
Running Head: NEUROCOGNITION AND PEDIATRIC CANCER SURVIVORS                     1 

 

 

 

 

 

 

 

Neurocognitive Risk Factors and Current Intervention Strategies for Survivors of Pediatric Acute 

Lymphoblastic Leukemia  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abigail Lee Taber 

 

 

 

 

 

 

 

 

 

 

 

 

A Senior Thesis submitted in partial fulfillment 

of the requirements for graduation 

in the Honors Program 

Liberty University 

Spring 2020 

  



NEUROCOGNITION AND PEDIATRIC CANCER SURVIVORS                     2 

 

 

 

 

Acceptance of Senior Honors Thesis 

 

This Senior Honors Thesis is accepted in partial 

fulfillment of the requirements for graduation from the 

Honors Program of Liberty University. 

 

 

      

 
 

______________________________ 

Kimberly A. Mitchell, Ph.D. 

Thesis Chair 

 

 

      
 
 
 

______________________________ 

Gary Isaacs, Ph.D. 

Committee Member 

 

 

          
 
 
 

______________________________ 

Marilyn Gadomski, Ph.D. 

Honors Assistant Director 

 

 

  
 
 
 

______________________________ 

Date 

 

  



NEUROCOGNITION AND PEDIATRIC CANCER SURVIVORS                     3 

 

Abstract 

 The improved survival rate for pediatric cancer patients is one of the greatest triumphs of 

recent medicine, but the late effects faced by these survivors have been uncovered through this 

new population of survivors. Many survivors of pediatric acute lymphoblastic leukemia (ALL) 

experience cognitive deficits in areas such as attention, memory, processing speed, and academic 

achievement following cancer treatment. Recent research has pointed to chemotherapeutic 

agents, host risk factors, and genetic predispositions as perpetrators of these deficits, although 

other factors are also under investigation. Consequently, the search for appropriate interventions 

for the amelioration of these deficits has dominated the literature in recent years. Due to the 

individualized and multi-faceted nature of the late effects, universally effective remediation 

methods are still nonexistent. However, pharmacological, non-pharmacological, and 

computerized cognitive intervention methods have all shown considerable promise for 

counteracting these cognitive deficits.  
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Cognitive Deficits Faced by Survivors of Acute Lymphoblastic Leukemia, Risk Factors for 

Cognitive Deficits, and Current Intervention Methods 

Modern pediatric cancer treatment practices have improved significantly in recent 

decades, and the survival rate for these patients has skyrocketed as a result. While this 

development is considered one of the greatest feats in medical history, it has also revealed the 

late effects these survivors face (Marusak et al., 2018). Most of these late effects involve the 

child’s executive functioning capabilities, especially in areas of attention, memory, and 

processing speed. Cognitive dysfunction following pediatric cancers occurs in about 15-75% of 

survivors (King & Green, 2015; Kuśmierek et al., 2020) and has led researchers to name the 

phenomenon “chemobrain” (Simó, Rifà-Ros, Rodriguez-Fornells, & Bruna, 2013). Generally, 

there are two classes of risk factors that contribute to cognitive deficits: host risk factors and 

treatment risk factors. Host risk factors include qualities such as female sex, young age at 

diagnosis, and certain genetic polymorphisms. Treatment risk factors mainly include issues such 

as chemotherapeutic neurotoxicity, white matter volume changes, and oxidative stress. (Buizer, 

de Sonneville, & Veerman, 2009; Simó et al., 2013). In many cases, it is a combination of 

multiple risk factors that causes the presentation of cognitive deficits in survivors.    

 Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosis for children 

in the US (Reddick et al., 2006), and most ALL cases are seen in children between 1 and 6 years 

old (Zeller et al., 2013). The origin of ALL is in the bone marrow, but this form of leukemia 

spreads to many other parts of the body through the bloodstream, including the central nervous 

system (CNS). The acute quality of this cancer means that it has a quick progression and will 

likely lead to death if not treated promptly after diagnosis (ACS, 2019). Although the standard 

treatment protocol for pediatric ALL has shifted drastically over the past few decades, most 
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practitioners provide treatment in alignment with that outlined by the American Cancer Society 

(ACS). ALL is optimal for studying the cognitive deficits in pediatric cancer survivors due to the 

prevalence of this form of cancer as well as the extensive volume of literature on cognitive late 

effects seen in ALL survivors (Cheung & Krull, 2015).  

 The cognitive deficits faced by ALL survivors have long-reaching effects on the 

individual’s quality of life and can even negatively affect the individual’s performance in 

academic and work settings. The necessity of appropriate cognitive intervention strategies and 

methods is clear. Pharmacological, nonpharmacological, and computerized cognitive 

intervention strategies have all been studied in an effort to find the most efficacious method to 

combat cognitive deficits, and although research has only shown modest improvements 

following those interventions thus far, this area of research still shows ample promise for the 

future (Olson & Sands, 2016).   

Standard Pediatric Cancer Treatment  

History of Treatment Protocol for Pediatric ALL 

 The landscape of pediatric cancer treatment protocol has shifted dramatically over the 

past few decades. In the 1970s, combination CNS-directed chemotherapy became the leading 

method for treating childhood leukemia. At the time, a major component of all treatment was 

cranial radiation therapy (CRT) at a high dosage of 24 Gy. In many cases, this was combined 

with intrathecal methotrexate (MTX); in this form of treatment, the chemotherapeutic drug is 

administered through a lumbar puncture and directly injected into the cerebrospinal fluid (CSF). 

The idea was that the intensification of chemotherapy would lead to less CNS relapse and higher 

survival rates. Although the adjustment did, in fact, lead to those two outcomes, it was quickly 

evident that the change came with some significant consequences. The toxicity of CNS 
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irradiation was linked to secondary malignancies, physiological complications, and significant 

cognitive late effects. This led to the reduction of the radiation dosage from 24 Gy to 18 Gy (and 

even 12 Gy in some cases), but the effects of irradiation remained the same even when used in 

smaller doses (Buizer et al., 2009).  

Practitioners soon discovered that irradiation could be completely removed from 

treatment and that CNS relapse could still be staved off using a chemotherapy-only protocol. 

This final shift in treatment became the prevailing standard of treatment that is still used today 

(Buizer et al., 2009). By replacing CNS irradiation with chemotherapy-only protocols, the 

neurocognitive late effects were reduced but not completely eliminated (Reddick et al., 2006); 

these patients still displayed cognitive deficits in areas of visual and motor processing, attention, 

and executive functioning (Cheung & Krull, 2015; Moore, 2005). Rates of attentional deficits for 

chemo-only survivors are still listed with an incidence as high as 67%, and other cognitive 

processes have displayed rates up to 28% (Marusak et al., 2018). However, this shift from 

radiation to chemotherapy-only did result in an increase in academic performance and 

preservation of white matter volume, which is the brain tissue that is important for neural 

connectivity and processing speed (Reddick et al., 2006). More importantly, the transition into 

chemotherapy-only treatment (specifically with the use of intrathecal MTX) increased the 

survival rate for pediatric ALL patients. While CRT was averaging an 80% survival rate for ALL 

patients, a chemotherapy-only protocol yields patient survival rates as high as 93.5% (Cheung & 

Krull, 2015).  

Current Standard Treatment Protocol for Pediatric ALL 

The battle for finding the most effective treatment strategy for ALL patients has now 

become an issue of balancing acceptable levels of neurotoxicity with high-efficacy protocols 
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(Moore, 2005). Treatment of ALL is individualized to each patient depending on the severity of 

the condition at the time of diagnosis, but the protocol outlined by The ACS is the general 

standard (ACS, 2019). The first stage of treatment, remission induction, is generally the most 

intensive segment. The aim of remission induction for leukemia is to completely eliminate any 

leukemia cells from the bone marrow and restore normal blood counts (Butler & Mulhern, 2005). 

Standard-risk ALL patients usually receive a 3-drug combination of chemotherapeutics including 

L-asparaginase, vincristine, and a steroid drug (like dexamethasone or prednisone). High-risk 

ALL patients additionally receive daunorubicin; the greater intensity of chemotherapy ensures 

that residual cancer will not remain in the system following induction (ACS, 2019).  

The second stage, CNS preventative therapy, aims to eradicate any leukemia cells that 

moved into the CNS. This usually takes the form of intrathecal or systemic chemotherapy (Butler 

& Mulhern, 2005). Intrathecal therapy typically consists of high-dose methotrexate alone or, in 

the case of high-risk children, a triple intrathecal form consisting of methotrexate, cytarabine, 

and hydrocortisone (Buizer et al., 2009). For extreme cases of ALL wherein the leukemia 

already displays a significant presence in the CSF at the time of diagnosis, radiation therapy to 

the brain may still be implemented, although high-dose MTX is preferable and shows equal 

efficacy (ACS, 2019; Buizer, de Sonneville, van den Heuvel-Eibrink, Njiokiktjien, & Veerman, 

2005).  

Once remission is achieved, the patient enters the third stage, consolidation. This is a 

continuation and intensification of the chemotherapy meant to eradicate any remaining leukemia 

cells that may have survived initial chemotherapeutic treatment. Children in this stage are treated 

again with a combination of chemotherapy drugs including any of the following: MTX, 6-
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mercaptopurine (6-MP), vincristine, doxorubicin, cyclophosphamide, etoposide, L-asparaginase, 

cytarabine, dexamethasone, or prednisone (ACS, 2019).  

Once the leukemia reaches sustained remission, the patient enters the final stage, 

maintenance, in order to stave off any undetected leukemia remaining in the body (Butler & 

Mulhern, 2005). This stage only includes low-dose chemotherapy using MTX and 6-MP in the 

form of pills taken regularly over a period of time (ACS, 2019).  

Host Risk Factors for Cognitive Deficits 

Age As a Risk Factor 

 One of the greatest predisposing factors for late effects involving neurocognitive deficits 

is a younger age of the patient at the time of diagnosis and treatment. For children undergoing 

cancer treatment in early childhood—the most formative and critical years of the brain’s 

development—any invasive condition or procedure can lead to detrimental effects in 

neurocognitive development. In the first three months of development, a child’s brain consists of 

nearly all of the neurons needed (Castellino, Ullrich, Whelen, & Lange, 2014). During the first 

few years of life, the brain remains in a period of rapid, dynamic development where levels of 

gray and white matter fluctuate and differentiate according to the different needs in the areas of 

the brain (Moore, 2005). By age four, the volume of gray matter in the brain peaks and is 

subsequently modified through apoptosis of unnecessary neurons and connections (Castellino et 

al., 2014; Moore, 2005). White matter continues to increase in volume well into early adulthood, 

and it is this proliferation of white matter that stages the brain tissue for possible damage due to 

radiation or chemotherapy treatment at a young age (Moore, 2005). During white matter 

proliferation, neuronal myelination also occurs at a high volume, which continues into early 

adulthood. The newly formed myelin at this stage has high levels of activity coupled with high 
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levels of instability, making it highly susceptible to damage from the toxicity of the cancer 

treatment (Reddick et al., 2006). Also, the three fundamental aspects of executive functioning—

attention shifting, inhibition, and working memory—are the building blocks for higher level 

thinking such as problem-solving; the preservation of these fundamental skills in the early stages 

of life is imperative to the intellectual development of these pediatric cancer survivors (Benzing 

et al., 2018). 

Sex As a Risk Factor 

  Female sex has been shown to be a risk factor for cognitive deficits in ALL survivors; 

female leukemia patients have been shown to be at a higher risk for cognitive late effects 

following chemotherapy treatment (Olson & Sands, 2016). Although the exact mechanism of this 

is unknown, some theorize that this could be attributed to developmental differences between 

males and females in the early years of life (Buizer et al., 2009). White matter volume is known 

to mature more slowly in girls than boys during childhood, which could make girls more 

susceptible to chemotherapy-induced neurotoxicity (Schmithorst, Holland, & Dardzinski, 2008).  

Genetic Polymorphisms 

In addition to physiological changes linked to cancer treatment as risk factors for 

cognitive function, there are several genetic polymorphisms—particularly with genes involved in 

neural plasticity and repair—that have been associated with increased cognitive dysfunction in 

ALL patients. Some of the greatest risks faced by cancer patients are the neurotoxicity and 

oxidative stress that occur as consequences of such intense chemotherapy and radiation. Several 

genes have crucial roles that, when disrupted, can compound any of those issues that are already 

present following treatment. Understanding the role of genetics in the presentation of future 
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cognitive deficits has important implications for how interventions can effectively counteract 

these risks by gene targeting methods (Seigers & Fardell, 2011).  

Brain-derived neurotrophic factor (BDNF) gene.  BDNF is a protein that is 

responsible for the development and differentiation of new neuronal cells and the survival of 

existing neuronal cells (Jones & Pattwell, 2019). In addition, it aids in long-term memory storage 

through the preservation of long-term potentiation (LTP) in the hippocampus (Seigers & Fardell, 

2011). This gene is most highly expressed in the cortices, hippocampus, cerebellum, and limbic 

system structures of the brain (Thomason, Yoo, Glover, & Gotlib, 2009). The most common 

single nucleotide polymorphism (SNP) in the gene BDNF is BDNFVal66Met; in this mutation, a 

methionine group is substituted for valine at codon 66 (Jones & Pattwell, 2019). Previous studies 

have found that mice containing the BDNFMet polymorphism display decreased hippocampal 

volume, impaired memory, and modified memory processing (Jones & Pattwell, 2019; 

Thomason et al., 2009). A recent study found that BDNF-knockout (deletion of the BDNF gene) 

mice exhibited compromised spatial memory and processing (Jones & Pattwell, 2019). However, 

after injection with BDNF into the hippocampus, mice exhibited significant improvement on the 

Morris water maze, a neurological test observing spatial memory (Seigers & Fardell, 2011). The 

receptor for BNDF, TrkB, is also involved in LTP in the hippocampus, and malfunction of this 

receptor has been linked to deficits in learning (Jones & Pattwell, 2019). On a larger scale, 

abnormal functioning of the BDNF gene or its receptor in human individuals has been linked to 

psychiatric disorders such as schizophrenia, dementia, anxiety, post-traumatic stress disorder 

(PTSD), and depression (Jones & Pattwell, 2019; Seigers & Fardell, 2011).  

 In an important study by Thomason et al., the researchers observed the role of BDNF in 

functional connectivity of the brain through the use of fMRI scanning with a specific focus on 
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the default-mode network (DMN), the executive network (EN), and the salience-emotion 

network (SEN) (Thomason et al., 2009). The DMN is active in task-negative scenarios (when the 

brain is not focused on a task), but the EN becomes activated when there is a specific task at 

hand. The SEN is the link between the two, and it decides which stimuli are salient, or important 

enough to be integrated in order to alter behavior (Goulden et al., 2014). This study was 

completed in a group of children and adolescents with roughly half of the group containing the 

met allele SNP and the other half with a normal genotype. The researchers observed reduced 

connectivity in the hippocampal, parahippocampal, and cortical brain regions at rest in all three 

of the networks being studied for individuals with the met allele, indicating that BDNF plays a 

crucial role in neuronal connectivity throughout the brain (Thomason et al., 2009).  

Apolipoprotein E4 gene (APOE4).  APOE4 is responsible for fat metabolism through 

the regulation of lipid uptake and distribution (Anderson & Kunin‐Batson, 2009). This gene also 

plays a role in neural plasticity and repair (Simó et al., 2013) as well as cognitive processes such 

as learning and memory (Jones & Pattwell, 2019). One of the gene’s alleles, E4, has been 

recently linked to Alzheimer’s disease (AD; Anderson & Kunin‐Batson, 2009). In a study of 

cognitive performance in individuals with and without the E4 allele, Ahles and associates (2003) 

found that the E4 allele primarily interacted with chemotherapy in the spatial and visual 

cognitive domains (Ahles et al., 2003). Other studies have shown deficits in episodic memory 

and executive functions in E4 carriers (Small, Rosnick, Fratiglioni, & Bäckman, 2004). It can be 

concluded that APOE4 may be a genetic marker for cognitive decline induced by chemotherapy 

(Ahles et al., 2003).   

Catechol-o-methyl transferase (COMT) gene.  COMT is an enzyme responsible for 

multiple processes throughout the brain. One of its most crucial roles is to inactivate 
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neurotransmission by breaking down catecholamines like dopamine (DA) and norepinephrine 

(NE) via methylation. The most common polymorphism associated with this gene is a SNP that 

occurs at codon 158 resulting in a codon change from valine to methionine (McAllister et al., 

2004). The Val158Met polymorphism has been associated with reduced enzymatic activity (Cole 

et al., 2015); the methionine allele is less active than the valine allele by four-fold. This change 

in enzymatic mechanisms has important implications of DA breakdown, as the methionine allele 

metabolizes much less DA in comparison to the valine allele (Cole et al., 2015; McAllister et al., 

2004). Previous research has established a relationship between the prefrontal cortex and DA; if 

there is too much or too little DA signaling, working memory can be negatively affected (Farrell, 

Tunbridge, Braeutigam, & Harrison, 2012). Furthermore, a reduced amount of methylated 

catecholamines is correlated with lower defense of oxygen radicals, making COMT 

polymorphisms a predisposing factor for additional oxidative stress when exposed to 

chemotherapy (Cole et al., 2015).  

Methylene tetrahydrofolate reductase (MTHFR) gene.  The MTHFR enzyme is 

responsible for the methylation of folate. For individuals possessing polymorphisms in the 

MTHFR gene, exposure to MTX during chemotherapy can lead to depleted folate stores and 

excess homocysteine levels (Anderson & Kunin‐Batson, 2009). Folate is an essential component 

of CNS development and function. Polymorphisms that alter levels of folate in the CNS can lead 

to cognitive deficits in areas of attention and processing speed (Kamdar et al., 2011). Similarly, 

high levels of homocysteine are associated with endothelial cell injury, and they could also 

contribute to the vascular changes induced by the neurotoxicity associated with MTX discussed 

below (Shuper et al., 2002). When high levels of homocysteine or other excitatory amino acids 

accumulate in the system, toxic effects are exerted upon epithelial cells. This also primes neurons 
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for sensitivity to oxidative damage, ultimately leading to neuronal apoptosis and reduced 

production of myelin (Kamdar et al., 2011). Hyperhomocysteinemia is also correlated with the 

presentation of multiple neurological phenotypes, including schizophrenia and depression (Blom 

& Smulders, 2011).  

Nitric oxide synthase 3 (NOS3) gene.  The NOS3 gene codes for endothelial nitric 

oxide synthase (eNOS), an enzyme responsible for generating nitric oxide (NO) in endothelial 

tissue. NO acts as an antioxidant that protects against the production of radical ions such as 

hydroxyl (Yanar et al., 2016). eNOS is especially essential for patients undergoing 

chemotherapy. Chemotherapeutic agents such as MTX are known to induce oxidative stress via 

free oxygen radicals and increased homocysteine levels, which can subsequently cause 

endothelial and vascular damage; however, eNOS counteracts those effects through preservation 

of angiogenesis (production of new blood vessels), and protection against oxidative stress (Cole 

et al., 2015; Yanar et al., 2016).  

The NOS3 894TT polymorphism is the most common for the NOS3 gene, and it is 

characterized by a Glu298Asp amino acid substitution. This polymorphism leads to decreased 

enzymatic activity, thus reducing the production of necessary antioxidants to protect against 

oxidative stress (Yanar et al., 2016). Additional research has also discovered a link between the 

894TT polymorphism and increased homocysteine levels in the plasma in comparison to a 

healthy control group. These homocysteine levels exhibit a link with risk for cognitive decline 

(Ferlazzo et al., 2011). At a cognitive level, polymorphisms affecting NOS3 are associated with 

poor performance in Vocabulary, Block Design, Matrix Reasoning, IQ, and Digit Span 

intelligence tests. In a study that observed neurocognitive outcomes for carriers of mutations in 
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the NOS3, COMT, HFE, GTSP1, and SLCO2A1 genes, the NOS3 mutation most frequently 

resulted in lower IQ scores (Cole et al., 2015).  

Solute carrier organic anion transporter family member 2A1 (SLCO2A1) gene.  The 

SLCO2A1 gene encodes a prostaglandin transporter (PGT) that modulates the movement, 

uptake, and clearance of prostaglandins throughout the body, including at the blood-brain barrier 

(BBB; Cole et al., 2015). Prostaglandins have been shown to induce extra oxidative stress on an 

individual by way of amplifying the immune response. When cancer manifests in the body, an 

immune response is activated to recruit cytokines and other inflammatory factors to the site, 

further progressing the cancer. The cytokines then generate ROS by their mechanism of action; 

these ROS induce apoptosis at the injury site. Prostaglandins are produced in response to the 

expression of inflammatory cells and ROS, and they, in turn, enhance inflammatory cytokine 

expression. This propagates the cycle of free radical production and subsequent oxidative stress 

(Federico, Morgillo, Tuccillo, Ciardiello, & Loguercio, 2007). Recent studies have found that 

PGT expression is highest in the cortex, cerebellum, and hippocampus during development. 

Also, lower levels of PGT is seen in the brains of individuals with neurodegenerative diseases 

such as Alzheimer’s disease (Choi, Zhuang, Crain, & Doré, 2008). 

Mutations in the SLCO2A1 gene can affect the clearance and redistribution of 

prostaglandins, which can result in oxidative stress and cognitive impairment. The 

neurocognitive outcomes for individuals with a variant G allele in the SLCO2A1 gene mirrors 

those seen in NOS3 polymorphic individuals; they scored lower on all five tests of intelligence 

(Vocabulary, Block Design, Matrix Reasoning, Digit Span, and IQ) and exhibited lower mean 

estimated IQ scores (Cole et al., 2015).  
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Glutathione S-transferase P (GSTP1) gene.  The GSTP1 gene codes for glutathione-s-

transferase P (GST-P), an important enzyme that defends against oxidative stress. GST-P’s 

interaction with glutathione allows the antioxidant to attack products of oxidative stress and form 

less toxic material for excretion. In one particular experiment, the activity of GST-P was 

inhibited, which led to an increase in oxidative-stress-dependent apoptosis (Röth et al., 2011). As 

previously observed, polymorphisms in genes connected to oxidative stress or 

neuroinflammation are linked to poorer cognitive outcome. One of the most common 

polymorphisms in this gene is a change from alanine to valine at codon 114 due to a C to T 

transition at position 2293 (Welfare, Adeokun, Bassendine, & Daly; 1999); the GSTP1 T allele 

individuals scored lower on tests of Digit Span and IQ compared to their healthy counterparts 

(Cole et al., 2015).  

ATP-binding cassette sub-family B member 1 (ABCB1) gene.  In addition to genes 

related to oxidative stress, genes that influence BBB permeability are also key contributors to 

cognitive dysfunction when polymorphisms are involved. The ABCB1 gene codes for ABCB1, 

or P-glycoprotein, the most prevalent efflux transporter. This efflux transporter is incredibly 

important for the transport of xenobiotic or endogenous substances from the brain into the 

bloodstream (van Assema et al., 2012). It is especially important for reducing the level of brain 

exposure to certain chemotherapeutic agents like doxorubicin (Seigers & Fardell, 2011). This 

ABCB1 gene is highly polymorphic, and these polymorphisms can lead to modified P-

glycoprotein function (van Assema et al., 2012). In one study, mice were injected with 

paclitaxel, a neurotoxic agent that is known to lead to cognitive impairment when allowed to 

cross the BBB. P-glycoprotein knockout mice showed ten times the amount of paclitaxel 

exposure in the brain in comparison with wild-type mice (Seigers & Fardell, 2011). Excess 
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exposure of the brain to xenobiotics greatly increases the likelihood of neurotoxicity and 

cognitive impairment and has been shown to have links with the onset of neurodegenerative 

diseases such as Parkinson’s disease (Seigers & Fardell, 2011; van Assema et al., 2012).  

Cystathionine beta-synthase (CBS) Gene.  The CBS gene codes for the CBS enzyme, 

which is responsible for regulating homocysteine levels. Elevated homocysteine levels have 

previously been linked to endothelial cell damage and changes in vascularization (Shuper et al., 

2002). In an experimental study of the relationship between CBS and homocysteine, an increase 

in activity of CBS directly led to the reduction of homocysteine levels in the plasma (Wang et 

al., 2004). Another study observed the effect of different genetic polymorphisms in cognition of 

ALL survivors over the course of four years following diagnosis; carriers of the CBS 844ins68 

polymorphism exhibited reduced IQ scores over the four-year period (Krajinovic et al., 2005).  

Treatment Risk Factors for Cognitive Deficits  

 In addition to host risk factors such as age, sex, and genetic polymorphisms, pediatric 

ALL patients encounter many treatment-related risk factors that may contribute to the onset of 

cognitive deficits. There are two major routes by which ALL treatment leads to deficits. First, the 

direct effect of chemotherapeutic agents on the brain can lead to cognitive deficits. Secondly, the 

occurrence of cranial complications such as oxidative stress, leukoencephalopathy, decreased 

vascularization, and increased membrane permeability can lead to increased neurotoxicity and 

cognitive dysfunction (Ikonomidou, 2018; Reddick et al., 2006; Seigers & Fardell, 2011).  

Immediate Effects of Chemotherapeutic Agents  

Chemotherapeutic agents can generally be divided into a few drug classes based on their 

mechanism of action. Alkylating agents prevent cell replication by alkylating electron-rich atoms 

to form covalent bonds that react with DNA bases. Two common examples of alkylating 
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chemotherapeutic agents are doxorubicin and cyclophosphamide (Ikonomidou, 2018; Seigers & 

Fardell, 2011). Antimetabolites, such as methotrexate, are responsible for disrupting the 

biosynthesis of nucleic acids in order to prevent the formation of new DNA or RNA, which 

subsequently leads to cell cycle arrest (Ikonomidou, 2018). DNA topoisomerase inhibitors 

interfere with the action of DNA topoisomerase, responsible for creating single- or double-strand 

breaks in the DNA helix during replication in order to release the torsional stress of the coil. 

When the inhibitors prevent this process, the supercoiled and strained DNA leads the cell to 

arrest, apoptosis, or necrosis (Ikonomidou, 2018; Seigers & Fardell, 2011). Alkaloids, such as 

vincristine, bind tubulin and effectively block the assembly of microtubules to arrest the cell in 

metaphase (Moudi, Go, Yien, & Nazre, 2013). Regardless of the chemotherapeutic drugs used, 

most results have shown that the degree of neurocognitive deficits experienced is largely dose-

related (Krull et al., 2013). Recent research has established a direct correlation between intensity 

of cancer treatment and the severity of cognitive deficits following, with the most devastating 

effects seen in those who have received the highest dosages of chemotherapeutics (Buizer et al., 

2009).   

Methotrexate.  MTX is the most extensively studied chemotherapeutic agent in terms of 

its neurotoxic effects. The main action of MTX as an antimetabolite is to inhibit dihydrofolate 

reductase, an enzyme responsible for the reduction of dihydrofolate to tetrahydrofolic acid 

(THF). This THF-deficiency leads to decreased purine and pyrimidine synthesis and 

antiproliferative effects overall (Olsen, Spurlock, & Aune, 2014). MTX also disrupts 

transmethylation reactions important for protein, lipid, and myelin synthesis (Shuper et al., 

2002). Primarily, the neurotoxic effects of MTX include apoptotic and excitotoxic neuronal cell 
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death, decreased neurogenesis, reduced myelination, reduced blood flow, and increased oxidative 

stress (Ikonomidou, 2018; Seigers & Fardell, 2011).  

Although the exact mechanisms by which each these effects are exerted are not fully 

established, many inferences can be drawn from the understood mechanisms of action of MTX. 

One proposed method by which methotrexate induces acute neurotoxicity is through inhibiting 

synthesis of catecholamines such as dopamine (McAllister et al., 2004); this is attributed to the 

interference of MTX on transmethylation reactions (Shuper et al., 2002). This conclusion was 

drawn from an experiment in which the use of intrathecal MTX in male rats led to decreased 

concentrations of norepinephrine, dopamine and serotonin in the hippocampus as well as 

impaired learning and memory (McAllister et al., 2004).  

Another proposed theory for the neurotoxicity of MTX is based on the alteration of folate 

metabolism pathways. Folate and homocysteine are crucial in cellular metabolism processes such 

as the donation of carbon groups to purines for the synthesis of genetic material (Blom & 

Smulders, 2011). MTX increases levels of homocysteine and its precursor, S-adenosyl 

homocysteine; high levels of these two compounds are associated with endothelial cell injury 

(Shuper et al., 2002). Also, malfunctioning folate and homocysteine metabolism is associated 

with psychiatric and neurodegenerative diseases (Blom & Smulders, 2011). The demyelination 

caused by MTX can be attributed to its transmethylation interference that prevents the formation 

of myelin (Shuper et al., 2002). Finally, MTX is associated with production of excitatory amino 

acids, (Buizer et al., 2009) which can lead to excitotoxicity, a form of cell death caused by 

overstimulation of excitatory amino acid receptors (Ikonomidou, 2018).  

 The cognitive deficits seen as a result of MTX occur in a dose-related manner. A study 

by Krull and associates (2013) found that for every 1 g/m2 increase of intravenous MTX, the risk 
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for slowed processing speed increased by 3% in a direct relationship while controlling for 

irradiation (Krull et al., 2013). Catecholaminergic and cholinergic systems also play a 

complementary role in attention and memory, and the interference of MTX on catecholaminergic 

systems likely contributes to the deficits in attention and memory seen in the survivors 

(McAllister et al., 2004).  

Cyclophosphamide.  Cyclophosphamide is an alkylating agent that plays a role in 

inducing apoptosis and excitotoxicity, decreasing neurogenesis, impairing long-term potentiation 

(LTP), and inducing oxidative stress (Ikonomidou, 2018; Seigers & Fardell, 2011). Also, in 

animal studies, cyclophosphamide has been associated with impaired memory retention and 

avoidance (Seigers & Fardell, 2011). In a study by Yang and associates (2010), it was discovered 

that cyclophosphamide suppresses neurogenesis in the hippocampus, which may lead to the 

deficits in learning and memory (Yang et al., 2010).  

Vincristine.  Vincristine exerts considerable neurotoxic effects peripherally and likely 

contributes to the sensory-motor impairments observed in ALL survivors (Buizer et al., 2005). 

This sensory-motor deficit is potentially a result of the axonal degeneration and decreased axonal 

recruitment caused by vinca alkaloids due to their prevention of microtubule assembly. However, 

vincristine uptake into the brain is relatively low (Moudi et al., 2013).  

Doxorubicin.  Doxorubicin is an anthracycline, and it acts as both an alkylating agent 

and a topoisomerase inhibitor. In the alkylation process, a reactive oxygen species is released, 

which leads to lipid peroxidation—a state known to contribute to membrane and DNA damage 

and oxidative stress (Thorn et al., 2011). The neurotoxic effects of this agent have also been 

associated with reduced hippocampal LTP, increased oxidative stress, and induced caspase-



NEUROCOGNITION AND PEDIATRIC CANCER SURVIVORS                     20 

 

mediated cell death—conditions that have all been linked to cognitive deficits (Alhowail et al., 

2019).  

Corticosteroids.  Corticosteroids alter gene expression through the binding of 

glucocorticoid receptors, and they are responsible for inducing apoptosis, modifying oncogenes, 

and inhibiting cytokine production (Inaba & Pui, 2010). The most commonly used 

corticosteroids in chemotherapy are dexamethasone, prednisone, and hydrocortisone. 

Traditionally, dexamethasone is preferred to prednisone for its superior level of CNS penetrance 

(Buizer et al., 2005), which allows it to inhibit CNS leukemia more effectively, but the toxicity 

of prednisone is generally lower in comparison to dexamethasone (Inaba & Pui, 2010). Impaired 

executive function and attention has been seen in patients treated with dexamethasone while 

controlling for MTX (Krull et al., 2013). Furthermore, most corticosteroids are known to lead to 

adverse effects such as proximal myopathy, which may contribute to the motor problems 

experienced by ALL survivors (Buizer et al., 2005).  

Neurotoxic effects linked to cognitive deficits 

Increased permeability of the BBB.  One of the physiological alterations that 

contributes to the cognitive deficits seen in ALL survivors is the direct assault that occurs on the 

CNS by the cytotoxic chemotherapeutic agents. The permeability of the BBB plays a direct role 

in the CNS exposure to the chemotherapeutic agents. The BBB is a semipermeable border 

formed by capillary endothelial cells that are linked together by tight junctions, and its function 

is to separate the brain from the circulating blood (Ikonomidou, 2018; Seigers & Fardell, 2011). 

Generally, the only molecules that are allowed to pass through the BBB are water, amino acids, 

and small, lipophilic molecules. In some cases, drugs that utilize an internal transport system can 

also pass through (Ikonomidou, 2018). In order to further guard against foreign substances 
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entering into the brain, the BBB is equipped with an efflux transport system that restricts the 

level of cytotoxic drugs that could potentially accumulate. When activity of efflux transporters 

becomes inhibited or decreases, an increased level of drugs can accumulate in the brain and lead 

to cognitive impairments (Seigers & Fardell, 2011). The use of some chemotherapeutic agents 

allows for much higher permeability of the BBB through peripheral mediators—such as 

cytokines—that are released as a result of the drug’s mechanism of action. For example, MTX is 

known for its increase in the level of proinflammatory cytokines IL-1 and IL-6 (Olsen et al., 

2014). Additionally, research has discovered a causal relationship between increased 

neuroinflammation and subsequent cognitive impairment. A well-supported theory for this is that 

the BBB becomes disrupted via cytokines, resulting in extended exposure of the CNS to 

chemotherapeutic drugs and amplified cognitive deficits (Wardill et al., 2016).  

Altered cerebral vascularization or blood flow.  Several chemotherapeutic agents are 

known to contribute to decreased vascularization and blood flow in certain areas of the brain. 

The vascular damage and reduced blood flow are associated with impaired cognition and neural 

functioning (Seigers & Fardell, 2011). MRI imaging techniques have revealed irregular cerebral 

blood flow in the frontal and cortical areas during treatment with chemotherapeutics (Österlundh 

et al., 2008). Previous research has found that MTX reduces cerebral blood flow and glucose 

metabolism (Seigers & Fardell, 2011). Additional studies have found that MTX directly leads to 

decreased density of hippocampal blood vessel density (Seigers et al., 2009). Multiple studies 

have found decreased hippocampal volume due to reduced proliferation, and it is theorized that 

this is a result of the combination effect of decreased vascularization and reduced proliferative 

signals (Seigers & Fardell, 2011). Corticosterone exposure has also been shown to induce 

cellular changes in the hippocampus, which are linked to worse performance on tests of 
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executive function, such as the Wisconsin Card Sorting Test (WCST), and are frequently 

associated with cognitive dysfunction in areas of visual and verbal memory (Frodl et al., 2006).  

Oxidative stress.  Oxidative stress is the result of disrupted mitochondrial DNA that 

leads to the production of reactive oxygen species (ROS; Ikonomidou, 2018). These ROS lead to 

mitochondrial DNA mutations and result in defective mitochondrial proteins, a malfunctioning 

electron transport system, and eventually, the production of more ROS (Seigers & Fardell, 

2011). Chemotherapy produces ROS that go on to oxidize apolipoprotein A1 (ApoA1), which is 

responsible for the synthesis of TNFα. TNFα then can penetrate the BBB and induce apoptosis 

(Gaman, Uzoni, Popa-Wagner, Andrei, & Petcu, 2016). Although the generation of ROS is 

effective in the eradication of tumors and malignancies, there are many unintended consequences 

as a result of excess ROS species in the body, most often in the form of DNA or RNA damage, 

neurotoxicity, and cell death. And though the body naturally produces antioxidants that break 

down ROS, the brain contains a low level of these protective agents. Maintaining normal redox 

levels in the brain has been shown to be crucial for specific processes such as cell differentiation 

and preservation of normal CNS function (Gaman et al., 2016). Oxidative stress has been most 

highly associated with cytarabine, doxorubicin, MTX, and carboplatin chemotherapeutic agents 

(Ikonomidou, 2018). In addition to creating extra ROS, doxorubicin, cyclophosphamide, and 

MTX also activate TNFα. This further exacerbates neurotoxicity, as a known side effect of TNFα 

is the deactivation of glutathione, an important antioxidant (Gaman et al., 2016). In an 

experiment performed by Konat et al. (2008), cognitive impairment induced by chemotherapy 

treatment was ameliorated when an antioxidant was introduced into the rat, which led to the 

conclusion that oxidative stress is a key contributor to cognitive deficits in individuals who 

underwent chemotherapy treatment (Seigers & Fardell, 2011). This also promotes targeting 
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TNFα in therapy to preserve the level of antioxidants in the brain of a patient receiving 

chemotherapy (Gaman et al., 2016).  

Leukoencephalopathy.  Many studies of pediatric ALL patients have observed 

leukoencephalopathy—or the decrease in white matter volume in the brain—in many of the 

patients, especially in the frontrostriatal tract (Cheung et al., 2016). Several studies have shown 

that decreased white matter is directly correlated with decreased attention, intelligence, and 

academic achievement (Reddick et al., 2006). Lower cognitive performance occurs 

proportionally with decreased white matter integrity; this same trend is seen in individuals with a 

traumatic brain injury or with an aging disease such as dementia (Moore, 2005). White matter 

and oligodendrocytes also play an important role in myelination for improved impulse 

conduction, and this damage could be the cause of the reduced processing speed seen in 

chemotherapy-treated patients (Seigers & Fardell, 2011).  

 There are a few possible mechanisms for the white matter damage that occurs due to the 

chemotherapy. The first mechanism is through direct assault on the various types of brain tissue, 

including oligodendrocytes and microglia (Anderson & Kunin‐Batson, 2009). Since 

oligodendrocytes are essential for myelination in the CNS, damage to these cells can lead to 

demyelination (Reddick et al., 2006). The second possible mechanism is through injury to the 

microvasculature, including obstruction of blood vessels, ischemia, and necrosis (Anderson & 

Kunin‐Batson, 2009).  

Neurogenesis.  MTX and cyclophosphamide are both associated with decreased 

neurogenesis (Ikonomidou, 2018; Yang et al., 2010). Neurogenesis is particularly important in 

hippocampal proliferation, and a decrease can lead to deficits in learning and memory (Seigers & 
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Fardell, 2011). Decreased neurogenesis can also be a result of neuroinflammation, which is a 

common side effect for recipients of CNS-directed chemotherapy (Ikonomidou, 2018).  

Current Intervention Strategies 

Each ALL patient undergoes rigorous physical treatment during chemotherapy, but the 

challenges do not usually end for the individual once treatment has concluded—especially for 

those that develop cognitive deficits. Readjusting after cancer brings a new set of demands as the 

individual works to reenter school, reintegrate into his/her relationships, and acclimate to chronic 

pain or lifelong physiological changes due to the cancer and/or its treatment (Marusak et al., 

2018). For those who develop cognitive deficits, this leads to additional difficulties in the 

educational and work settings (Olson & Sands, 2016). This accentuates the need for efficacious 

intervention programs to reduce or improve some of these deficits and improve quality of life for 

these individuals. Pharmacological interventions to improve executive functions such as 

attention have shown considerable effectiveness; however, many survivors are unable to receive 

them for a myriad of reasons such as parental preference, endocrinopathies, seizures, interaction 

with current medications, or risk of side effects (Conklin et al., 2016). As the research and 

healthcare field begins to look to nonpharmacological options as viable intervention strategies, 

solutions such as computerized cognitive intervention programs seem to show considerable 

promise for the future. The evolution of these programs in recent decades leads to future 

direction for this field.  

Pharmacological Interventions 

Methylphenidate.  Methylphenidate chloride (MPH) is a dopaminergic and adrenergic 

agonist. It increases release and reduces reuptake of dopamine at synaptic terminals and also 

inhibits monoamine oxidase, an enzyme responsible for neurotransmitter inactivation (Conklin et 



NEUROCOGNITION AND PEDIATRIC CANCER SURVIVORS                     25 

 

al., 2007). This increases the concentration of these neurotransmitters—and thereby, the level of 

functioning—in the frontostriatal tract, which is a crucial area of the brain for processes 

involving attention (Conklin et al., 2007; Davis, Ahlberg, Berk, Ashley, & Khasraw, 2013). 

MPH is most widely known for its use in treating attention deficit hyperactivity disorder 

(ADHD), for which is it the most commonly prescribed medication (Conklin et al., 2007). In a 

crucial experimental study, the efficacy of MPH as a potential pharmacological intervention for 

the remediation of the cognitive deficits that are experienced by ALL or brain tumor (BT) 

survivors was investigated. Ninety minutes after receiving a dose of MPH, the individuals 

underwent a series of cognitive tests for areas of attention, cognitive flexibility, verbal memory, 

and overall academic performance. Significant effects from MPH were seen in Stroop Word-

Color Association Test (a test of impulsivity, cognitive flexibility, and selective attention), and 

the Continuous Performance Task (a test of attention and concentration; Conklin et al., 2007).  

 Unfortunately, since MPH activates such a large part of the cortical region in the brain, 

the individual is susceptible to more side effects from the drug. The most common side effects of 

MPH are anxiety, sweating, hallucinations, decreased appetite, and overactive behavior (Davis et 

al., 2013; Mulhern et al., 2004); however, in a study of 83 patients undergoing MPH treatment, 

only 5% exhibited symptoms when the dosage was decreased (Mulhern et al., 2004). Although 

the benefits of treated cognitive deficits in cancer survivors have not been fully elucidated, the 

efficacy of MPH in treating ADHD symptoms makes this a promising option as a 

pharmacological intervention.  

Metformin.  Metformin is most commonly used in treating type 2 diabetes due to its 

ability to control hyperglycemia. The primary mechanism by which it achieves this is through 

regulation of the AMP-activated protein kinase (AMPK) pathway (Chaudhari, Reynolds, & 
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Yang, 2020). AMPK signaling works to preserve metabolic homeostasis following synaptic 

transmission by regulating glycolysis and mitochondrial function (Marinangeli et al., 2018) . 

These pathways increase neuronal survival, differentiation, and proliferation, and preserve 

synaptic neuroplasticity (Chaudhari et al., 2020; Marinangeli et al., 2018). Previous studies have 

indicated that malfunctioning MAPK signaling is associated with cognitive impairments, as 

neuroplasticity is an important element in cognitive processes such as memory (Marinangeli et 

al., 2018). In addition to activating AMPK pathways in neurons, metformin has also been found 

to increase glucose metabolism and reduce apoptosis in astrocytes (Chaudhari et al., 2020).  

One study evaluated the efficacy of metformin as a therapeutic agent in improving 

cognitive function. The researchers injected mice with cisplatin, a common chemotherapeutic 

agent used during the induction stage of treatment for various cancers. After injection, the mice 

performed a series of cognitive tests, including the Novel Object-Place Recognition Test (for 

memory) and the Social Discrimination Test (for recognition abilities). The mice injected with 

cisplatin displayed impaired performance in both tasks, signifying cognitive deficits. However, 

when the mice were injected with metformin in addition to cisplatin, performance on both of the 

cognitive tests was improved (Zhou, Kavelaars, & Heijnen, 2016). Another pilot study found 

improved executive function, attention, learning, and memory when metformin was administered 

to patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI; Chaudhari et al., 

2020).  

Metformin has shown considerable effectiveness in protecting against peripheral 

neuropathy, a common consequence from chemotherapeutic agents such as vincristine and 

docetaxel that affects motor and sensory function (Mao-Ying et al., 2014).  However, the effects 
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of metformin were found to be dependent on sex, age, dosage, treatment duration, and 

comorbidities (Chaudhari et al., 2020).  

Donepezil.  Donepezil is most widely used in the treatment of Alzheimer’s disease. This 

drug is a acetylcholinesterase (AChE) inhibitor, so its main function is to increase the 

concentration of acetylcholine at synapses (Winocur, Binns, & Tannock, 2011). Increasing the 

levels of ACh results in increased cholinergic signaling and improved cognitive function, 

specifically in hippocampal processes such as learning and memory (Lim, Joung, Yu, Shim, & 

Kim, 2016; Winocur et al., 2011).  

Previous research has shown that donepezil ameliorates cognitive decline in attention 

deficit and attention seen in patients with AD after twelve months of treatment. Links between 

donepezil-dependent cognitive improvement in survivors of brain tumors have also been 

established (Correa, Kryza-Lacombe, Baser, Beal, & DeAngelis, 2016).   

 In a study focused on the cognitive benefits of donepezil, a group of mice were treated 

with two chemotherapeutic drugs known to cause cognitive deficits, MTX and 5-fluouracil. The 

researchers noted that this chemotherapeutic combination led to hippocampal memory loss and 

impaired prefrontal executive functions, especially in areas of spatial memory, working memory, 

and learning. The chemotherapy-treated mice were given a dose of donepezil in concurrence 

with the chemo cocktail weekly for four weeks. The results revealed that the group treated with 

donepezil alongside the chemotherapy treatment showed significant improvement in the tests of 

learning and memory. Some of the improvements were so great that the level of cognitive 

performance nearly matched that seen in the control group of mice that were only treated with 

saline (Winocur et al., 2011).  
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 Another study used PET scans to observe glucose metabolism in a group of rats treated 

with chemotherapeutic agents and donepezil. Preliminary PET scans following injection with 

chemotherapeutics doxorubicin or cyclophosphamide revealed an overall decrease in glucose 

metabolism in the prefrontal cortex and hippocampus. This effect was seen more significantly in 

conjunction with doxorubicin. After donepezil treatment in the doxorubicin group, PET scans 

revealed an increase in glucose metabolism in the medial prefrontal cortices, the hippocampi, 

and the parietal cortices. The donepezil-treated cyclophosphamide group had increased glucose 

metabolism in the parietal, frontal, and temporal cortices, as well as the hippocampi (Lim et al., 

2016). In this same study, two behavioral tests were used to test cognitive function. The Morris 

Water Maze was used to study spatial and reference memory, and a passive avoidance test was 

used to test explicit working memory. Impairments in all three functions of memory were 

observed following chemotherapy treatment along with slower processing and lower memory 

retention. However, following injection with donepezil, the integrity of all of the tests was 

rescued, and cognitive improvement was observed. Overall, the cognitive improvement after 

donepezil administration was seen to a greater extent in the doxorubicin-treated group in 

comparison to the cyclophosphamide-treated group (Lim et al., 2016).  

Nonpharmacological Interventions 

Many of the pharmacological interventions remain moderate in their mitigation of 

cognitive dysfunction. Moreover, many ALL survivors are unable to receive pharmacological 

interventions. This has caused many individuals to turn to other ecological, psychological, and 

cognitive training interventions to improve the cognitive late effects.  

Exercise.  A simple and accessible intervention is participation in physical activity, 

which improves cognitive function. Although these improvements are relatively trivial in healthy 
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individuals, these positive effects are amplified for individuals who display disease-related 

cognitive deficits (Seigers & Fardell, 2011). At a cognitive level, multiple studies have shown 

that exercise improves aspects of executive functioning, especially working memory. An 

experimental study by Schmidt and associates (2015) tested aspects of executive functioning 

following a 6-week physical activity training program that required the use of higher cognitive 

functioning in the activities. The team found improved shifting processes of executive 

functioning in the participants after the program, indicating that physical activities that require 

cognitive engagement are particularly beneficial in ameliorating deficits, especially when 

compared to physical activity without a cognitive component (Mirko, Katja, Fabienne, Claudia, 

& Achim, 2015). In addition to cognitive functions, exercise also improves the physiological 

processes that are affected in chemotherapy treatment, such as increasing cell proliferation, 

improving cerebral blood flow through the production of growth factors, reducing inflammation 

and oxidative stress, and preserving white matter integrity (Seigers & Fardell, 2011).   

School Reentry Programs.  One of the most well-documented cognitive late effects 

recognized in pediatric cancer survivors is poor academic achievement (Krull, Hardy, Kahalley, 

Schuitema, & Kesler, 2018; Olson & Sands, 2016). One of the methods that has proven useful in 

mitigating this specific issue is the use of school reentry programs. The ideal model of this 

program—although not widely implemented in oncology centers yet—is that a trained employee 

in the pediatric oncology department would communicate with parents, teachers, and caregivers 

of the patient in order to provide general education about the neuropsychological effects the 

patient might face. Although this program would be individualized to each patient, this may 

include a personalized academic plan, communication with the school, or even an educational 

session for the patient’s classmates (Thompson et al., 2015). The risk in omitting this bridge 
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between treatment and the child’s school is that newfound deficits in areas such as attention 

could be misinterpreted by the teacher as noncompliance or a poor attitude. Providing teachers 

with training regarding various cognitive deficits that may appear can allow the teacher to make 

proper accommodations in the classroom and relay any changes in cognitive performance to the 

practitioner/parents should they arise (Krull et al., 2018).  

Computerized Cognitive Training Programs.  Although psychological or therapy-

based interventions are utilized for some cognitive remediation, computerized cognitive training 

programs have some notable advantages—such as reduced cost, lack of adverse effects, and 

geographic reach—in comparison to clinical interventions (Conklin et al., 2016). Computerized 

cognitive training programs aim to target specific cognitive skills through tasks with high 

repetition and graded difficulty (Conklin et al., 2015; Hardy, Willard, Allen, & Bonner, 2013). 

The implementation of these programs began in the 1980s with programs aimed at ameliorating 

cognitive deficits experienced by individuals with a traumatic brain injury (TBI) and later moved 

into the field of pediatric oncology (Olson & Sands, 2016).  

The first groundbreaking study was by Butler and Copeland (2002) when they tested a 

pilot intervention called the Cognitive Remediation Program (CRP; Butler & Copeland, 2002). 

This intervention strategy was tripartite, combining components of TBI rehab, educational 

psychology, and clinic-based psychological interventions. Thirty-one pediatric cancer survivors 

with known attentional deficits were included in the study, twenty-one of which received the 

intervention, while the other ten composed the non-intervention control group. The program 

consisted of twenty 2-hour sessions given in an outpatient setting weekly. The intervention 

targeted attentional deficits through three general components: 1) drill practice, 2) skills 

acquisition, and 3) cognitive-behavioral therapy (CBT). After the intervention was complete, the 
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CRP displayed significant improvement in performance on all three measures of attention (Butler 

& Copeland, 2002; Butler et al., 2008).   

In a modified version of the previous study, Butler et al. (2008) employed the clinic-

based CRP for one 2-hour session weekly for 20 sessions. However, whereas the first study was 

only a pilot study of the CRP program with a small group of survivors, the 2008 study was 

conducted as a nationwide, multicenter, Phase 3 clinical trial. The intervention group of this 

program showed improved academic achievement, attention, working memory, and recall.   

Kesler, Lacayo, and Jo (2011) utilized a similar pilot computerized cognitive training 

program. This intervention consisted of forty home-based sessions 20 minutes each over the 

course of eight weeks. Each session consisted of six tasks: two tested working memory, two 

tested attention, and the last two tested cognitive flexibility. Pediatric cancer survivors that 

participated in this intervention displayed improved processing speed, cognitive flexibility, and 

declarative memory; neuroimaging also revealed increased prefrontal activation (Kesler, Lacayo, 

& Jo, 2011; Olson & Sands, 2016).  

In a particularly innovative study, Hardy et al. (2013) utilized Cogmed RM, an at-home, 

computerized training program to improve visual-spatial and auditory working memory in 

pediatric cancer survivors. The program consisted of 25 training sessions with phone-based 

coaching. The participants were divided into an experimental group and a control group. The 

experimental group completed a success-adapted version of the program that was graded for 

difficulty in congruence with accurate performance. The control group completed a non-adaptive 

version with exercises of the same difficulty level throughout the study. A baseline assessment of 

working memory was taken at three points: before the trial, following the intervention, and then 

three months post-intervention. The results showed significantly improved visual-spatial working 
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memory in the intervention group compared to the control, and this effect was sustained at the 

follow-up assessment three months later (Hardy et al., 2013; Olson & Sands, 2016).  

Conklin et al. (2016) further investigated the efficacy of Cogmed RM and analyzed the 

neural mechanisms for the cognitive changes seen. Much like Hardy’s original study, 

participants were randomly divided into an intervention and a control group, and assessments 

were taken before testing, postintervention, and six months later. For the neuroimaging 

component of the study, the participants were asked to complete a working memory task during 

an fMRI scan. Following intervention, the fMRI showed decreased activation in the prefrontal 

and parietal regions, which could indicate increased neuroplasticity and efficiency for networks 

involved in working memory. Additionally, processing speed, spatial and working memory, and 

attention were improved in the treatment group with sustained effects six months later. 

Furthermore, it was concluded from this study that Cogmed RM shows comparable efficacy and 

participation in comparison to therapy-based interventions (Conklin et al., 2015).  

Although the computerized cognitive remediation programs have been promising, they 

are still inadequate to fully remedy the cognitive deficits suffered by cancer survivors. One of the 

major issues of this form of intervention is the burden that it places on the therapist, individual, 

and family; it is more self-directed in comparison to more regimented therapeutic interventions. 

That factor causes compliance to these programs to be an issue; most of the studies reviewed 

above only showed a 60-80% completion rate, with some as low as 30% (Olson & Sands, 2016). 

The ideal model in the future would include family and school-based interventions alongside 

these programs in order to achieve stronger results (Butler et al., 2008).  
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Conclusion 

Although the field of pediatric cancer research has made tremendous strides in the past 

few decades, there is still much more to be done in the lives of these survivors. Now that the 

cognitive risks are well-established, researchers and practitioners alike are responsible for 

proactively working to counteract these cognitive effects before they take place, if at all possible. 

Ideally, this would mean identifying each individual’s risk before the onset of treatment and 

taking necessary steps to either avoid perpetuation of these risk factors or to ameliorate the 

deficits at the earliest possible point. The ideal holistic approach for a child’s cancer treatment 

should consider and work toward four components: 1) low morbidity due to the cancer and/or 

treatment; 2) lowest possible treatment-related neurotoxicity; 3) high efficacy of treatment and 

interventions following treatment; and 4) a high quality of life (QoL) following treatment 

termination. In an effort to achieve this, research in this field should continue to investigate 

various risk factors contributing to the late effects and pursue the implementation of efficacious 

and accessible interventions for the remediation of said effects in a time-sensitive manner.  
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