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Abstract 

Developing a drug therapy that addresses the root cause of cystic fibrosis (CF) by increasing 

CFTR protein levels has long been a research challenge. After genetic therapy failed because a 

suitable delivery system could not be found, researchers began searching for small organic 

molecules that could act as chaperones for CFTR. These molecules, known as modulators, 

allowed CFTR to be assembled correctly and function similarly to wild type CFTR. Since 2012, 

four modulator drugs have been developed, tested, and approved by the FDA. In October 2019, 

Trikafta was approved as the first triple-combination modulator drug and has completely 

revolutionized CF therapy. This paper details the research challenges, successes, and failures that 

led to the development of modulator therapies. 
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Modulator Therapy for Cystic Fibrosis: An Exploration of Current Research 

Cystic Fibrosis Introduction 

Cystic fibrosis (CF) is a genetic autosomal disease caused by a mutation in a key protein. 

CF is the most common deadly genetic mutation in Caucasians and impacts 70,000 people 

worldwide, who have a predicted median survival of 44.4 years old (up from 32.8 years old in 

2003) (Bompadre, Li, & Hwang, 2008; CFF, 2019). CF is caused by a monogenic autosomal 

recessive mutation that prohibits the cystic fibrosis transmembrane conductance regulator 

(CFTR) protein from functioning normally. CFTR is essential for maintaining homeostasis in the 

body by facilitating water movement through secretion of chloride, bicarbonate, and other 

anions. The CFTR gene was cloned in 1989 which led to rapid increases in knowledge of 

pathophysiology caused by mutant CFTR. Since then, CF research has focused on understanding 

the role of CFTR in the body and developing treatments such as genetic therapy and modulators 

which can reestablish CFTR function to the body.  

CF affects many different organs in the body including the lungs, kidneys, 

gastrointestinal and reproductive tracts, liver, and pancreas (Griesenbach, Pytel, & Alton, 2015). 

Common symptoms of CF include salty-tasting skin, persistent sputum-producing coughing, 

frequent lung infections, and greasy, bulky stools (CFF, 2019). Most recent data from the Cystic 

Fibrosis Foundation 2018 Patient Registry list the median age at death to be 30.8 years for 

individuals with CF with a median predicted survival age of 44.4 years for those born between 

2014-2018 (CFF, 2019). While CF affects the whole body, more than 90% of fatalities are due to 

lung disease; therefore, this paper will focus primarily on the lungs and treatments to help 

improve lung function (Burney & Davies, 2012).  
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This paper briefly explains how CF effects the body as well as several important CF 

mutations to give a background into the research behind modulators. This background gives 

insight into the research advancements and challenges of modulator research. In addition, this 

paper lists all phase 2 and 3 placebo-controlled clinical trials that tested modulators. By 

compiling details from all clinical trials on numerous different drugs, one can see trends in 

clinical results and clearly see the successes and failures of various modulators.  

CFTR’s impact on the body: a story of inflammation and mucus 

A mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) protein 

makes it impossible for the cell to maintain homeostasis. The CFTR gene codes for an ATP-

binding cassette (ABC) transporter which creates a channel for chloride, bicarbonate, and other 

anions to flow along their respective concentration gradients (Callebaut, Chong, & Forman-Kay, 

2018). The CFTR protein is made of five domains: two membrane spanning domains (MSD1 

and MSD2) each of which are composed of six transmembrane segments, two nucleotide binding 

domains (NBD1 and NBD2,) and a regulatory domain (R) (Figure 1) (Farinha & Canato, 2017). 

The two nucleotide binding domains dimerize in a head-to-tail configuration which requires two 

ATP to open the channel (Y. Wang, Wrennall, Cai, Li, & Sheppard, 2014). In addition, the R 

region contains a number of protein kinase A phosphorylation sites that react to an increase in 

cAMP levels. The phosphorylation causes the R-region to stop sterically interfering with NBD 

dimerization (Meng, Clews, Kargas, Wang, & Ford, 2017). In order to open the channel, the R 

region must be properly phosphorylated by cAMP and one ATP must have bound to each of the 

two nucleotide binding domains. In other words, the opening of the CFTR channel is not a 

simple switch but instead responds to a variety of signals and requires at least two activating 
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factors to open. This level of complexity means that a small mutation in the DNA can render the 

entire protein nonfunctional (Meng et al., 2017).  

 

Figure 1. Cartoon map of CFTR showing five domains and signaling molecules. CFTR is made 

up of two membrane spanning domains (MSD), two nucleotide binding domains (NBD), and a 

regulatory region (R) (Farinha & Canato, 2017). In order to open, the R doming must be 

phosphorylated (P) and two ATP must have bound to the NBDs allowing them to dimerize 

(Meng et al., 2017; Y. Wang et al., 2014). Once open, CFTR acts as channel for chloride and 

other small ions. Figure adapted from (Fajac & Wainwright, 2017). 

A normal CFTR protein functions to maintain water balance across the cell membrane. 

When properly triggered by cAMP and ATP, the channel opens and allows chloride and 

bicarbonate to flow along their concentration gradient, which for most situations, means that 

these ions flow out of the cell. CFTR is the main channel for Cl- exit, which in turn triggers Na+ 

secretion to balance ion charges (Saint-Criq & Gray, 2017). The additional salt ions outside the 

cell membrane draws water outside the cell through aquaporins. This water rehydrates airway 

surface liquid (ASL) which is essential to the function of the mucociliarly escalator and to 

preventing buildup of fluid and pathogens in the lungs. In addition, CFTR controls other Cl- and 
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Na+ channels including the epithelial sodium channel (ENaC) (Collawn & Matalon, 2014). 

CFTR functions as the master control to secrete salt and water from the cell, and without CFTR 

the cell becomes very ineffective at secreting water (Collawn & Matalon, 2014). 

CFTR is primarily expressed on exocrine tissues, where one of the main functions of the 

tissue is to secrete water. The height of ASL is directly determined by the number of Na+ and Cl- 

ions in the extracellular fluid (Boucher, 2003). In normal lungs, ASL is a low viscosity fluid 

composed primarily of mucin fiber and a small amount of actin, DNA, and other 

macromolecules (Ong, Mei, Cao, Lee, & Chung, 2019). Without CFTR, Cl- cannot be secreted 

into the extracellular fluid, which results in low levels of osmotic pressure drawing water out of 

the cell, eventually causing the ASL to lose height and volume while at the same time becoming 

more viscous. Equally important is the fact that without CFTR, ENaC is not properly regulated 

which results in constant Na+ absorption (Saint-Criq & Gray, 2017). By facilitating absorption of 

salt, ENaC and CFTR work together to control the viscosity and height ASL. Because CF 

patients lack CFTR, they cannot counteract ENaC, which results in hyperabsorption of sodium, 

further dehydrating ASL.  

Tall, low viscosity ASL is required for proper mucociliary clearance in the lungs 

(Somayaji, Ramos, Kapnadak, Aitken, & Goss, 2017). In CF patients, the ASL has high viscosity 

and cannot be easily cleared from the lungs. When the lungs lack effective muco-ciliary 

clearance, thickened mucus can accumulate in distal airways and cause blockage of airways in 

the form of mucus adhesions, mucus plaques, and plugs (Randell, Boucher, & University of 

North Carolina Virtual Lung, 2006). If mucus is not cleared from the lungs, it creates barriers to 

immune system function and provides a perfect place for bacteria to grow (Randell et al., 2006). 
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Bacteria thrive in thick mucus. From eating mucinoses, to forming biofilms, which 

prevent immune cells from killing bacteria, the thick mucus in CF lungs is hospitable to bacteria 

(Randell et al., 2006). Furthermore, the thickened ASL restricts bacterial motility leading to high 

local bacterial colony densities while simultaneously inhibiting neutrophil and macrophage 

migration (Matsui et al., 2005). The protein defect in CF results in lungs primed for large scale 

bacterial infection. 

In addition, inflammation is increased by lack of HCO3
- transport through CFTR. Beyond 

forming a Cl- channel, CFTR can also transport other small anions including HCO3
-. In the lungs, 

HCO3
- is responsible for reducing pH of ASL. Acidic ASL not only inhibits antimicrobial 

peptides, proteins, and lipids which are inactivated at acidic pH, it also increases inflammation of 

the lung tissue (Stoltz, Meyerholz, & Welsh, 2015). Furthermore, CF macrophages and 

neutrophils tend to be hyperinflammatory with exaggerated responses to bacterial infection 

leading to recruitment of more neutrophils (Conese, 2011; Ralhan et al., 2016). The increased 

level of neutrophils and increased secretion of proinflammatory cytokines from macrophages 

create a death spiral of chronic infection (Bruscia et al., 2009). Moreover, studies have found that 

airway phlegm in CF patients contains little intact mucin but rather consists of bacteria, 

inflammatory cells, and F-actin; the ASL is more characteristic of pus rather than mucus (Flume 

& Van Devanter, 2012).  

Chronic lung infections and high levels of inflammation lead to irreversible lung damage 

by scarring lung tissue. This scarring can lead to advanced lung disease that slowly becomes 

respiratory failure. Eventually these repeat infections and high inflammation levels destroy the 

lungs completely, and a double lung transplant is required.  
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Without functional CFTR, a person is not able to survive, and even with modern medical 

advances, CF patients have a much shorter life expectancy because CFTR is so vital to maintain 

homeostasis. Death is usually caused by lung failure, which is a result of repeated lung infections 

and high levels of inflammation. The lack of one protein completely destroys homeostasis and 

prevents the body from adequately regulating osmotic pressure, clearing the lungs, or effectively 

fighting bacteria.  

CFTR Mutations 

 Because CF is a recessive, monogenic disease, one common way to classify CF patients 

is by their mutations. Of the 281 identified disease causing mutations, the F508del mutation is 

homologous in 70% of CF patients, and the G551D mutation is present in another 4% (Fajac & 

Wainwright, 2017; Hart & Harrison, 2017). The mutations fall into six broad categories. Class I 

mutations are caused by a premature stop codon which results in no full-length CFTR. Caused 

by a processing defect, class II mutations result in nonfunctional CFTR that are usually 

destroyed in the endoplasmic reticulum (ER). Class III are gating mutations caused by a 

regulation defect where the channel will not open when signaled by cAMP and ATP. Class IV is 

a result of decreased conductance; class V represents reduced synthesis, and class VI results in 

increased turnover in membrane (Bosch & De Boeck, 2016). Also known as residual function 

(RF) or minimal function (MF), classes IV-VI cause less severe CF as some proteins are usually 

able to survive and maintain some level of homeostasis. The F508del mutation, a class II 

mutation, and G551D, a class III mutation, are particularly significant because modulator 

treatments are currently available for both of them.  

The F508del mutation is caused by a deletion of a phenylalanine (F) at codon 508. This 

mutation is the most common mutation seen in CF patients, and it has been estimated that 95% 
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of patients possess at least one allele with this mutation (Meng et al., 2017). Codon 508 alters the 

secondary structure of the protein, and without this phenylalanine, the connection between 

MSD2 and NBD1 is very unstable (Bartoszewski et al., 2010; Meng et al., 2017). Endoplasmic 

reticulum (ER) quality control mechanisms such as the 26S proteasome register this instability 

and destroy the faulty protein (Carlile et al., 2018; Clancy, 2018). In addition, even if F508del 

reaches the plasma membrane, it also exhibits gating defects and protein instability in the plasma 

membrane (Clancy, 2018). Because this mutation results in very low levels of CFTR proteins to 

reach the cell membrane, it is considered a class II mutation.  

The second mutation of note is the G551D mutation, which is caused by an aspartic acid 

(D) substitution for glycine (G) at codon 551 located within NBD1 (Derand, Bulteau-Pignoux, 

& Becq, 2003). As a result, the NBD1 section is unable to bind and hydrolyze ATP. The protein 

folds correctly, goes to the plasma membrane, and the R region is correctly phosphorylated, but 

the NBD1 section is unable to dimerize with NBD2 because it cannot hydrolyze ATP 

(Bompadre et al., 2008). Therefore, the protein rarely opens because it is unable to bind to the 

energy source it needs to open the gate, making this mutation a class III mutation. While the 

G551D mutation is not as common as F508del because the protein makes it all the way to the 

surface and there is only one section that is malfunctioning, many researchers believed that 

correcting this mutation should be an easier fix.  

CF Treatment Overview 

There are two main drives with CF lung treatments. The first is downstream treatments. 

These strive to treat the symptoms of CF. The goal is to clear out sputum, also known as mucus, 

from the lungs via airway clearance techniques, to control and prevent bacterial infections via 

antibiotics, and to reduce inflammation in the lungs. Together these treatments can improve lung 
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function, but they are not without their drawbacks. Airway clearance techniques can take hours 

every day, certain bacteria are antibiotic resistant, and only so much inflammation can be 

reduced. In addition, as CF is a chronic, progressive disease, these treatments are not able to keep 

up with the progression of the disease. For many years, these downstream therapies were the 

only option to help those with CF, and each new advancement and discovery added years to CF 

patients’ lives. But with modern research, new therapies are now available that can address the 

root cause of CF: the lack of CFTR.  

The second drive for CF treatment is to establish CFTR protein function to the lungs and 

other organs and thereby return the body to normal homeostasis. The two methods that have been 

proposed to accomplish this goal is genetic therapy and modulators. By delivering wildtype 

DNA or RNA to cells, genetic therapy allows cells to make wtCFTR using normal cell 

processes. However, genetic therapy has faced some serious research development challenges in 

identifying a suitable vector. Since 1989 there have been over 25 human clinical trials testing 

genetic therapy using various viral and non-viral vectors, yet none of these trials have been 

successful (Alton et al., 2016; Griesenbach & Alton, 2011; Griesenbach et al., 2015). 

Researchers have been unable to design a vector that can bypass the body’s defenses and 

successfully deliver genetic material. While this is a testament to the amazing design of the 

human body’s immune system, it means that genetic therapy has not proved an effective 

treatment for CF. After the failures of genetic therapy, researchers moved onto studying 

modulators, which fix the mutated CFTR by acting as readthrough agents or binding to the 

mutated CFTR to correct structural or gating insufficiencies. These small organic molecules do 

not require a vector for delivery, and thus did not face the same research challenges. In fact, four 
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different modulators have been developed which turn mutated CFTR into functioning CFTR 

allowing CF cells to maintain homeostasis. 

Modulator Therapy Introduction 

 Modulators help to increase or restore function of mutated CFTR by directly interacting 

with mutated CFTR and are thereby inherently mutation specific. Depending on the mechanism 

of action, modulators are put into three different categories: potentiators, correctors, and 

amplifiers. Potentiators keep CFTR channels open once they are in the plasma membrane 

(Guimbellot, Sharma, & Rowe, 2017). Correctors act as chaperones to prevent misfolding of 

CFTR in the ER and to transport CFTR to the plasma membrane (Guimbellot et al., 2017). 

Amplifiers increase the amount of CFTR protein the cell produces (Giuliano et al., 2018). There 

are three ways to improve activity of CFTR: by increasing the number of CFTR channels on the 

plasma membrane, increasing the time that the channels are open, or increasing the size or 

conductance of the channel (Clancy, 2018). Modulators can improve CFTR function in the cell 

by increasing any one of these variables. 

Currently there are four CF modulator therapies available to patients: Ivacaftor, 

Lumacaftor/Ivacaftor, Tezacaftor/Ivacaftor, and Elexacaftor/Tezacaftor/Ivacaftor. Ivacaftor was 

the first drug approved by FDA on January 31, 2012 for treatment of CF patients with the 

G551D mutation (FDA, 2012). Ivacaftor is a potentiator which increases the time a CFTR 

channel is open and works for a large variety of mutations. Lumacaftor, Tezacaftor, and 

Elexacaftor are all correctors that were primarily designed to correct mutated F508del CFTR. 

When combined with Ivacaftor, these drugs form a combination therapy, where the corrector is 

responsible for the folding of CFTR, which allows it to be trafficked to the plasma membrane 

while Ivacaftor increases the possibility that the channel is open. The most recent addition to 



Running head: MODULATOR THERAPY 

13 
 

these drug therapies is Trikafta (Elexacaftor/Tezacaftor/Ivacaftor) which was approved by the 

FDA on October 21, 2019 and is the first second-generation, triple-combination modulator 

therapy (FDA, 2019).  

The tables in the next few sections list all phase 2 or 3 placebo-controlled clinical trials 

using modulators published up to December 31, 2019. Journal articles were found primarily via 

pubmed, proquest, and google scholar searches of individual drug names as well as searches on 

clinicaltrials.gov, FDA.gov, and searches of pharmaceutical websites. In order to be included, the 

trial must be placebo controlled and report results either in ppFEV1 change or sweat chloride 

change. FEV1 is one of several tests that measures pulmonary function. FEV1 measures the 

forced expiratory volume at the end of the first second of measurement during a large exhale 

from the patient. ppFEV1 is the percent predicted FEV1, which compares a patient’s results to the 

predicted normal values for their age, sex, height, weight, and ethnicity; the result is expressed as 

a percentage of the normal value. For CF patients, ppFEV1 is one of the most common measures 

of lung function and how well their lungs are working. Improvement in ppFEV1 is usually the 

main endpoint for clinical trials of modulator therapies because it shows quantitatively that the 

drug is helping improve lung function. Most clinical trials required an initial ppFEV1  between 

40-90% to participate as a ppFEV1 lower than that signifies late-stage pulmonary disease and the 

potential need for a lung transplant (Pettit & Fellner, 2014; Ramos et al., 2019).  

The second commonly used endpoint for clinical trials is change in sweat chloride. The 

sweat test is used to diagnose CF and is a relatively simple test where sweat is stimulated using 

pilocarpine iontophoresis, collected, and then the chloride concentration is measured within the 

sweat (LeGrys et al., 2007). A result of <30 mmol/L is the normal result and indicates that CF is 

unlikely, 30-59 mmol/L requires more testing, and >60 mmol/L indicates CF (Farrell et al., 
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2017). High chloride sweat content is present in CF patients because the body is unable to 

reabsorb chloride from the sweat (Quinton, 2007). A decrease in chloride content from the sweat 

test would indicate that CFTR receptors are being expressed on the cell surface and functioning 

properly.  

Note, the tables below list the relative change in ppFEV1 and sweat chloride. That is to 

say the treatment result is compared to the placebo result and the relative change is reported to 

most clearly show how the treatment compared to the placebo. These tables allow easy 

comparison of different modulator drugs and show the process of developing drugs that provide 

high levels of clinical benefit.  

Ivacaftor: The First Modulator 

Currently four modulator regimens have been approved by the FDA. The first of these 

was Ivacaftor, also known as Kalydeco or VX-770, which was originally approved for patients 

with at least one G551D allele. Since its original FDA approval, Ivacaftor has been approved for 

33 more mutations including most of the gating mutations (Eisenman, 2017). Developed by 

Vertex Pharmaceuticals, Ivacaftor is a small organic molecule that was initially found using high 

throughput screening assays (Van Goor et al., 2009). Using human bronchial epithelial (HBE) 

cells from CF patients with the G551D mutation, F508del mutation, and control non-CF cells, 

Ivacaftor’s effect was tested. The study showed Ivacaftor increased CFTR channel open 

probability and increased chloride secretion to approximately 50% of normal chloride secretion 

in wtCFTR cells (Van Goor et al., 2009). In addition, Ivacaftor prevented dehydration of ASL 

and increased cilia beating (Van Goor et al., 2009). After this very promising test, Ivacaftor 

moved to human clinical trials (Table 1).  
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Table 1: Ivacaftor Clinical Trials 

Reference NAME Details Participants 

 

N Treatment Percent Change 

in ppFEV1  

Sweat chloride change 

(mmol/L) 

(Accurso et 

al., 2010) 

 - G551D ≥1 allele 

- Age ≥ 18 

20 IVA 25, 75, or 150 mg 

BID 

2 x 14 day periods 

25 mg: 4.2% 

75 mg: 9.3% 

150 mg: 9.8%  

25 mg: -37.3 

75 mg: -44.8 

150 mg: -46.3 

(Accurso et 

al., 2010) 

 - G551D ≥1 allele 

- Age ≥ 18  

19 IVA 150 or 250 mg BID 

28 days 

150 mg: 1.4% 

250 mg: -3.1% 

150 mg: -64.5 

250 mg: -43.0 

(Ramsey et 

al., 2011) 

STRIVE  - G551D ≥1 allele 

- Age ≥ 12 

161 150 mg IVA BID  

48 wks 

10.5%  -48.1 

(Flume et al., 

2012) 

DISCOVER - F508del homo 

- Age ≥ 12  

140 150 mg IVA BID  

16 wks 

1.9% - 2.9 

(J. C. Davies 

et al., 2013) 

ENVISION - G551D ≥1 allele 

- Age 6-11 

52 

 

150 mg IVA BID 

48 wks 

10% -54.3 

(J. Davies et 

al., 2013) 

Crossover 2x2a - G551D≥1 allele 

- Age ≥ 6  

- ppFEV1 ≥ 90% 

21 IVA 150 mg BID 

- 28 days IVA or PBO  

- 28 days WO 

8.67%  

(De Boeck et 

al., 2014) 

KONNECTION, 

Crossover 2x2a 

- Non G551D gating 

mutation ≥1 allele 

- Age ≥ 6  

39 IVA 150 mg BID 

- 8 wks IVA or PBO 

- 4-8 wks WO 

10.68% -49.17 

(Moss et al., 

2015) 

KONDUCT 

 

- R117H ≥1 allele 

- Age ≥ 6 

69 150 mg IVA BID  

24 wks 

2.1% -24.0 

(Nick et al., 

2019) 

N-of-1 study, 

Crossover 2x2a 

- 2 RF mutations 

- Age ≥ 12 

 

21 IVA 150 mg BID 

- 2 wks IVA and 2 wks 

of PBO (order random) 

- 4-8 wks WO 

2.3%  

Note. All placebo controlled, phase 2 or phase 3 clinical trials testing ivacaftor by itself were found through a literature search and compiled. 

Relative results comparing treatment and placebo are listed in the last two columns. homo = homozygous; IVA = ivacaftor; PBO = placebo; WO = 

washout period; RF = residual function. 
aCrossover 2x2 means that participants received treatment (IVA or PBO) for first period, then took nothing during washout period, followed by 

opposite treatment (PBO if they received IVA first time, or IVA if PBO was received first time) and a second washout period. This study design 

allows testing of ivacaftor against placebo in a single individual.  
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Table 1 demonstrates that Ivacaftor produces significant results both in ppFEV1 change 

and sweat chloride change for individuals with at least one G551D allele. Ivacaftor works by 

binding directly to the CFTR protein and causes spontaneous ATP-independent opening of the 

channel (Eckford, Li, Ramjeesingh, & Bear, 2012; Jih & Hwang, 2013). When Ivacaftor is 

bound, phosphorylation of the regulatory region of CFTR is required, but ATP is not required to 

dimerize NBD1 and NBD2 domains. This corrects the G551D mutation, which does not respond 

to ATP and thus rarely opens. Ivacaftor has little effect on homologous F508del because 

Ivacaftor only increases the open probability of CFTR channels already in the plasma membrane 

while F508del CFTR never reaches the plasma membrane (Flume et al., 2012). In addition, a 

2019 study used a n-of-1 study method to test Ivacaftor’s effect on rare residual mutations (Nick 

et al., 2019). N-of-1 studies use a crossover method of receiving placebo or treatment 

successively to test results of treatment when only one participant can be found with the given 

mutation. This is very helpful in research because it opens up possibilities of FDA approval of 

modulators for those with very rare CF mutations. Because Ivacaftor also increases the 

likelihood that a wtCFTR channel will be open, it has been approved for 33 different mutations 

including, gating, residual function, splice, and conduction mutations (Eisenman, 2017). While 

Ivacaftor may only cause clinical change in certain mutations that make up a small percentage of 

total CF patients, Ivacaftor is the gold standard in modulator therapy for reliably providing large 

amounts of clinical change (FDA, 2017).  

Lumacaftor: Modulator Treatment for F508del Homozygous Mutation 

 The next modulator to be developed was Lumacaftor, also known as VX-809, which was 

also developed by Vertex Pharmaceuticals. Falling into the category of correctors, Lumacaftor 

was designed to prevent misfolding of F508del CFTR. The F508del mutation is the most
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common mutation and is homologous in about 70% of CF patients (Fajac & Wainwright, 2017). 

Lumacaftor works cotranslationally by altering the protein conformation of MSD1, which in turn 

allows a more stable connection between MSD1 and NBD1, thus partially correcting the F508del 

mutation (Ren et al., 2013). An initial clinical trial was completed using just Lumacaftor for 

homologous F508del CF patients, but the results showed that Lumacaftor by itself had no effect 

on ppFEV1 or sweat chloride (Table 2) (Clancy et al., 2012). This is due to the fact that F508del 

CFTR exhibits not only folding defects but also gating defects (Clancy, 2018). However, when 

Lumacaftor was combined with Ivacaftor to create a dual modulator treatment, the combined 

therapy established some CFTR function. Lumacaftor would facilitate correct folding of the 

CFTR and Ivacaftor would increase the time it was open.  

          Lumacaftor/Ivacaftor, also known as Orkambi, has some clinical benefit for F508del 

homozygous patients but no effect for heterozygous F508del patients (Boyle et al., 2014). In 

addition, researchers found that a large daily dose of Lumacaftor was more effective than 

splitting the dose into two daily doses (Ratjen et al., 2017; S. M. Rowe, McColley, et al., 2017). 

Compared to Ivacaftor’s effect on G551D mutation, Lumacaftor/Ivacaftor results in a much more 

modest improvement in lung function. The change is more consistent with therapies that treat 

downstream symptoms of CF (Deeks, 2016). Yet, Lumacaftor/Ivacaftor does cause a significant 

reduction in the rate of FEV1 decline thereby allowing a stabilization in ppFEV1 (Talamo 

Guevara & McColley, 2017). Because of this and the modest improvement in lung function,  

Lumacaftor/Ivacaftor was approved by the FDA in 2015 (FDA, 2015).  

Tezacaftor: a Lumacaftor Replacement 

Tezacaftor or VX-661 has a similar structure to Lumacaftor and was developed as a 

replacement for Lumacaftor. Tezacaftor is a broader-acting CFTR corrector that enables cellular
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Table 2: Lumacaftor Clinical Trials 

Reference NAME 

Details 

Participants N Treatment Percent Change in 

ppFEV1  

Sweat chloride change 

(mmol/L) 

(Clancy et 

al., 2012) 

 - F508del homo 

- Age≥18 

89 LUM 25 mg, 50 mg, 100 mg, or 

200 mg QD 

28 days 

25 mg: -2.46% 

50 mg: -2.15% 

100 mg: .32% 

200 mg: .47% 

25 mg: 0.1 

50 mg: -4.61 

100 mg: -6.13 

200 mg: -8.21 

(Boyle et 

al., 2014) 

 

Cohort 1 - F508del homo 

- Age ≥18 

 

62 - LUM 200 mg QD for 21 days 

- IVA 150 mg or 250 mg BID 

was added for last 7 days 

150 mg: 2.7% 

250 mg: .2% 

150 mg: -5 

250 mg: -10.9 

(Boyle et 

al., 2014) 

 

Cohort 2 - F508del homo 

and F508del het 

- Age ≥18 

109 - LUM 200 mg, 400 mg, or 600 

mg QD for 56 days 

- IVA 250 mg BID added in for 

last 28 days 

200 mg: 3.8% 

400 mg: 2.7% 

600 mg (homo): 5.6% 

600 mg (het): .3% 

200 mg: -5.12 

400 mg: -9.8 

600 mg (homo): -9.6 

600 mg (het): -6.0 

(Boyle et 

al., 2014) 

Cohort 3 - F508del homo 

- Age ≥18 

15 - LUM 400 mg BID for 56 days 

- IVA 250 mg BID added in for 

last 28 days 

4.2% -11.1 

(Wainwright 

et al., 2015)  

TRAFFIC 

TRANS-

PORT 

- F508del homo 

- Age≥12 

 

1108 - LUM 400 mg QD + IVA 250 

mg BID 

- LUM 600 mg BID + IVA 250 

mg BID 

24 wks 

400 mg: 4.8% 

600 mg: 5.6% 

 

 

(Ratjen et 

al., 2017) 

 - F508del homo 

- Age 6-11 

204 LUM 200 mg BID + IVA 250 

mg BID 

24 wks 

2.4% -20.8 

(Rowe et al., 

2017b) 

 - F508del het 

- Age ≥18 

126 LUM 400 mg BID + IVA 250 

mg BID 

56 days 

.6% -11 

Note. All placebo controlled, phase 2 or phase 3 clinical trials testing lumacaftor by itself or in combination with ivacaftor were found through a 

literature search and compiled. Relative results over the entire study comparing treatment and placebo are listed in the last two columns. homo = 

homozygous; het = heterozygous; LUM = lumacaftor; IVA = ivacaftor. 
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production and facilitates trafficking of multiple mutant forms of CFTR including F508del (S. 

M. Rowe, Daines, et al., 2017). Furthermore, because Tezacaftor does not induce CYP3A4 

enzymes, there are less drug-drug interactions than Lumacaftor (Donaldson et al., 2018). This 

means Tezacaftor is safer and improves lung function in more mutations than Lumacaftor. 

Clinical trials showed that Tezacaftor/Ivacaftor treatment resulted in similar levels of change in 

ppFEV1 and sweat chloride as Lumacaftor/Ivacaftor treatment (Table 3).  

Based on these clinical trials, symdeko therapy was created which uses Tezacaftor/ 

Ivacaftor, which was approved by the FDA in February 2018 for patients with one allele of 

F508del and an Ivacaftor-responsive residual function allele (FDA, 2018; S. M. Rowe, Daines, et 

al., 2017). This meant that modulator therapy was now available for more people with CF. For 

homologous F508del patients, there is similar clinical benefits from both Lumacaftor/Ivacaftor 

and Tezacaftor/Ivacaftor, but Tezacaftor/Ivacaftor is responsible for less adverse side effects 

(Kirby, 2018).  

Trikafta: The Challenge of Finding a Triple-Combination Modulator 

The next step in modulator development was to create triple-combination modulators also 

known as second generation modulators. It was theorized that adding a second corrector to the 

Tezacaftor/Ivacaftor combination with a complementary mechanism of action would better 

restore CFTR function (Heijerman et al., 2019). In addition, the goal was to develop a modulator 

that would provide modulator therapy to the 30% of CF patients who are heterozygous for 

F508del and a minimal function mutation (Davies et al., 2018). Minimal-function mutations 

include nonsense, insertion/deletion, splicing, and several severe protein misfolding mutations 

(Davies et al., 2018). The goal was to develop a modulator regimen that could correct CFTR 

function from the one F508del allele regardless of what the second allele is. Vertex  



Running head: MODULATOR THERAPY     20 

 
Table 3: Tezacaftor Clinical Trials 

NAME 

Reference 

Participants N Treatment Percent Change in ppFEV1  Sweat chloride change 

(mmol/L) 

(Donaldson 

et al., 

2018) 

 

- F508del 

homo 

- Age ≥ 18 

 

131 TEZ monotherapy: 

TEZ 10, 30, 100, or 150 mg QD 

Combination therapy: 

TEZ 10, 30, 100, or 150 mg QD + IVA 

150 mg BID 

28 days 

TEZ monotherapy: 

- 10 mg = 3.63% 

- 30 mg = 1.77% 

- 100 mg = 1.74% 

- 150 mg = 2.68% 

Combination therapy: 

- 10 mg = 1.44% 

- 30 mg = 3.04% 

- 100 mg = 3.89% 

- 150 mg = 3.75% 

TEZ monotherapy: 

- 10 mg = 4.78 

- 30 mg = -3.9 

- 100 mg = -19.57 

- 150 mg = -9.6 

Combination therapy: 

- 10 mg = -4.2 

- 30 mg = -5.14 

- 100 mg = -5.18 

150 mg = -1.77 

(Donaldson 

et al., 

2018) 

 

- F508del 

homo 

- Age ≥ 18 

 

67 - TEZ 100 mg QD + IVA 150 mg BID 

- TEZ 100 mg QD + IVA 50 mg BID 

- LUM 50 mg BID + IVA 150 mg BID 

28 days 

TEZ 100 + IVA 150 = 2.19% 

TEZ 50 + IVA 150 = .84% 

LUM 100 + IVA 50 = -.53% 

TEZ 100 + IVA 150 = -4.13 

TEZ 50 + IVA 150 = -6.7 

LUM 100 + IVA 50 = -4.88 

(Donaldson 

et al., 

2018) 

- F508del/  

G551D 

- Age ≥ 12 

18 TEZ 100 mg QD + IVA 150 mg BID 

28 days 

3.2%  -17.2 

EVOLVE 

(Taylor-

Cousar et 

al., 2017)  

- F508del 

homo 

- Age≥12 

510 TEZ 100 mg QD + 150 mg IVA BID 

24 wks 

6.8%  

EXPAND 

(Rowe et 

al., 2017a) 

- F508del + 

RF  

- Age≥12 

248 Crossover 3x2a 

- TEZ 100 mg QD + IVA 150 mg BID 

- IVA 150 mg BID 

8 wks treatment 

8 wks WO 

TEZ + IVA = 6.8% 

IVA = 4.7% 

TEZ + IVA = -9.5 

IVA = -4.5 

Note. All placebo controlled, phase 2 or phase 3 clinical trials testing tezacaftor by itself or in combination with ivacaftor were found through a 

literature search and compiled. Relative results comparing treatment and placebo are listed in the last two columns. Homo = homozygous; TEZ = 

tezacaftor; LUM = lumacaftor; IVA = ivacaftor; WO = washout; RF = residual function. 
a3 sets of a different treatment or placebo followed by washout. 
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Pharmaceuticals initially identified two very similar modulators that could be added to the 

Tezacaftor/Ivacaftor combination. To test which drug was better, Vertex completed separate 

phase 2 and phase 3 studies on VX-659 and VX-445 and compared the results (Table 4).   

VX-659 and VX-445 are correctors that decrease misfolding of CFTR and promotes 

trafficking of CFTR from ER to plasma membrane (Davies et al., 2018). More importantly, they 

have an additive effect to Tezacaftor (Davies et al., 2018; Keating et al., 2018). Clinical trials 

showed that both VX-659 and VX-445 triple combination therapy showed drastic lung 

improvement in both homozygous and heterozygous patients. This level of benefit is similar to 

Ivacaftor’s benefit for the G511D mutation and has the ability to drastically improve a patient’s 

quality of life.  

After running parallel phase 3 studies of VX-659 and VX-445, Vertex decided that VX-

445, also known as Elexacaftor, was the more effective drug. Both studies included a 24 week 

test for patients with one F508del mutation and one MF mutation along with a 4 week test for 

homozygous patients. Both programs met their primary and secondary endpoints, and both of the 

triple combinations were generally well tolerated with a low amount of adverse effects (Vertex, 

2019b). Based on all the data, Vertex submitted Elexacaftor in combination with Tezacaftor/ 

Ivacaftor for FDA approval. On October 21, 2019, Trikafta (Elexacaftor/Ivacaftor/ Tezacaftor) 

was approved by the FDA for patients with at least one F508del mutation (Arnold, 2019). This 

drug opens up life-saving modulator treatment to over 90% of the CF population. It is available 

to patients who previously were ineligible for modulator therapy and greatly improves lung 

efficiency over previous modulator drugs. For the 27,000 people in the United States that this 

drug is approved for, Trikafta means additional years of life, greatly improved quality of life, less 

hours spent in airway clearance, less fear to pulmonary exacerbations, and a healthier body.  

 



Running head: MODULATOR THERAPY     22 

 

Table 4: Triple Combination Drug Trials 

Reference Participants N Treatment Percent Change in 

ppFEV1  

Sweat chloride 

change (mmol/L) 

(Davies et 

al., 2018) 

- F508del + MF 

- Age ≥ 18 

63 VX-659 80, 240, or 400 mg QD + TEZ 100 mg QD + IVA 150 mg 

BID 

4 wks 

80 mg = 9.8% 

240 mg = 11.6% 

400 mg = 12.9% 

80 mg = -48.6 

240 mg = -46.7 

400 mg = -54.3 

(Davies et 

al., 2018) 

- F508del homo 

- Age ≥ 18 

29 VX-659 400 mg QD+ TEZ 100 mg QD + IVA 150 mg BID (placebo 

group received TEZ +IVA) 

4 wks 

9.7% -45.2 

(Davies et 

al., 2018) 

- F508del + MF 

- Age ≥ 18 

25 VX-659 400 mg QD + TEZ 100 mg QD + VX-561 200 mg QD 

4 wks 

17.2% -36.8 

(Vertex, 

2019a)a  

- F508del + MF 

- Age ≥ 12 

385 VX-659 400 mg + TEZ 100 mg QD + IVA 150 mg BID 

24 wks 

14% at week 4  

(Vertex, 

2019a)a 

- F508del homo 

- Age ≥ 12 

111 VX-659 400 mg + TEZ 100 mg QD + IVA 150 mg BID (placebo 

group received TEZ +IVA) 

4 wks 

10%  

(Keating et 

al., 2018) 

- F508del + MF 

- Age ≥ 18 

95 VX-445 50, 100, or 200 mg QD + TEZ 100 mg QD + IVA 150 mg 

BID 

4 wks 

50 mg =11.1% 

100 mg = 7.9% 

200 mg = 13.8% 

50 mg = -36 

100 mg = -31 

200 mg = -36.9 

(Keating et 

al., 2018) 

- F508del homo 

- Age ≥ 18 

28 VX-445 200 mg QD+ TEZ 100 mg QD + IVA 150 mg BID (placebo 

group received TEZ +IVA) 

4 wks 

10.6% -40.4 

 

(Keating et 

al., 2018) 

- F508del + MF 

- Age ≥ 18 

29 VX-445 200 mg QD + TEZ 100 mg QD + VX-561 200 mg QD 

4 wks 

10.5% -34.6 

(Middleton 

et al., 

2019) 

- F508del + MF 

- Age ≥ 12 

403 VX-445 200 mg + TEZ 100 mg QD + IVA 150 mg BID 

24 wks 

14.3% -41.8 

(Heijerman 

et al., 

2019) 

- F508del homo 

- Age ≥ 12 

107 VX-445 200 mg QD+ TEZ 100 mg QD + IVA 150 mg BID (placebo 

group received TEZ +IVA) 

4 wks 

10% -45.1 

Note. All placebo controlled, phase 2 or phase 3 clinical trials testing VX-445 or VX-659 published before Dec 2019 were found through a literature search and 

compiled. Relative results comparing treatment and placebo are listed in the last two columns. MF = minimal function; homo = homozygous TEZ = tezacaftor; 

IVA = ivacaftor. 
aVertex pharmaceuticals did not actually publish a journal article phase 3 testing of VX-659 because it was never submitted for FDA approval or researched 

further. These results are from a press release from Vertex Pharmaceuticals on the phase 3 trial results. They are included to allow easy comparison between VX-

659 and VX-445.  
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While it is important to note that Trikafta is not a cure for CF, and if at any time a patient is 

unable to continue the therapy, they will shortly return to the same baseline before modulator 

treatment, Trikafta is a major research accomplishment in developing a therapy that establishes 

CFTR function in the vast majority of CF patients (Trimble & Donaldson, 2018).  

Failed Modulator Developments 

However not every clinical trial is a success nor does every drug tested make it to market. 

During the research process there are numerous drugs that are developed and tested, but at some 

point, they fail, and research on that drug is stopped. Oftentimes in vitro studies or even phase 1 

studies show very promising results, but during phase 2 or phase 3, clinical benefit is not 

achieved, and the drug is abandoned. When this happens, sometimes journal articles are written 

and explain the failure and why it happened, but other times the failure is not recorded, and the 

pharmaceutical company simply switches to another project. Currently there are two failed drugs 

that made it to phase 2 or 3 in placebo-controlled trials that published at least an abstract.   

In 2014 PTC Therapeutics tested Ataluren in a phase 3 clinical trial (Table 5) (Kerem et 

al., 2014). Ataluren is an amplifier which was designed to prevent nonsense mutations (Class I) 

from happening (Guimbellot et al., 2017). While Ataluren performed well in early clinical trials, 

results from phase 3 clinical trials were not statistically significant. Because Ataluren has a 

similar structure to tobramycin (a commonly used antibiotic), it was hypothesized that chronic 

tobramycin use inhibited Ataluren. However, even excluding patients who used tobramycin, a 

retrospective analysis found that Ataluren still did not cause clinically significant change (Kerem 

et al., 2014).  

Another drug that was developed then disregarded was QBW251, a potentiator, which 

was developed by Novartis Institutes. While the phase 2 trial showed somewhat positive results 
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for patients with gating or residual function mutations, it seems that QBW251 has since been 

abandoned as a CF treatment (Table 5) (Kazani, 2016). Instead QBW251 was tested in 2018 in 

people with COPD and may have applications in other respiratory diseases (S. Rowe et al., 

2018). 

Analyzing failures gives insight into the time, money, and risks that medical research 

requires. Each of these failures as well as the hundreds of potential drugs that were abandoned 

after phase 1 trials represent years of development, hundreds of recruited patients willing to try 

an experimental drug, and millions of dollars. Yet without these failures, new lifesaving drugs 

would not be developed.  Failures are a reality of any development process, and in 

pharmaceutical development, failures show the challenges of developing drugs that cause the 

human body to drastically change the way it functions. 

Current Modulatory Summary 

From initial FDA approval of Ivacaftor in 2012, a large amount of research and 

development has gone into modulator therapies. Because CFTR modulators are inherently 

mutation specific, one of the major research drives is to expand currently approved drugs to new 

mutations. This process was started in 2017 when the FDA approved Ivacaftor for 23 additional 

mutations based solely on in vitro trials (FDA, 2017). This decision is very beneficial because 

some mutations are so rare that there are simply not enough people to do a clinical trial, but the 

access to modulator therapy can greatly improve and extend their lives. While n-of-1 studies help 

to expand access to modulator treatments, the approval of additional mutation based solely on in 

vitro trials means that lifesaving treatment is available to more people. Even with Ivacaftor being 

approved for these additional mutations, modulator therapy was still only available for a small 

amount of the CF population before the development of Lumacaftor.   
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Table 5: Failed Drug Trials 

Referen

ce 

Participants Treatment Percent Change in 

ppFEV1  

Sweat chloride 

change (mmol/L) 

(Kerem 

et al., 

2014) 

- Class 1 

mutation 

- Age ≥ 6 

- N=238 

 

Ataluren (10 mg/kg at 

breakfast, 10 mg/kg at 

lunch, 20 mg/kg at 

dinner) 

48 wks 

3%  

5.7% (for patients not 

using chronic inhaled 

tobramycin) 

 

(Kazani, 

2016) 

 

- GM or RF ≥ 

1 allele 

- N=26 

QBW251 150 or 450 

mg BID 

2 wks 

450 mg = 7.3% 150 mg = -16.9  

(Kazani, 

2016) 

 

- F508del 

homo 

- N=14 

QBW251 450 mg BID 

2 wks 

No change No change 

Note. Placebo controlled, phase 2 or phase 3 clinical trials testing drugs that did not proceed further 

published before Dec 2019 were found through a literature search and compiled. Relative results 

comparing treatment and placebo are listed in the last two columns. GM = gating mutation; RF = 

residual function; homo = homozygous. 
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The second research drive was to combine modulators to develop new drugs to better 

remedy the F508del mutation. Both Lumacaftor and Tezacaftor were unable to produce clinically 

significant results by themselves, but when combined with Ivacaftor, these drugs were able to 

restore some clinical function. The development of Lumacaftor/Ivacaftor meant that modulator 

treatment was available to the 70% of CF patients homozygous for F508del (Fajac & 

Wainwright, 2017). However, Lumacaftor/Ivacaftor only produced a modest improvement in 

lung function (Table 2).  

This led to the third research drive, which is the development of new drugs that are safer 

and produce more clinical benefit. Tezacaftor was developed to try to solve this problem, and 

because of its increased safety and fewer drug-related interactions, it has replaced Lumacaftor. In 

addition, Tezacaftor/Ivacaftor treatment was not limited to people F508del homozygous 

mutations but also produced benefit in some F508del heterozygous patients (Table 3).   

The fourth research drive was to create a triple combination therapy. This was done by 

adding a second corrector (Elexacaftor) to the Tezacaftor/Ivacaftor combination that amplified 

Tezacaftor’s effect. By adding a third drug, the effect of the modulator treatment is multiplied as 

more CFTR is folded correctly and is more stable which allows for transport from ER to the cell 

surface. Furthermore, this second-generation modulator opened up treatment to all CF patients 

with at least one F508del mutation, meaning that 90% of CF patients now have access to 

modulator treatment. In the future this research drive will continue as new drugs are developed to 

allow more CFTR to be produced until CFTR levels in CF patients resemble normal levels. Until 

that goal has been accomplished, there is still much more research that can be done to develop 

new modulators.  
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Overall, modulator therapy is a growing field of CF treatment that has the possibility of 

changing a CF diagnosis from a fatal life sentence to a tolerable disease. Modulators will never 

be able to completely cure CF, but the hope is that they will restore enough CFTR function to 

allow patients to live normal lives. Modulators are beginning to drastically change what life with 

CF looks like. While hours of daily treatment, immune compromised states, pulmonary 

exhibitions, and long hospital stays are still part of daily life for many CF patients, this does not 

have to be the case. Modulators have the potential to restore CFTR function to normal non-CF 

levels, but they still need more development and research to fully complete this goal. Modulators 

are the route to fulfilling CF patients’ hope that one day there will be no need for lung 

transplants, weeks of IV antibiotic treatment, or the fear of a mother that they will bury their 

child because of this chronic disease. There is a hope that in years to come, Trikafta will be 

looked back upon as the drug that started the progression of changing CF from a life sentence to 

a livable disease. 

Future Modulator Research 

Even with the amazing accomplishment that Trikafta is, research is not done. Vertex 

Pharmaceuticals and several other companies are working hard to create new, more effective, 

and safer modulators. To begin with, Vertex Pharmaceuticals is testing a deuterated form of 

Ivacaftor known as VX-561 (formerly known as CTP-565).  Deuteration is the process of 

replacing one or more hydrogen atoms with deuterium. This form of Ivacaftor is more stable in 

vitro and would be taken once daily rather than the current form which is taken twice a day 

(Harbeson et al., 2017). VX-561 was actually included in the two phase 2 clinical trials testing  

VX-659 and VX-445 and showed promising results (Davies et al., 2018; Keating et al., 2018). 

VX-561 is beginning its own phase 2 clinical trials and may replace Ivacaftor in the future.  
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 Vertex Pharmaceuticals is the only company to develop and receive approval for a 

modulator therapy for CF, but they are not the only company developing modulator therapies 

(Table 6) (Chaudary, 2018). A cooperation between AbbVie and Galapagos Cystic Fibrosis 

Collaboration has led to the development of several novel modulators. To begin with, GLPG222 

is a corrector that was found to be 25-fold more potent than Lumacaftor in cell line testing (X. 

Wang et al., 2018). However, in human trials GLPG2222 unfortunately only produced minor 

improvements (Bell et al., 2019). The second possibility is GLPG 2737, another corrector which 

resembles Elexacaftor and VX-659. GLPG2737 demonstrated 3 fold improvement of rescue of 

F508del homozygous CFTR activity when compared with Lumacaftor/Ivacaftor treatment (van 

Koningsbruggen-Rietschel et al., 2019). While the lung efficiency improvement in human trials 

was only modest, it is important to note the patients were already receiving Lumacaftor/Ivacaftor  

treatment (van Koningsbruggen-Rietschel et al., 2019). The addition of GLPG2737 further 

improved their lung function. This fact warrants further research into GLPG2737 as an 

Elexacaftor alternative. In addition, AbbVie/Galapagos recently completed a phase 1 study 

combining GLPG 2222, GLPG 2737, and GLPG 2451 to test their own triple-combination drugs 

(Clinical Trials, 2019). In the next few years, AbbVie/Galapagos may release either their own 

triple combination therapy or novel drugs to increase the benefit of existing modulator therapies.  

Flatley Discovery Lab and Proteostasis Therapeutics have both developed correctors and 

potentiators than can be used in place of or in addition to various Vertex drugs. Both of these 

companies recently completed phase 2 clinical trials with these drugs, but as of December 2019 

have not published journal articles, so results of these trials are not reported here. In the next 

couple of years, it is likely that another pharmaceutical company may be able to create a 

competing modulator. 
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Table 6: New Drug Research 

NAME 

Reference 

Participants 

 

Treatment Percent 

Change in 

ppFEV1  

Sweat chloride 

change 

(mmol/L) 

(Bell et al., 

2019) 

- F508del homo 

- Age ≥ 18 

- N=59 

GLPG2222 50 mg, 100 

mg, 200 mg, 400 mg, 

QD 

29 days 

50 mg: 1.1% 

100 mg: .7% 

200 mg: 1% 

400 mg: 2.3% 

50 mg: -3.3 

100 mg: - 4.1 

200 mg: -15.8 

400 mg: -6.3 

(Bell et al., 

2019) 

- F508del + GM 

- Age ≥ 18 

- N=36 

GLPG2222 150 mg, 

300 mg QD, + IVA 150 

mg BID 

29 days 

150 mg: .2% 

300 mg: 3% 

150 mg: -10.4 

300 mg: -11.6 

PELICAN 

(van 

Koningsbrugg

en-Rietschel 

et al., 2019) 

- F508del homo 

- Age ≥ 18 

- N=22 

 

GLPG2737 75 mg BID 

+ LUM 400 mg + IVA 

250 mg BID 

28 days 

3.4% -19.6 

Note. All placebo controlled, phase 2 or phase 3 clinical trials testing new modulator drugs published 

before Dec 2019 were found through a literature search and compiled. Relative results comparing 

treatment and placebo are listed in the last two columns. Homo = homozygous; IVA = Ivacaftor; 

LUM = Lumacaftor; GM = gating mutation. 
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Furthermore, research is not isolated to correcting CFTR; in fact, Spyryx Bioscience, Inc. 

has developed a ENaC modulator known as SPX-101 (Couroux et al., 2019). By promoting 

channel internalization, SPX-101 regulates ENaC activity, which reduces Na+ absorption from 

ASL (Couroux et al., 2019). This novel approach illustrates that much more research can still be 

done in the development of modulators. While only in phase 1 testing, SPX-101 creates an 

entirely new class of modulators that lessen the effects of CF in a completely novel method. 

The process of developing a new modulator therapy is not easy. From intensive scanning 

through thousands of molecules to find a potential modulator, to cell culture testing, to in vitro 

models, to in vivo testing in animal models, there are a lot of steps before a therapy even reaches 

human clinical trials. From there, phase 1 safety trials are performed with a small number of non-

CF and CF volunteers. Phase 2 trials test the safety and efficiency of the drug at different doses 

and are followed by a phase 3 trial where a larger group of CF patients take the drug for an 

extended period of time. Ideally each of these trials is placebo controlled, so the results of the 

drug can be easily evaluated. In short, the development of modulator therapy for CF is a time and 

money intensive process but well worth the effort.   

Conclusion 

 The research into modulators has produced several life changing drugs. As of the end of 

2019, modulator therapy is available for 90% of the CF population, and clinical results show 

outstanding improvements in lung function. This is a major accomplishment! But there is still 

more work to be done. Modulators can be developed for all CF patients and be improved upon so 

that they are more effective and have less side effects.  

 Modulators are a revolutionary therapy and will drastically change the clinical approach 

to treating CF. Rather than facing continued failures as genetic therapy research has, modulators 
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have been proven to cause clinical change without major adverse effects. Modulators are able to 

significantly fix the root cause of CF by reestablishing CFTR function rather than only treating 

symptoms as downstream therapies do. When combined with downstream therapies, modulators 

can create a therapy regimen that prolongs and improves the life of CF patients. 

 CF modulator therapy has come a long way from when Ivacaftor was released in 2012, 

yet there is still further modulator therapy can go. The second generation, triple combination 

modulators were a significant improvement and opened the doors for more people to receive 

effective modulator treatment. But researchers are nowhere close of finding the limits of 

modulators. Trikafta uses two correctors and a potentiator, but there is another whole class of 

modulators that needs to be explored more fully: amplifiers; as well as modulators that interact 

with ENaC. CF research is just finding the tip of the iceberg of what can be done through 

modulator therapy.  

 Modulators are the CF treatment of the future. The ultimate goal of CF research is to 

improve and lengthen the lives of CF patients. Research into modulators have shown very 

promising results including significant clinical benefit, increase lung efficiency, decreased 

pulmonary exacerbations, and longer and healthier lives for people with CF. Modulator research 

provides hope that one day a treatment or combination of treatments will allow CF patients to 

live normal lives without worrying about the effects of what was once a chronic, progressive, 

deadly disease. Modulators are the path to a brighter future for those with cystic fibrosis.  
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