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Abstract 

Lung Cancer is the leading cause of cancer related death in both men and women in the 

United States (Bray et al., 2018). Cancer treatments are often non-specific and kill many 

dividing cells within a patient causing unwanted side effects. Norcantharidin (NCTD) is a 

synthetic FDA approved treatment for cancers including non-small cell lung cancers 

(NSCLC). NCTD suppresses cell proliferation by inhibiting cells from exiting the G2 

phase of the cell cycle. Aptamers are short single-stranded DNA or RNA molecules with 

ligand directed self-annealing capabilities allowing selective binding to specific targets. 

This paper will discuss the hypothesized effects of using a single-stranded DNA aptamer 

bound to NCTD to reduce proliferation of A549 cells, an adenocarcinoma cell line often 

used to study NSCLC (Foster et al., 1998 & Giard et al., 1973).   
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DNA Aptamer-Drug Targeting Chemotherapy: Investigation of Cell Cycle Inhibition via 

S15 Aptamer – Norcantharidin Complex  

Introduction 

 Cancer is the second leading cause of death in the United States and mortality 

rates are growing worldwide (Bray et al., 2018, Siegal et al., 2019). Specifically, lung 

cancer has the highest mortality rate of deaths caused by cancer universally. Lung cancer 

is most prevalent in the form of NSCLC but also presents in the form of Small Cell Lung 

Cancer (SCLC) (Luan et al., 2010). Optimal treatment plans for NSCLC include surgical 

resections; however, 70% of patients present with advanced or metastatic disease when 

diagnosed (Molina et al., 2008). Novel anti-cancer therapeutics have been introduced to 

attack NSCLC cells, including targeting the cell cycle. NCTD (Figure 1) is a synthetic 

FDA approved cancer drug derived from the Cantharidin of blister beetles. The drug 

suppresses the cell cycle in the G2 phase of proliferation, thus reducing proliferation of 

tumors. NCTD alone functions as a protein phosphatase inhibitor, an antimitotic, and 

blocks vital cancer protein receptor pathways (Qiu et al., 2017).  

 This study will describe the effects of the drug when coupled to the S15 single-

stranded DNA aptamer. Aptamers can be used to deliver a drug to enhance binding a 

specific target, while selecting against non-immunogenic and toxic substances. Aptamers 

can target specific biomarkers or whole cells. This project will treat a common 

adenocarcinoma cell line in NSCLC research, the A549 cell line, with NCTD bound 

directly to the S15 aptamer. Previous studies have shown that the S15 aptamer has a high 

affinity (>85%) for A549 NSCLC cells and low affinities for SCLC and other cancer  
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Figure 1 

Chemical structure of Norcantharidin 

   

Note. Norcantharidin is chemically demethylated form of Cantharidin to enhance the anti-

tumor capabilities and reduce toxicity.  

 

lines (Zhao et al., 2009). The S15 aptamer will also be applied to a human cervical cancer 

line, HeLa cells, in which the S15 aptamer has low affinity. The HeLa cells should 

experience a lower rate of apoptosis in comparison to the A549 cells.  

Cancer Drug Targets and Effects 

 Cancer is a major medical concern not only in the United States but worldwide. 

This research topic is of great importance which may aid in reforming treatments of 

NSCLC and potentially other types of cancer. One of the major barriers remaining in 

developing successful clinical targeting therapeutics is the variability between each 

patient and their cellular signaling pathways. Current cancer treatments target all rapidly 

dividing cells thus attacking not only cancer cells, but many cells in the body, including 

immune cells. This may cause suppressed immune responses and death to cells that are 
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vital to normal physiology. The goal of targeting anti-cancer drugs is to reduce negative 

side effects during cancer treatments by killing only malignant, rapidly dividing cells. 

Anti-cancer drugs can target and block highly specific regions of a signaling pathway 

involved in replication. Blocking a vital transcription factor or preventing a chemical 

reaction from occurring results in the cessation of rapid cell replication and tumor 

growth.  

 This paper proposes to deliver NCTD via direct aptamer conjugation to decrease 

the attack on healthy dividing cells while targeting cancerous cells. Novel therapies in 

cancer treatments are being investigated, but this targeting mechanism of chemically 

binding the S15 aptamer to NCTD has not been investigated to the knowledge of the 

research team. NCTD is a common cancer therapeutic drug which typically uses a 

conjugated liposomal delivery method (Zhu et al., 2018). Targeted liposomal delivery of 

NCTD has been shown to be effective. However, liposomal delivery also triggers the 

body’s autonomic immune response. The body often expels the liposome containing the 

drug before the drug can be released to the targeted cells. This project seeks to find a 

more effective delivery system for NCTD to avoid liposome eradication. The delivery 

mechanism will be replaced with chemically bound aptamer targeting. This paper will 

attempt to demonstrate the efficacy of the proposed mechanism by evaluating evidence of 

successful coupling of the aptamer to NCTD and inhibition of cell proliferation in 

targeted cells only.  

 Targeting anti-cancer therapeutics have focused on preventing proliferation, 

angiogenesis, and metastasis as well as increasing apoptosis. Inhibition of the Vascular 
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endothelial growth factor (VEGF) pathway is one of the most researched areas of 

targeted cancer treatments. VEGF is involved in neovascularization and survival of cells. 

Overexpression occurs in many cancers and is often associated with disease progression 

and decreased survival rates. Drugs targeting VEGF inhibition are FDA approved for 

colorectal cancer, first line lung cancer, and metastatic renal cell carcinomas (Duda et al., 

2007). Cell targets for this treatment are pluripotent as VEGF is expressed in endothelial 

cells in tumors, subsets of hematopoietic cells, stromal cells, and other malignant cell 

types. Several mechanisms of action have been proposed to describe this pathway 

because there are receptors on a variety of different cells, but it is most commonly 

suggested that an anti-VEGF agent should normalize vasculature. Blocking the 

VEGF/VEGF-R interaction demonstrates 74% tumor growth inhibition in a 

rhabdomyosarcoma when compared to a control group (Eyetech Study Group, 2002). 

This aptamer targeting treatment produces mild toxicity and symptoms that can be treated 

with medications; serious complications have appeared on rare occasions. Further 

research is to be completed to gain a more complete understanding of the mechanism in 

which the aptamer complex interacts with the cell surface biomarker to enhance 

treatments. This study demonstrates the success and potential that aptamers have in 

clinical applications and specifically as an anti-cancer targeting method.  

 Aptamer targeting research has also involved other cancerous pathways including 

PI3K/AKT and MAPK signaling, HER2 (ErbB-2), PD-1/PD-L1, CXCL12/SDF-1, 

nucleolin and other proteins. These avenues focus on inhibiting phosphorylation of tumor 

promoters, blocking tumor growth signals, blocking IL-2 secretion to prevent tumor 
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growth and CD8 cytotoxicity, preventing angiogenesis and metastasis, and preventing 

oncogene activation, respectively (Morita et al., 2018). This study will focus primarily on 

inhibiting proliferation at specific cell cycle points. Malignant cells often deregulate the 

cell cycle machinery. Thus, focusing a treatment on the inhibition of a checkpoint or 

major transition in the cell cycle will prevent tumorigenic cells from rapidly proceeding 

through the cell cycle. This should prevent the hyperactivation of cell cycle machinery. 

These treatments often focus on the G1 or G2 checkpoints. The G1 checkpoint occurs 

prior to DNA synthesis and involve the phosphorylation of the pRb protein. When 

phosphorylated and activated, pRb releases E2F as a transcription factor. E2F forms a 

heterodimer with DP1 and DNA synthesis begins for the round of replication (Carnero, 

2002). E2F genes often function as oncogenes, and recent studies have shown E2F 

knockouts can function as tumor suppressors. The G2 checkpoint occurs before 

chromosomes segregate to daughter cells; this is controlled by various CDKs, cyclins, 

and their regulators. Activation of the CDK1 gene is required for the cell to progress past 

the G2/M checkpoint. Wee1 and cell division control protein 25C (CDC25C) are primary 

regulators of CDK1; these regulators are dictated by polo‐like kinase 1 (PLK1) and 

checkpoint kinase 1 (CHK1). Wee1 activation prevents cell cycle progression when 

localized in the nucleus while CDC25C induces cell cycle progression when localized in 

the nucleus (Gooijer et al., 2017). Wee1 is downregulated by PLK1 via phosphorylation 

of Ser53 leading to degradation; CHK1 antagonistically upregulates Wee1 by 

phosphorylating Ser642 leading to nuclear localization. Figure 2 presents a map of the 

primary and secondary regulation of the G2 checkpoint of the cell cycle. This study will  
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use NCTD, which inhibits the progression through the G2 checkpoint.  

The G2 checkpoint functions as a tightly controlled biomolecular switch to ensure 

proper DNA stability and ploidy before segregation. Arrest at this point allows cells to 

repair DNA if possible or completely prevent the cell from replication and directing it 

towards apoptosis. By inhibiting the phosphorylation and sequestering these regulators in 

the cytoplasm, the cell cycle of malignant cells is effectively inhibited, and cell death is 

ensued. This study will examine this effect using an S15-NCTD complex to target these 

regulators.   

History of Chemotherapy 

 The first form of chemotherapy appeared in research trials in a collaboration 

between Yale University and the Office of Scientific Research and Development in 1942. 

Prior to these trials, cancer was difficult to approach as a physician. Treatments included 

surgical resection of moveable tissues and radiation therapy. Surgical removal of tumors 

became the treatment of choice but could only be effective in early stages (Evolution of 

Cancer Treatments: Surgery, 2014). At this time physicians were forced to decide which 

organs would suffer in the process of removal; when anesthesia became available in 1846 

surgical patient outcomes increased. As radiation became available as a diagnostic and a  

therapy, it was discovered that the radiation could cause cancer if the doses were  

ontinually too high (Evolution of Cancer Treatments: Radiation, 2014). 

During World War II, the U.S. Army studied chemicals related to mustard gas because 

numerous military personnel developed toxic changes to their bone marrow after 

exposure to mustard gas. Nitrogen mustard, an alkylating agent, was developed as a more 
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Figure 2 

Schematic map of G2/M Checkpoint of cell cycle progression 

 

Note. The CDK1 gene is the central control and is regulated primarily by Wee1 and 

CDC25C and secondarily by CHK1 and PLK1.  

   

effective warfare agent and was found to also kill cancer cells of a lymphoma. It 

was discovered that alkylating agents prevent effective cell replication by adding an alkyl 

group to guanine bases and preventing the proper formation of a double helix in the DNA 

strands. This provided an avenue for researchers to study other alkylating agents and their 

ability to kill rapidly dividing cells by damaging their DNA (Evolution of Cancer 

Treatments: Chemotherapy, 2014). Sidney Farber of Boston then made a ground-
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breaking discovery on the molecular and organismal level regarding the treatment of 

cancers. His studies demonstrated that aminopterin contained an active agent that blocked 

a chemical reaction that is required in DNA replication. This was used as a treatment for 

acute leukemia which resulted in these children entering remission. This began the era of 

chemotherapy as chemicals were used to block various reactions or functions of the cell 

cycle.  

History of NCTD 

 NCTD (7-oxabicyclo[2.2.1] heptane-2,3-dicarboxylic anhydride) is a water-

soluble synthetic molecule of naturally occurring Cantharidin (CTD). CTD is commonly 

isolated from body fluid of blister beetles and used medicinally (Hsieh et al., 2013). 

Located throughout the midwest, south and entire east coast of the United States as well 

as Central America and worldwide, Traditional Chinese medicine (TCM) is credited with 

the discovery of the medicinal properties of a cytotoxin contained in CTD. CTD was 

historically administered orally to treat ulcers, venomous worms, and abdominal masses. 

As the drug gained popularity in other continents, it was used to treat dropsy, taken as an 

aphrodisiac, and used in attempt to “purify blood” (Moed et al., 2001, p. 1358). CTD was 

removed from the market in 1962 as safety issues and poisonings arose from certain uses. 

In 1997, CTD was added to the “Bulk Substances List” which provides that a pharmacist 

or physician can prescribe specific amounts under necessary circumstances. Literature 

has uncovered mechanisms of action for CTD which have changed the route of 

administration. Absorption of CTD occurs through the lipid bilayers of epidermal cell 

membranes; CTD is now often used dermatologically because a topical administration 
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leads to the release of a neutral serine protease which dissipates the desmosomal plaque 

connecting epidermal cells. Warts and other dermal targets are eliminated via 

acantholysis and healed with minimal to no scarring. The blistering process begins within 

24-48 hours of application and the severity or degree of blistering is determined by the 

frequency of cleaning the site of application.  

 The cytotoxin contained in CTD is typically used as a defense mechanism 

by male blister beetles (Selender, 2000). This, now FDA approved treatment, was 

initially used for dermal treatments of warts and other skin conditions. Recently, further 

research has discovered potential anticancer properties. However, if CTD is administered 

orally or intravenously, toxic side effects in the gastrointestinal and urinary tract may 

occur. In the past couple of decades CTD has been analyzed in vitro in hopes of reducing 

these unwanted side effects in humans. NCTD is a demethylated small molecule 

analogue of CTD; both of these are shown in Figure 3. CTD can be demethylated in the 

laboratory to create NCTD; Figure 4 shows synthetical NCTD formation via a Diels-

Alder reaction using furan and maleic anhydride. Studies have shown that the methyl 

groups are not the active functional group of the anticancer activity. By synthetically 

modifying CTD, the toxicity of the drug to the gastrointestinal and urinary tract is 

reduced without affecting the anticancer properties of the molecule (G.-S. Wang, 1989). 

NCTD is a multifaceted anticancer therapeutic. It has been shown to induce apoptosis, 

inhibit angiogenesis and metastasis, and alter pathways controlling cell proliferation. 

NCTD also inhibits normal cells including inhibiting peripheral blood mononuclear cells 

and blood stem cell maturation and plays a role in Multi-Drug resistance (MDR). Thus, 
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Figure 3 

Chemical structures of Cantharidin and Norcantharidin 

                

   (a)           (b) 

Note. Chemical structues (a) Cantharidin is a naturally occuring methylated compound 

extracted from blister beetles. (b) Norcantahrdin is a synthetically demythlated analogue 

of CTD which reduces toxcitity in the human body and increases anticancer activities.  

 

Figure 4 

Chemical reaction of furan and maleic anhydride to produce NCTD 

                            

Note. The Diels-Alder reaction occurs via a [4+2]-cycloaddition of a conjugated diene 

and a dienophile.  
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NCTD has become the more common drug of focus in these anticancer studies because of 

its inhibition of the cell cycle with substantially fewer negative side effects of methylated 

CTD.   

NCTD Mechanisms of Action 

 NCTD acts on the G2 checkpoint of the cell cycle to inhibit tumor growth. 

Research has shown that mitotic arrest via NCTD action may occur through the 

CDK1/cyclin B pathway. Studies completed at the China Medical College Hospital 

(CMCH) used cell viability assay, microscopy, flow cytometry, protein analysis, TUNEL 

assay and DNA electrophoresis to produce clear results indicating time and dose 

dependent tumor growth inhibition via NCTD (Chen et al., 2002). In order for a cell to 

proceed through the checkpoint into mitosis, CDC25C must be phosphorylated to become 

active. CDC25C is a phosphatase that activates CDK1/Cyclin B1 kinase. This study 

showed that NCTD induces a hyperactivation of CDC25C leading to a prolonged 

activation CDK1/Cyclin B1 activity. Results also demonstrated that premature, 

unscheduled, or prolonged activation of this complex induces mitotic arrest and apoptotic 

morphologies of cells. Cell death began to occur after 24 hours and maximum cell death 

was observed at 72 hours. Therefore, CMCH demonstrated that NCTD induces 

inappropriate activation of CDK1, the G2 checkpoint control, which leads to apoptosis of 

cells.  

Other studies have also investigated multiple pathways related to the G2 

checkpoint to describe the mechanism of action. This involves the p53 tumor suppressor 

gene and the Bcl-2-Bax pathway. Each respective pathway is commonly researched 
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regarding apoptosis. Studies completed in Tokyo have also demonstrated that NCTD 

disturbs the Bcl-2-Bax signaling pathway (Luan et al., 2010). Under normal physiological 

conditions, Bcl-2 is an antiapoptotic protein and Bax is a proapoptotic protein. Both of 

these proteins vary the potential, structure, and permeability of the mitochondrial 

membrane. These changes can result in the release of cytochrome c from the 

mitochondria to the cytoplasm, leading to caspase-involved apoptosis. Bcl-2 is normally 

located within the inner mitochondrial membrane and functions to inhibit cell death. Bax 

is normally located in the cytoplasm and moves into the membrane to induce cell death 

when cell viability is compromised or if chromosomal status is not correctable at the G2 

checkpoint. Bcl-2 and other pro-survival proteins share a similar hydrophobic anchor 

region including BH1, BH2, BH3, and BH4 domains. Bax proteins often contain only 

BH3 domains. The complexity of the caspase cleavages that produce the various domains 

on Bax proteins allow the dimerization with other proteins such as Bcl-2. This may also 

contribute to the binding of other C-terminal hydrophobic domain insertions; both 

interactions appear to contribute to the apoptotic response (Pawlowski & Kraft, 2000). 

Both Bcl-2 and Bax proteins can form ion channels in the mitochondrial membrane 

independently of one another but can also interact to inhibit one another to regulate 

apoptosis. This interaction creates the Bcl-2-Bax signaling pathway.   

 The proposed mechanism of interaction between Bcl-2 and Bax proteins occurs 

via binding of Bax to the BH1, BH2, and BH3 domains of Bcl-2. The ratio of each 

protein varies, but most likely strongly contributes to the regulation of apoptosis. Higher 

levels of Bcl-2 are found in malignant cells as apoptosis is suppressed and cells 
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proliferate freely. A study completed in 2010 at Tokyo Noko University treated A549 

cells with NCTD to examine morphologic changes and Bcl-2-Bax protein levels via 

Western Blot Assay (Luan et al., 2010). Apoptotic changes appeared in cell bodies 48 

hours after treatment with NCTD. The Western Blot confirmed that NCTD up-regulates 

the expression of Bax proteins and down-regulates the expression of Bcl-2 proteins (Luan 

et al., 2010). Increasing levels of Bax while decreasing cellular levels of Bcl-2 will cause 

a reduction in the Bcl-2/Bax ratio leading to a greater rate of cell death. Another study 

completed at Zhongnan Hospital of Wuhan University completed various experiments 

producing similar results (Chang et al., 2010). They demonstrated that a malignant cell 

line began to rapidly enter apoptosis 24+ hours after treatment with NCTD. Flow 

cytometry assays displayed apoptotic cell surface morphologies after treatment. Western 

Blot assays also indicated mitochondrial membrane potential changes, increased 

cytochrome c release, and a substantially increased level of Bax proteins resulted from 

treatment (Luan et al., 2010). The cells treated with NCTD demonstrated decreased Bcl-

2-Bax ratios and proceeded to enter apoptosis rapidly. Therefore, the overexpression of 

Bax proteins and the under expression of Bcl-2 proteins is a viable mechanism of action 

for cell death induced by NCTD.  

Aptamer Targeting 

 Aptamers are single-stranded oligonucleotides of either DNA or RNA that bind 

specifically to ligands with complimentary pairing. Aptamers are often referred to as 

chemical antibodies as the specific three-dimensional folding allows for highly specific 

interaction with the target (Reyes-Reyes et al., 2010). They can be selected to have a high 
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affinity for a desired target of various disorders including human malignancies. Chemical 

aptamers are of interest in novel clinical applications because of this ability to target and 

mark cell surface biomarkers. Aptamers can penetrate tissue barriers quicker and more 

efficiently than their protein counter parts because of the smaller size. Protein antibodies 

are typically 150 kDa whereas synthetic nucleic aptamers range from 8-25 kDa (Sun et 

al., 2014). Aptamers are also advantageous to protein antibodies as they are nearly 

nonimmunogenic whereas antibodies are highly immunogenic, specifically after repeat 

injections. Aiming to reduce immunogenic responses in cancer therapeutics, roughly 60% 

of targeting cancer therapies currently use cell surface biomarkers, making this pathway 

optimal for research in aptamer targeting.  

 To develop an aptamer for a specific biomarker, SELEX technology (“systematic 

evolution of ligands by exponential enrichment” has been developed [Sun et al., 2014, p. 

2162]). This technology selects an aptamer by incubating a 20-100-nt sequence flanked 

by fixed primer regions at the 5′ and 3′ ends with a target molecule in a library pool of 

1015 variants. Variants that bind with a high specificity are recovered and amplified. 

Amplification occurs via polymerase chain reaction (PCR) or reverse transcription-

polymerase chain reaction (RT-PCR) depending on the composition of the aptamer. Next, 

the single stranded pool is regenerated for several more rounds via in vitro transcription 

to identify the selected aptamer. This is feasible because of the thermal stability of 

aptamers. Aptamer-ligand interaction can be through specific base pairing or the 

geometry of the aptamer which includes loops, stems, hairpins, pseudoknots, bulges, or 

G-quadruplexes (Sun et al., 2014). These secondary structures interact to produce unique 



APTAMER-DRUG TARGETING CHEMOTHERAPY 
 

18 

tertiary interactions with the ligand. These are essential for aptamer specificity and 

include hydrophobic interactions, electrostatic interactions, hydrogen bonding, van der 

Waals forces, shape complementarity, and base stacking interactions. Direct aptamer-

ligand conjugation specificity can be described by the lock and key model. The aptamer 

will interact only with the target due to the high level of specificity of binding. It has been 

demonstrated that aptamers can distinguish between one amino acid mutation, one 

functional group, and conformational isomers (Morita et al., 2018). The aptamer-drug 

complex mechanism is demonstrated in Figure 5. Pharmacologically, the drug of choice 

is often bound to the aptamer covalently via a linker or directly inserted into the 

nucleotide. Once complexed with the drug of choice, the aptamer binds to the cell 

biomarker as demonstrated in Figure 6.  

Significance of S15 Aptamer 

  Previous research has demonstrated that of the SELEX selected binding options, 

the 85 base long ssDNA S15 aptamer provides the highest affinity with A549 cells. A 

study completed through a partnership between the Beijing National Laboratory in China 

and the University of Florida in the United States in 2009 used SELEX to identify four 

aptamers that could potentially detect NSCLC (Zhao et al., 2009 & Q. Wang et al., 2014). 

These four aptamers, S1, S6, S11a-f, and S15, were analyzed for their affinity with 

healthy Alveolar Type II (ATII) and cancerous adenocarcinomas. Equilibrium 

dissociation constant values (Kd/nM) were used to determine the affinities of each 

aptamer in conjugation with cell types. A549 cell lines were used to represent 

adenocarcinomas. Kd values of each aptamer are shown in Table 1. The S15 aptamer has 
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Figure 5 

 Schematic diagram of aptamer-drug complexation via covalent and non-covalent binding  

 

Note. The bidning if the ligand to the aptamer may be through direct intercalation or a 

linker chain. From “Oligonucleotide Aptamers: New Tools for Targeted Cancer 

Therapy,” by Sun, H., Zhu, X., Lu, P. Y., Rosato, R. R., Tan, W., & Zu, Y., 2014, 

Molecular Therapy - Nucleic Acids, 3(8), Article e182 

(https://doi.org/10.1038/mtna.2014.32). Reprinted with permission. 
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Figure 6  

Schematic diagram of aptamer-target interaction  

  

Note. The shape of the self-annealing aptamer binds to a specific protein on the surface of 

a cell. From “Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy,” by 

Sun, H., Zhu, X., Lu, P. Y., Rosato, R. R., Tan, W., & Zu, Y., 2014, Molecular Therapy - 

Nucleic Acids, 3(8), Article e182 (https://doi.org/10.1038/mtna.2014.32). Reprinted with 

permission. 

 

the highest affinity (>85%) of each examined aptamer; this study also demonstrated low 

affinities for other NSCLC cell lines and SCLC cell lines as found in Table 2. The S15 

aptamer effectively binds to a surface biomarker of the A459 cells as binding properties 

were depleted when A549 cells were treated with a Protein Kinase K which destroys 

surface proteins (Zhao et al., 2009).  A study was also completed by the Israel Cancer 

Association which demonstrated the high affinity of the S15 aptamer with A549 cells 

(Engelberg et al., 2019). This study also examined a clathrin-mediated endocytic delivery 

mechanism to overcome immunogenic reactions when liposomal delivery is used. The 

liposomal delivery method often results in expulsion of the liposome before the contents 
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Table 1 

Sequences and equilibrium constants (Kd) of S1, S6, S11, and S15 aptamers.  

 

Note. Adapted from “Recognition of Subtype Non-Small Cell Lung Cancer by DNA 

Aptamers Selected from Living Cells” by Zhao, Z., Xu, L., Shi, X., Tan, W., Fang, X., & 

Shangguan, D., 2009, The Analyst, 134(9), 1808. Reprinted with permission.  

 

Table 2 

Recognition of various cancer cell line by S1, S6, S11, and S15 aptamers.  

 

Note. Adapted from “Recognition of Subtype Non-Small Cell Lung Cancer by DNA 

Aptamers Selected from Living Cells” by Zhao, Z., Xu, L., Shi, X., Tan, W., Fang, X., & 

Shangguan, D., 2009, The Analyst, 134(9), 1808. Reprinted with permission.  

 

can be released and become effective; aptamer targeting seeks to provide a superior 

delivery mechanism. Clathrin-mediated endocytosis is adaptable in nature and can be 

modulated for the needs of the specific cargo (McMahon & Boucrot, 2011). The 

successful delivery of the drug bound directly to the S15 aptamer leading to increased 
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cell death specifically in A549 cells has promising implications for both drug delivery 

and diagnostics. This study seeks to extend this application in progressing a novel 

chemotherapeutic method that reduces negative side effects, lowers the required drug 

dosages, and reduces the cost of chemotherapy. 

Aptamer Based Chemotherapy 

 Previous research has implemented aptamers into chemotherapeutics to target 

malignant proliferating cells. Aptamers are administered intravenously or orally, with the 

goal of binding to a specific target. Applications of aptamers vary widely from uses in 

basic research, food safety, diagnostics, and therapy. Clinical applications may include 

blocking a protein-protein interaction or binding antagonistically to a receptor ligand. In 

blocking protein-protein interactions, a vital reaction in the cell cycle pathway cannot 

occur and the cells cannot replicate. For example, interfering with interactions localizing 

CDK1 prevents a cell from proceeding past the G2 checkpoint and continuing through 

the cell cycle which effectively inhibits cell proliferation. To be effective as an anti- 

cancer therapeutic, the aptamer usage must evade renal filtration, nuclease degradation, 

and the safety profile. Effective anti-cancer drugs must remain in circulation for extended 

periods of time to increase the probability that the drug interacts with the cancerous cells. 

Aptamer stability has demonstrated the ability to overcome these standards as an 

effective anti-cancer agent. Renal filtration is the primary process to excrete drugs, but 

the low molecular weight of aptamers (8-25kDa) alongside the small diameter averaging 

less than 5 nm allow aptamers to evade excretion. The filtration threshold of the 

glomeruli is about 50 kDa. When conjugated to a larger drug, the aptamer may be filtered 
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by the kidneys, but the effective time of circulation is greatly increased. Both 

endonucleases and exonucleases are abundant in the body and cleave the phosphodiester 

bonds of oligonucleotides. Thus, aptamers are often chemically modified to avoid 

cleavage and increase their half-life from mere minutes to days or weeks. This could be 

attained by replacing the 2’ hydroxyl group with a 2’ amino group of the ribose sugars 

(Morita et al., 2018). The safety profile of aptamers includes the selection against 

immunogenic responses often conferred with protein antibodies. Traditional 

chemotherapeutics confer not only inflammation, irregularities of bone marrow 

hematopoiesis, and lymphatic pathways, but this immune suppression creates a 

susceptibility to more illnesses in all cells (Chemotherapy Side Effects, 2019). Due to 

these negative side effects, chemotherapy drugs must be given at low doses over longer 

periods of time; this is not an ideal method of treatment as the patient’s immune system is 

lowered and at risk for extensive periods of time. Because aptamers bind directly to the 

anti-cancer drug and interact only with their specific target, there is no attack on self -

immune cells (Sun et al., 2014). This avoids humoral and cell-mediated responses of the 

body’s autonomic immune response.  

Research Design and Methods 

 This project will use information from peer-reviewed scientific articles and 

journals to coordinate starting values of NCTD and S15 aptamer. Experiments will be 

performed under the supervision of Dr. L. Stevenson alongside undergraduate student 

Brandon Reynolds.  
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 This study will use the human adenocarcinoma cell line, A549, to represent an 

aggressive NSCLC to examine the efficacy of the S15-NCTD targeting complex. The 

A549 cell line was isolated from a 58-year old Caucasian male by Giard et al. (1973) and 

is commonly used now for research both in vitro and in vivo. These squamous alveolar 

cells are involved in water and electrolyte transport in normal physiology, and the 

multitude of proteins and mechanisms they can perform have allowed scientists to 

understand more oncologic pathologies. The tendency of malignant alveolar cells to 

metastasize alongside their short half-life which averages 23 hours even while outside the 

body, will enhance this research. This study will also use the human cervical cancer cell 

line, HeLa, as a non-target for the S15-NCTD targeting complex. The HeLa cell line was 

isolated from a 31-year old African American woman in 1951 and has become vital to 

oncology research (Lyapun et al., 2019). The isolation of the immortal HeLa cells was a 

breakthrough scientifically and led to the culture of multiple other cell lines. It is 

expected that the A549 cells will be targeted and killed by the S15-NCTD complex while 

the HeLa cells will have no substantial interaction with the complex.  

 The first step in evaluating the proposed hypothesis will be to evaluate aptamer 

binding and target cell specificity. Aptamers possess the ability to anneal to themselves to 

create specific three-dimensional conformations specific to a protein or cell. The S15 

aptamer should target and bind directly to the A549 cell after the aptamer drug complex 

is applied. First, the aptamer can bind to the drug covalently through the tail with the use 

of a linker protein or directly intercalate the DNA (Sun et al., 2014). The direct aptamer-

drug binding will be visualized using a gel shift assay of 20% polyacrylamide gel stained 
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with Ethidium Bromide. The aptamer will be applied to cell cultures of A549s and HeLa 

cells. After visualization on the polyacrylamide gel, a PCR process will be used to 

confirm that the complex is bound directly to the cells. Cells will be washed and lysed; a 

PCR reaction will be used to amplify and detect the presence of aptamers, thus indicating 

that the drug aptamer complex is bound. Current literature has shown that S15 aptamers 

bind to A549’s with a high affinity as conjugation experiments proceed at a rate greater 

than 85% (Zhao et al., 2009); cells will be treated with the S15 aptamer as well as an 

aptamer of the same length and a different sequence to evaluate the success rate of 

binding. It is expected that visualization will show successful binding of the S15 aptamer 

to the A549 cells and unsuccessful binding to the HeLa cells. It is also anticipated that the 

scrambled aptamer will not bind to the A549 cell line. Once the presence of the aptamer 

is confirmed specificity can be evaluated. This proposed method will allow NCTD to 

selectively attack only cancerous cells using the 3D oligonucleotide conformation of the 

aptamer that is complimentary to surface markers displayed on A549 cell membranes.  

  Targeted anti-cancer drugs must show the ability to kill rapidly diving cancerous 

cells without a significant decrease of healthy proliferating cells. NCTD has previously 

shown to be effective against a variety of cell lines, including A549 cells. We will 

complete a kill curve to show the effectiveness of NCTD on cancer cell lines. Cells will 

also be treated with DMSO as a control for cell death and PBS as a control for normal 

growth. These cells will be used as a comparison to determine the effectiveness of the 

S15-NCTD complex. This hypothesis proposes that when NCTD is chemically coupled 

to the S15 aptamer, it will maintain the same antimitotic ability, but will only attack cells 
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with surface markers complimentary to the aptamer. That is, the drug complex will 

preferentially decrease proliferation in only A549 cells. This will ensure any decrease in 

proliferation is due to the aptamer drug complex rather than aptamer alone or drug alone. 

Cell viability after treatment will be determined based on cell metabolic activity. A MTT 

assay will be used to assess the ability of NCTD to successfully inhibit proliferation of 

A549 cells while allowing HeLa cell proliferation. It is expected that NCTD alone 

decreases proliferation in the A549 cells and that the aptamer drug complex successfully 

decreases proliferation of A549 cells to a similar effectivity. It is also expected that the 

aptamer drug complex has little to no effect on the HeLa cells; this will show the 

specificity of the surface markers that the S15 aptamer will bind to. This will provide 

evidence of a successful aptamer delivery method for NCTD.   

Conclusion 

 This research is vital and should be conducted because there is a lack of 

understanding in the functionality of aptamer targeting cancer therapeutics. Current 

cancer treatments cannot combat unwanted side effects and often suppress immune 

responses. The direct conjugation of the single-stranded S15 DNA aptamer to NCTD 

should provide an anti-cancer therapeutic that effectively inhibits the proliferation of 

cancer cells without inhibiting healthy proliferating cells. Thus, there will be a reduction 

in negative side effects during the treatment of NSCLC. With the analysis of this research 

project, this mechanism can continue to progress to in vitro and human testing to become 

a novelty in the field of chemotherapy.  
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