5 > 𝜋3 > 𝜋1 > 𝜋4 > 𝜋6 . (92)

Interestingly, even though 𝑝4 has five outlinks (the most), it is ranked second-to-last.

When the self-link is removed, 𝑝4 actually ranks lower than 𝑝6 by about 2 × 10−3. The page 𝑝4

ranks so low because its only inlink is 𝑝1, whose only inlink is 𝑝3. In turn 𝑝3’s only inlink comes

from 𝑝5, but 𝑝5 is linked from the highly-ranked 𝑝2. Thus, the score gets diluted as it moves

further from its “source.” Now, what if 𝑝4 preserves its self-link and 𝑝2 links back to 𝑝1? At the

seventh iteration, we have the ranking 𝜋2 > 𝜋1 > 𝜋3 > 𝜋5 > 𝜋4 > 𝜋6, with raw scores

𝝅 =

[
0.172046 0.183917 0.171086 0.158787 0.163979 0.150185

]
. (93)

When 𝑝2 endorses 𝑝1, the endorsement propagates remarkably, and 𝑝5 drops two ranks. Thus, we

have explored the impredicative (recursive) nature of the ranking method. To calculate the Google

matrix in production, the power method of matrix iteration is used (Langville & Meyer, 2006).

The damping factor 𝛼 controls the fidelity of the model to the raw Web structure. As 𝛼

approaches 1, the Google matrix becomes more reducible and the power method converges ever
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Table 3

Score Iteration for Example Google Matrix

𝑘 𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6

0 1 0 0 0 0 0
1 0.141667 0.191667 0.191667 0.191667 0.141667 0.141667
2 0.159583 0.183042 0.168667 0.158042 0.179708 0.150958
3 0.158091 0.184289 0.171639 0.158161 0.177638 0.150182
4 0.158294 0.184266 0.171393 0.158071 0.177809 0.150166
5 0.158275 0.184268 0.171413 0.158078 0.177803 0.150163

more slowly. Moreover, as 𝛼 approaches 1, the limiting distribution becomes far more sensitive –

both in terms of importance score and the consequent PageRanks – to link changes even within

minor clusters. With 𝛼 = 0.15, Google’s formulation of the power method converged within a

thousandth at approximately 50 iterations (S. Brin & Page, 1998).

Conclusion

The law of large numbers enjoys a widely varied application upon stationary sequences of

independent and identically distributed random variables. In this thesis, we have motivated basic

Markov chain theory and developed a law of large numbers for positive recurrent Markov chains.

In so doing, we also developed an elementary background for future studies in ergodicity. Finally,

we saw how the stationary distribution of an additionally aperiodic chain provides a powerful way

to consistently rank competing objects and undergird the world’s most powerful search engine.
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