
Running head: OBFUSCATION THROUGH SELF-MODIFYING CODE 1

Achieving Obfuscation Through Self-Modifying Code: A Theoretical Model

Heidi Angelina Waddell

A Senior Thesis submitted in partial fulfillment

of the requirements for graduation

in the Honors Program

Liberty University

Spring 2020

OBFUSCATION THROUGH SELF-MODIFYING CODE 2

Acceptance of Senior Honors Thesis

This Senior Honors Thesis is accepted in partial

fulfillment of the requirements for graduation from the

Honors Program of Liberty University.

Melesa Poole, Ph.D.

Thesis Chair

Robert Tucker, Ph.D.

Committee Member

James H. Nutter, D.A.

Honors Director

Date

OBFUSCATION THROUGH SELF-MODIFYING CODE 3

Abstract

With the extreme amount of data and software available on networks, the protection of online

information is one of the most important tasks of this technological age. There is no such thing as

safe computing, and it is inevitable that security breaches will occur. Thus, security professionals

and practices focus on two areas: security, preventing a breach from occurring, and resiliency,

minimizing the damages once a breach has occurred. One of the most important practices for adding

resiliency to source code is through obfuscation, a method of re-writing the code to a form that is

virtually unreadable. This makes the code incredibly hard to decipher by attackers, protecting

intellectual property and reducing the amount of information gained by the malicious actor.

Achieving obfuscation through the use of self-modifying code, code that mutates during runtime, is a

complicated but impressive undertaking that creates an incredibly robust obfuscating system. While

there is a great amount of research that is still ongoing, the preliminary results of this subject suggest

that the application of self-modifying code to obfuscation may yield self-maintaining software

capable of healing itself following an attack.

 Keywords: self-modifying code, autonomous software, obfuscation

OBFUSCATION THROUGH SELF-MODIFYING CODE 4

Achieving Obfuscation Through Self-Modifying Code: A Theoretical Model

Executive Summary

Computing systems and modern networks have completely revolutionized the world in a

startlingly short amount of time. Information is available at the touch of a button, and cellular

devices and Internet of Things (IoT) devices have brought connectivity into many facets of modern

life. In usual software development practices, programming is relatively straightforward and follows

general standards. One of the methods of programming that does not follow these standards, and is

widely discouraged and very rarely used, is self-modifying code. Often villainized for its incredibly

complex and difficult nature, self-modifying code is exactly what it sounds like – code that can

modify itself during execution. This practice is fraught with difficulties and dangerous side effects,

so much so that high-level languages do not allow for its use (it can only be accomplished using

assembly code). However, despite the difficulties, self-modifying code has many extraordinary uses,

with research being done into its application in self-healing networks and autonomous software.

Most commonly, however, it is used for obfuscation.

 Protecting information stored online is one of the most critical jobs in existence. There are

many ways that security administrators work to protect information, with two popular and notably

similar methods being encryption and obfuscation. Encryption is a method of transforming data into

an unreadable code using keys, while obfuscation attempts to render the data unreadable without

using a key or a code. The primary difference is that, in encryption, an attacker cannot decrypt the

data without the key, even if he knows the encryption algorithm being used, while in obfuscation,

the data can be understood if the attacker knows the algorithm used to obfuscate it. Essentially,

obfuscation is a faster but less secure method of hiding data. There are many methods of

obfuscating data; one of the most popular methods involves passing the binary digits of the data

OBFUSCATION THROUGH SELF-MODIFYING CODE 5

through an exclusive OR (XOR) operation along with a generated key string to flip some of the bits

and render the data into an unrecognizable state.

A large amount of research is being done into creating self-obfuscating software applications

using self-modifying code. This thesis proposes a new theoretical method, which uses an XOR

obfuscation algorithm that reapplies the obfuscation every few minutes using a different XOR input

string with a key generated from a random byte of information gained from one of the memory

registers. This way, the obfuscated instructions are constantly changing, making it extremely

difficult – nearly impossible – for an attacker to decipher the algorithm being used. Although this

algorithm is purely theoretical and requires a large amount of development and testing, it has the

potential to offer a robust and easy-to-maintain method of protecting data.

OBFUSCATION THROUGH SELF-MODIFYING CODE 6

Introduction to Self-Modifying Code

In the realm of computer science and software development, certain subjects are

generally avoided because of their inherent difficulty. One such area is the design and

implementation of self-modifying software, which is code that can dynamically modify itself at

runtime (Cai, Shao, & Vaynberg, 2007). Its unpopularity is mostly due to its extremely

complicated nature in all areas, including design, implementation, and debugging. However,

when properly implemented, self-mutating code can provide startling improvements in code

optimization and security practices and may provide the foundation for a software system that

can independently identify a security breach, fix the problem, and modify its own code for future

security.

Self-modifying code has multiple definitions, and clarifying the meaning behind the term

is an important step in order to fully grasp the concept. One definition is something that is seen

frequently throughout computer programming, where the code being executed depends on

variables that are entered at runtime. For example, consider the code segment below:

Figure 1. Basic for loop code.

OBFUSCATION THROUGH SELF-MODIFYING CODE 7

Figure 2. For loop code results.

In this example of a basic for loop, the number of times that the loop executes is an unspecified

variable that is entered at run-time by the user of the system. Since this causes the code to be

modified during execution, it can be considered an example of self-modifying code. However,

for the purposes of this project, this is not the kind of code being investigated. Rather, when

self-modifying code is referenced, it is referring to the modification of specific instructions by

causing the compiler to store instructions as data:

Writes and reads of the data memory both occur in the memory stage [of the stages taken

by the processor to execute instructions]. By the time an instruction reading memory

reaches this stage, any preceding instructions writing memory will have already done so.

On the other hand, there can be interference between instructions writing data in the

memory stage and the reading of instructions in the fetch stage, since the instruction and

data memories reference a single address space. This can only happen with programs

containing self-modifying code, where instructions write to a portion of memory from

which instructions are later fetched. Some systems have complex mechanisms to detect

OBFUSCATION THROUGH SELF-MODIFYING CODE 8

and avoid such hazards, while others simply mandate that programs should not use self-

modifying code. (Bryant & O’Hallaron, 2010, p. 471)

This description presupposes the use of pipelining, a commonly used practice in modern

computing where multiple instructions are executed at the same time.

Source Code Obfuscation

Data protection and information security has rapidly become one of the most in-demand

fields in existence. With the vast amount of data stored online via networks and source code,

ensuring the confidentiality, integrity, and availability of the information is a crucial task to maintain

the safety of internet data. Ideally, source code and data would be completely unreachable by an

unauthorized user; however, there is no such thing as safe computing, and it is inevitable that

breaches to a system will occur. Therefore, defense schemes aim to create defense-in-depth –

multiple layers of security on each aspect of computation that aim to achieve security (preventing a

breach from occurring) and resiliency (minimizing the damage after a breach). One of the most

popular methods of achieving resiliency is to mask its true meaning or value, rendering it useless to

the attacker.

The most popular means of hiding data or source are through encryption and obfuscation.

While these topics may seem like the same concept, they are subtly different in method and overall

goal. Encryption is defined as transforming the data into a code using a key, which then also

requires a key to translate the data back into its original form. Obfuscation, however, does not

require a key to translate the data into a predictable code; instead, obfuscation renders the data into

an unreadable form that still accomplishes the same task:

OBFUSCATION THROUGH SELF-MODIFYING CODE 9

The code obfuscation is a mechanism for hiding the original algorithm, data structures or the

logic of the code, or to harden or protect the code (which is considered as intellectual

property of the software writer) from the unauthorized reverse engineering process. In

general, code obfuscation involves hiding a program’s implementation details from an

adversary, i.e. transforming the program into a semantically equivalent (same computational

effect program, which is much harder to understand for an attacker). (Behera & Bhaskari,

2015, p. 757)

Obfuscation is especially useful to guarding against source code tampering, malicious reverse

engineering, and the theft of intellectual property.

Typically, encryption is performed on data, and obfuscation is performed on source code. In

this application, the goal of obfuscating source code is to hide what the code accomplishes. This

way, if an attacker gains access to the functions, it will be unclear what the purpose or variables of

the code is. For example, consider the code below:

OBFUSCATION THROUGH SELF-MODIFYING CODE 10

Figure 3. Twelve Days of Christmas obfuscated code.

While totally unreadable, this code outputs all 12 verses of the Christmas song The Twelve

Days of Christmas (this particular code won the International Obfuscated C Code Competition in

1998) (International Obfuscated C Code Winners 1988 - Least likely to compile successfully, n.d.).

OBFUSCATION THROUGH SELF-MODIFYING CODE 11

Computer Architecture

One of the chief reasons for the unpopularity of self-modifying code is the extreme level

of difficulty in successfully implementing it. To fully understand why this is the case, as well as

how to properly implement self-mutating code, an understanding of computer hardware and

modern processes must be established. Modern computer architecture is based on the von

Neumann architecture, which contains multiple hardware units that work together to execute

software:

The von Neumann computation model is the most common and commercially successful

model to date. The main characteristic of this model is a single separate storage structure

(the memory) that holds both program and data. Another important characteristic is the

transfer of control between addressable instructions, using a program counter (PC). The

transfer is either implicit (auto-increment of PC) or through explicit control instructions

(jumps and branches, assignment to PC). It is for this reason that the von Neumann model

is commonly referred to as a control flow model. (Yazdanpanah, Alvarez-Martinez, &

Jimenez-Gonzalez, 2014, p. 1490)

A von Neumann system is made up of many components. The central processing unit

(CPU) is the cornerstone of the hardware system, and it is the unit that interprets instructions

written by the software to manipulate and compute data. For this project, the key components to

understand are registers, set locations inside of the CPU that contain small amounts of memory.

Data can be moved from memory into one of these registers, where manipulations are made to

the value, and then the new value is transferred back into memory. Memory holds a program

being executed, and input/output (I/O) devices can read in information from the user and write it

out to either a disk or a screen. Electrical conduits called buses ferry bytes between all the

OBFUSCATION THROUGH SELF-MODIFYING CODE 12

different components, and the number of bits that the buses can carry determines the word size of

the machine. Modern day machines typically implement either 4-byte (32-bit) or 8-byte (64-bit)

word sizes.

Two crucial sections of memory to understand are the heap and the stack, two of the most

fundamental data structures that computers implement. The heap is the memory section that

provides additional memory for an application when requested, and the stack contains the

instruction sequence, arguments, and variables that run during execution. This can be seen in

Figure 4 below:

Figure 4. How a program appears in main memory.

Although depictions of computer architecture divide main memory and control structures into

sections and divisions, this organization is purely logical and not physical (Mavrogiannopoulos,

OBFUSCATION THROUGH SELF-MODIFYING CODE 13

Kisserli, & Preneel, 2011). This flat layout causes a lack of distinction between code and data,

and this allows applications to store data in memory that will later be interpreted as instructions.

Ultimately, all information processed by computer systems are binary digits, and can be

either a 0 or a 1. These individual 0’s and 1’s, known as bits (short for ‘binary digits’), represent

all the information on a system. This includes programs stored and running in memory, user

data, network transmissions and information, and every other piece of information stored in

internal or external memory. The binary nature of bits is because they represent electrical

voltage, with 0’s being a low voltage and 1’s being a high voltage. While specific voltage

capacity meters vary, values of 0 – 0.3 MHz are interpreted as a 0, and values of 0.7 – 1 MHz are

interpreted as a 1. Since all information is represented as bits, the only differentiation between

the different values is the context in which they are viewed: “The only thing that distinguishes

different data objects is the context in which we view them. For example, in different contexts,

the same sequence of bytes might represent an integer, floating-point number, character string, or

machine instructions” (Bryant & O’Hallaron, 2010, p. 39). How are these bits turned into useful

information?

High-level programming languages, such as C++ and Java, are modified several times by

the computer system. First, the compiler translates the program (to which the necessary headers

have been added by the preprocessor) into assembly language, a low-level language that

represents the commands using English characters and semi-readable mnemonics. From the

assembly language, the assembler generates object code, represented by hexadecimal values, and

finally, the object code is turned into machine code, long strings of binary digits that the

computer hardware interprets as electrical signals. The vast majority of modern programming is

accomplished by high-level programming languages, which are readable by humans and can

OBFUSCATION THROUGH SELF-MODIFYING CODE 14

provide safeguards and debugging for code developers. However, most of these languages use

said safeguards to prevent self-modifying code; therefore, writing a self-modifying program is

best developed using assembly language, which does not contain code guidelines and

communicates directly with the physical hardware of the system. This is part of what makes

self-modifying code so difficult; although assembly language uses English characters arranged

into somewhat comprehensible words, it is highly tedious to develop in as it requires developers

to move values individually to and from each register, specify specific memory locations, and to

interact directly with the stack.

Assembly Language

The first computers, developed in the 1950s, were vast, complicated machines that could

carry out only one computation at a time. Initially, they were powered by thousands of electrical

devices called vacuum tubes that controlled electric current flow, but these were soon replaced

by transistors, semiconductor devices which generated less heat and led to faster computing.

Improving software performance was a slower process than improving the hardware, however;

but it was John von Neumann’s development of binary instructions that laid the groundwork for

modern-day software. When von Neumann formulated the architecture of modern processors, he

organized it so that a string of bits would be used to encode both the instructions and the data of

the program, leading to the development of modern assembly language. Paul Dunne (n.d.).

explains:

Following this approach a machine that operated on, say 16 bit words, the memory

locations that held the program would have the instructions interpreted as follows: the

first few bits (4 for example) would indicate a particular operation (ADD, STORE,

LOAD etc) and the remaining bits (12 in this case) would indicate where the data for the

OBFUSCATION THROUGH SELF-MODIFYING CODE 15

operation was stored in memory. For a such a program to be executable by the computer,

however, the binary pattern corresponding to each individual instruction would have to

be entered into the memory. A typical application program for a complex scientific

calculation might break down into 200 or more such instructions and so to carry out the

calculation 3200 0s and 1s would have to be produced and loaded into memory. (para. 2)

Initially, commands were issued using punched cards representing individual bits, but this was

soon replaced by assembly language, a low-level language slightly higher than the machine code.

This was then built upon with the advent of high-level languages, beginning with FORTRAN

(FORmula TRANslation) and then COBOL (Common Or Business Oriented Language), which

enabled programmers to create more efficient code with less errors. Assembly language still

remains in use, as modern programming languages are disassembled into assembly code before

object and machine code; however, it is very rare to develop software directly in assembly

language anymore. This process of translation between languages is diagrammed in Figure 5:

Figure 5. High-level language and assembly language translation to machine language.

Despite the difficulties involved in developing assembly language, there are several

advantages that make it worth the hassle in certain situations: “The advantage of programming in

OBFUSCATION THROUGH SELF-MODIFYING CODE 16

assembly language over a high-level language is that one can gain a very detailed look at the

architecture of a computer system and write very efficient programs, in terms of both increasing

speed and saving memory” (Streib, 2011, p. 1). Because assembly programs deal directly with

the computer hardware, registers and memory locations can be directly accessed, thus making its

development much more dangerous but also much more powerful.

To demonstrate the syntax and setup of assembly language, a comparison between a

program written in C++ and the same program written in assembly code is shown below:

Figure 6. A basic C++ program.

OBFUSCATION THROUGH SELF-MODIFYING CODE 17

Figure 7. Assembly language program of Figure 41.

Upon first inspection, the assembly code is very difficult to understand, as its syntax is

mnemonic in nature and does not use full English words the way high-level languages do. The

first thing to understand is the difference between directives and instructions. Instructions are

implemented by the CPU, and can be seen in the commands on lines 7-8 and 12-15. Directives,

however, tell the assembler what to do, and can be seen in lines 1-4, 6, 10, and 17-18. For

example, the .386 directive at the beginning of the program instructs the assembler that the

program will be run on an Intel 386 or newer processor (used on 64-bit systems), and the

.stack 4096 directive tells the assembler how large the stack will be (in this case, 100

hexadecimal bytes).

1 This program is written in the Microsoft Macro Assembler (MASM), an x86 assembler implemented on Intel

processors.

OBFUSCATION THROUGH SELF-MODIFYING CODE 18

In the x86 architecture, there are a total of 16 registers that the system uses to manipulate

data (although 64-bit architectures contain additional, rarely used registers), and are denoted in

the Microsoft Macro Assembler (MASM) with a percent sign (%). Eight of these sixteen are

designated as general-purpose registers, and are used to temporarily save data inside the

processor:

1. Accumulator register (AX)

2. Counter register (CX)

3. Data register (DX)

4. Base register (BX)

5. Stack Pointer register (SP)

6. Stack Base Pointer register (BP)

7. Source Index register (SI)

8. Destination Index register (DI)

Six of the remaining registers are called segment registers, and typically do not change value

during the execution of a program:

1. Stack Segment register (SS)

2. Code Segment register (CS)

3. Data Segment register (DS)

4. Extra Segment register (ES)

5. F Segment register (FS)

6. G Segment register (GS)

OBFUSCATION THROUGH SELF-MODIFYING CODE 19

The two remaining registers are the Instruction Pointer register (IP), which contains the address

of the next instruction that the CPU will execute, and the Flags register, which is set to a specific

value in certain cases (for example, if the result of an operation results in a value too large for the

register to represent, the ‘Overflow’ flag is set). In 64-bit registers, the register acronyms are

prefixed by an ‘R’, and in 32-bit registers, they are prefixed by an ‘E’ (in other words, the ax

register is referred to as %rax or %eax).

With this basic understanding of assembly language now established, the instructions in

the MASM program above can be examined. The num1 sdword ? and num2 sdword ?

instructions create two variables, named num1 and num2, that are 32-bits in length (the size of an

sdword). In the main program, denoted by the main proc (which stands for ‘main procedure’),

the value of 5 is moved into the num1 variable by the command mov num1, 5. The mov

%eax, num1 command then loads this variable into the %eax register, and then stores this

register into num2 with the command mov num2, %eax. The ret command returns the value

of zero, signaling the end of the program.

Application

With a firm understanding of computer architecture and assembly language, self-

modifying code can now be understood and implemented. The applications of dynamically

mutating code range from software optimization and independent code adaptation to security and

obfuscation. It has been fully established that there is no such thing as completely secure

software; no matter how many security devices are put in place, new advances in malware will

always pose new threats and exploit unforeseen vulnerabilities in the software. Security,

therefore, is a living process that must be constantly monitored and maintained. Current security

OBFUSCATION THROUGH SELF-MODIFYING CODE 20

processes are done largely by humans or with the use of a semi-automated process. The

application of self-modifying code, however, could play a key role in the creation of a full-

automated, independent software system capable of adapting to new security situations and

healing itself from breaches and hardware failures (Rschudin & Yamamoto, 2006).

While there are many applications in a variety of programs, most common of which are

viruses and malware that can replicate themselves over and over again, the application that will

be discussed in this project will be overwriting data and source code for obfuscation and security.

Masking the machine code, and thus making software unintelligible to the attacker, provides a

layer of security that will be crucial for the probable (possibly inevitable) event of a security

breach, allowing the system time to find and correct the vulnerabilities without losing all data to

the attacker (Mavrogiannopoulos, Kisserli, & Preneel, 2011). When used in this way, if the

program being executed senses a network breach, it can execute a loop that will overwrite the

data section of the program with bogus values. This renders the data unusable to the intruder,

although it may also destroy the data permanently. Overwriting the data using a specific

encryption technique achieves obfuscation, which renders the variables unusable temporarily but

allows for them to be decrypted back into their original values. The other popular method of

obfuscation, which will be explored later, is overwriting the instructions themselves with a

different command. As this obfuscation does not change the output of the application, it can be

carried out at certain intervals over and over again as the program runs, thus causing the

assembly commands to be constantly re-obfuscated. This adds a great level of complexity to the

algorithm, making it drastically harder to an intruder to decipher.

One way to achieve data obfuscation, purposefully overwriting data values, is by causing

bogus values to overwrite the values in the stack. As was discussed previously, computer

OBFUSCATION THROUGH SELF-MODIFYING CODE 21

memory is shown and explained with different sections for data and program executions, but in

fact this distinction is purely logical and is not actually achieved in the underlying architecture.

Thus, it is possible to intentionally overwrite values in the data section directly using instructions

in the code section. As an example, consider an assembly language program with stack that

begins at .pos 0x100. As values are pushed, the stack grows ‘upward’ towards the smaller

memory addresses. This is illustrated below:

Figure 8. Basic assembly program.2

2 This program is written in a Y86 Simulator. Y86 is similar to the x86, but is used as an introduction to assembly

language development as it contains fewer instructions and simpler syntax. It is used purely for educational

purposes.

OBFUSCATION THROUGH SELF-MODIFYING CODE 22

In this example, the assembly code (shown in the far-left column) sets up the base pointer

register %ebp (which contains the address of the base of the stack) and the stack pointer register

%esp (which contains the address of the top of the stack), moves the value of 5 into the %eax

register, and then pushes this value onto the stack. At the bottom, the .pos 0x100 command is

an assembler directive that causes the Stack variable to be created at that position in memory.

In the far-right column, the values of each position in memory are shown, along with the position

of the base and top of the stack3. As this column illustrates, the memory locations grow

downwards, but the stack values grow upwards (towards the smaller memory addresses). In

order to overwrite the values on the stack, an assembly command would cause the value in a

register to be written to the position in memory where the stack resides. High-level

programming languages do not allow for this capability, as it is incredibly dangerous and can

have disastrous consequences when it occurs unintentionally. When used intentionally, however,

obfuscation and data protection can be achieved directly and efficiently.

While masking the values and variables of an application is a popular application of

obfuscation, the primary method of obfuscation involves masking the source code itself. Thus,

instead of overwriting the values in the stack, the commands themselves are hidden and

obscured. This method of obfuscation is evaluated closely in the next section, and a theoretical

algorithm for achieving source code obfuscation with self-modifying code is proposed and

outlined.

3 Please note, this free version of the Y86 simulator contains an error that causes the %ebp and %esp registers to

point to the wrong position in memory. The correct position is 3 bytes above.

OBFUSCATION THROUGH SELF-MODIFYING CODE 23

Methods of Source Code Obfuscation

XOR Obfuscation

One of the most popular methods of obfuscation in use is known as XOR obfuscation,

which takes its name from the Boolean algebra truth table known as exclusive OR (XOR)

(Kissel, 2005). Boolean truth tables take inputs of binary digits (i.e., either 0 or 1), and output a

binary digit based on the combination of the input. An OR table outputs a 1 if either one of the

two bits input is a 1; it’s derivate XOR outputs a one if either of the two bits is a 1, but not both.

This is displayed in the following tables:

Figure 9. OR Table.

Figure 10. XOR Table.

In computer science, the XOR operator is a bitwise operator that takes two binary strings

as inputs and creates a resulting binary string by performing the XOR operation on all the bits.

For example, the XOR results of the string 01011101 and the string 1110001 is 10111100.

When applied to obfuscation, a key string is generated that is then passed to an XOR function

along with the code, and the original binary digits are then overwritten with the results of this

operation. This method of obfuscation is extremely similar to encryption, which always involves

OBFUSCATION THROUGH SELF-MODIFYING CODE 24

the use of keys, but is still classified as obfuscation because of the method and goal of the

operation: “XOR(255) has the advantage of being fast (it typically executes in less than 1 clock

cycle on modern architectures), reversible, and can be performed in-place. XOR(255) has the

additional property of leaving a file’s entropy unchanged, allowing processed data to remain

invisible to tools that search for encrypted data using entropy techniques” (Zarate, Garfinkel,

Herrernan, Gorak, & Horas, 2014, p. 1).

Achieving XOR obfuscation is accomplished in a variety of ways. The most basic

method is performing an XOR operation on two bytes, and keeping the result. For example,

consider obfuscating the letter ‘J’ by XORing it with the letter ‘v’. The first step is to find the

American Standard Code for Information Interchange) ASCII values that correspond to these

letters by consulting a table such as the one below. ASCII values are universal codes, displayed

in the hexadecimal number system, that the computer translates into numbers and symbols:

Figure 11. ASCII Table.

OBFUSCATION THROUGH SELF-MODIFYING CODE 25

By this table, ‘J’ is equal to the hexadecimal value of 0x4A and ‘v’ is the hexadecimal value of

0x76. Converting these values into binary values results in 01001010 and 01110110.

Performing an XOR operation on these bytes results in the value of 00111100. Turning this byte

back into a hexadecimal value results in 0x3C, which by referencing the table results in the

symbol ‘<’.

Another method of obfuscation, which is more advanced and complicated, combines

machine language with assembly language. This is possible due to the extremely basic nature of

assembly commands. This method is demonstrated below:

Figure 12. Combining machine and assembly languages.

Since assembly language is one step above machine language, the machine code

‘10111010’ is the machine translation of ‘Mov DX’. Converting 35537 into binary results in

‘1000101011010001’, in the format of ‘Mov-dw-11-DL-CL’ (which results in Mov Dl, CL)

(Behera & Bhaskari, 2015).

Other Methods

 Although XOR obfuscation is arguably the most popular obfuscation method in use

today, several other methods exist. Dead-Code Insertion is a method that simply adds

commands that do not accomplish anything, making the malicious actor think that the code is

OBFUSCATION THROUGH SELF-MODIFYING CODE 26

accomplishing a different task. Instruction Subroutines replace original commands with other

commands that accomplish the same task (for example, xor can be replaced by sub, and mov is

equivalent to push). Code Transportation, possibly the most difficult method of obfuscation,

rearranges the commands of an applications in a way that does not affect the output (Iliev, 2017).

Achieving Obfuscation through Self-Modifying Code: A Theoretical Algorithm

One of the most popular applications of self-modifying code is in the realm of obfuscation.

However, the extremely difficult nature of dynamically modifying code has resulted in a lack of

research and development in the subject. Therefore, the goal of this senior thesis is to propose an

algorithm, written for assembly language, that will present a means of modifying commands during

execution to obfuscate the commands. The general flow of the algorithm is as follows: first,

variables key and counter are declared, and counter is set to 0. key is an 8-bit (1-byte) value that

contains a binary string gained from the stack pointer (SP) register. As discussed previously, the SP

register is one of the eight general-purpose registers used to temporarily save data inside of the

processor, and its purpose is to hold the address of the most recent value on the stack. Therefore, the

value contained in it is constantly changing as various programs are executed, making the resulting

value of key nearly impossible to discern by an attacker. Using this value may cause security

concerns; however, since this value is only being used as the key by which to obfuscate the desired

information, these concerns are minimal. After these values are set up, the necessary data that the

code is manipulating is loaded into the stack. In a real-life application, these values could represent

usernames, passwords, email addresses, or other necessary data. These values are then manipulated

according to the needs of the program, but after every command is executed, the counter variable is

incremented. Once counter is equal to 10, key will be regenerated according to the current value in

the SP register, and the command to be obfuscated (which for the sake of this program will be a mov

OBFUSCATION THROUGH SELF-MODIFYING CODE 27

command) is passed through an XOR operation with key. The original command will then be

replaced with this new value. This algorithm is explained in pseudocode in the following figure:

Figure 13. Proposed algorithm.

 To properly understand how this algorithm works, consider the result of obfuscating a

mov command. In assembly language, mov is used to move data values between registers and

memory. “This instruction has two operands: the first is the destination and the second specifies

the source. Some examples of mov instructions using address computations are:

mov eax, [ebx] ; Move the 4 bytes in memory at the address contained in EBX into

EAX

mov [var], ebx ; Move the contents of EBX into the 4 bytes at memory address

var. (Note, var is a 32-bit constant).

mov eax, [esi-4] ; Move 4 bytes at memory address ESI + (-4) into EAX

mov [esi+eax], cl ; Move the contents of CL into the byte at address ESI+EAX

OBFUSCATION THROUGH SELF-MODIFYING CODE 28

mov edx, [esi+4*ebx] ; Move the 4 bytes of data at address ESI+4*EBX into EDX

(x86 Assembly Guide, 2018, para. 11). In the assembly command mov al, 61h, the value of 61 in

hexadecimal digits (97 in the decimal system) is loaded into the AL register, and this can be

broken down into four specific parts of binary digits. The opcode of the mov command is 1011;

the single bit 0 is used to specify if the data is a byte or a full-size of 16/32 bits; the binary

identifier for AL is 000; and the binary representation is 0x61 is 01100001. Adding these values

together results in the complete binary opcode of 10110000 01100001 (Computer architecture

and assembly language, n.d.).

 To obfuscate this command, the algorithm must first generate a key based on the location

of the current instruction on the stack, contained in the SP register. For this example, the data

inside of SP is 10010001, and therefore this value is copied into key giving it a value of

10010001. This key will first be passed through an XOR operation with the first byte of the

opcode, resulting in the value of 00100001. The same operation will then be applied to the

second byte of the opcode, giving a value of 11110000. With the new obfuscated version of the

opcode now generated, the program must now overwrite the original command with the new

opcode. This can be accomplished in several ways; the command itself can be overwritten

directly, or new commands can be generated that skip the original command and instead execute

from the newly generated one. For example, consider this self-modifying code example:

OBFUSCATION THROUGH SELF-MODIFYING CODE 29

Figure 14. Self-modifying code example.

 When the get_eip function is called in the first function, the address of the ADD

instruction is popped from the stack and replaced by the new one generated by the command

XOR byte ptr [edx], 28h: “Self-modifying code replaces the ADD machine code with SUB and

OBFUSCATION THROUGH SELF-MODIFYING CODE 30

sub with ADD ; therefore, calling self_mod_code in a loop returns the following sequence of

numbers : 06 02 06 02... , thus confirming successful completion of self-modification”

(Principles of building self-modifying code, n.d., para. 7).

Conclusion

High-level programming languages are created for a number of reasons. In early years,

computer programming was done completely with assembly language, but the tedious nature of

the logic and syntax, coupled with the lack of debuggers or data protection, caused many issues

for developers. Thus, creating languages like Java, Python, and the C variations led to more

efficient programming that could create software much easier and with far fewer errors. Now,

assembly language is rarely used, and is usually only taught to rising developers as a means of

understanding computer architecture. However, harnessing the power of assembly language can

lead to dynamic programs with a variety of applications, with self-mutating code being one of

the most common applications. Autonomous software may not be practical for every

application, but in applications like embedded networks or satellite technology that cannot be

accessed in real-time, it may provide answers to the problem of security (Rschudin &

Yamamoto, 2006).

Dynamic and self-modifying code may be difficult and time-consuming, but applying it

to the topic of security may lead to exciting developments and programs that can automatically

protect sensitive data from intruders. In addition to obfuscation, self-mutating code can also be

used to directly create new instructions, modify source code, and even create and execute a

dynamic program that can write itself without human interaction (Becker, 2013). Other possible

applications of self-modifying code include software that can automatically optimize itself for

maximum efficiency and self-healing software that can develop its own updates and source code

OBFUSCATION THROUGH SELF-MODIFYING CODE 31

modification. When coupled with the emerging capabilities of artificial intelligence (AI), the

future of self-modifying code is limitless.

OBFUSCATION THROUGH SELF-MODIFYING CODE 32

References

Ansel, J., Marchenko, P., Erlingsson, U., & Taylor, E. (2011). Language-independent

sandboxing of just-in-time compilation and self-modifying code. Proceedings of the 32nd

ACM SIGPLAN Conference on Programming Language Design and Implementation, 11,

355-366.

Balachandran, V., & Emmanuel, S. (2013). Potent and stealthy control flow obfuscation by stack

based self-modifying code. IEE Transactions on Information Forensics and Security, 8(4),

669-681.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., & Yang, K. (2001).

On the (im)possibility of obfuscating programs. Annual International Cryptology

Conference, 2139, 1-18.

Becker, K. (2013, January 27). Using artificial intelligence to write self-modifying/improving

programs. Retrieved from http://www.primaryobjects.com/2013/01/27/using-artificial-

intelligence-to-write-self-modifying-improving-programs/

Behera, C. K., & Bhaskari, D. L. (2015). Different obfuscation techniques for code protection.

Procedia Computer Science, 70, 757-763.

Bitansky, N., & Vaikuntanathan, V. (2015). Indistinguishability obfuscation from functional

encryption. 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,

171-190.

OBFUSCATION THROUGH SELF-MODIFYING CODE 33

Blazy, S., Laporte, V., & Pichardie, D. (2016). Verified abstract interpretation techniques for

disassembling low-level self-modifying code. Journal of Automated Reasoning, 56, 283-

308.

Brecak, J. (2004, November 23). Self modifying C code. Retrieved from

https://web.archive.org/web/20100717072236/http:/public.carnet.hr/~jbrecak/sm.html

Brunton, F. (2015). Obfuscation: A user's guide for privacy and protest. Cambridge, MA: The

MIT Press.

Bruschi, D., Martignoni, L., & Monga, M. (2007). Code normalization for self-mutating

malware. IEE Security & Privacy, 5(2), 46-54.

Bryant, R., & O'Hallaron, D. (2010). Computer systems: A programmer's perspective. Harlow,

United Kingdom: Pearson.

Cai, H., Shao, Z., & Vaynberg, A. (2007). Certified self-modifying code. ACM SIGPLAN

Notices - Proceedings of the 2007 PLDI Conference, 42(6), 66-77.

Figure 11. ASCII Table. Reprinted from Nowhere to hide: three methods of XOR obfuscation, by

Cannel, J. (2016). Retrieved from https://blog.malwarebytes.com/threat-

analysis/2013/05/nowhere-to-hide-three-methods-of-xor-obfuscation/

Figure 12. Combining machine and assembly languages. Reprinted from Nowhere to hide: three

methods of XOR obfuscation, by Cannel, J. (2016). Retrieved from

https://blog.malwarebytes.com/threat-analysis/2013/05/nowhere-to-hide-three-methods-

of-xor-obfuscation/

OBFUSCATION THROUGH SELF-MODIFYING CODE 34

Collberg, C., & Nagra, J. (2010). Surreptitious software obfuscation, watermarking, and

tamperproofing for software protection. Upper Saddle River, NJ: Addison-Wesley.

Computer architecture and assembly language [PowerPoint slides]. (n.d.). Retrieved from

https://www.cs.bgu.ac.il/~caspl162/wiki.files/PS01_162[2].pdf

Dang, B., Gazet, A., Bachaalany, E., & Josse, S. (2014). Practical reverse engineering: x86, x64,

arm, windows kernel, reversing tools, and obfuscation. Indianapolis, IN: John Wiley and

Sons.

Deitel, P., & Deitel, H. (2014). C++ How to Program. Edinburgh, Scotland: Pearson.

Dovland, J., Johnsen, E. B., Owe, O., & Yu, I. C. (2015). A proof system for adaptable class

hierarchies. Journal of Logical and Algebraic Methods in Programming, 84(1), 37-53.

Dunne, P. (n.d.). Making computing easier: programming languages. Retrieved from

http://cgi.csc.liv.ac.uk/~ped/teachadmin/histsci/htmlform/lect6.html

Goldwasser, S., & Rothblum, G. (2014). On best-possible obfuscation. Journal of Cryptology,

4392, 480-505.

Iliev, K. (2017, August 31). Top 6 advanced obfuscation techniques hiding malware on your

device. Retrieved from https://sensorstechforum.com/advanced-obfuscation-techniques-

malware/

Figure 3. International Obfuscated C Code Winners 1988 - Least likely to compile successfully.

(n.d.). Reprinted from 5th International Obfuscated C Code Contest (n.d.). Retrieved

from http://www.ioccc.org/years.html#1988_phillipps

OBFUSCATION THROUGH SELF-MODIFYING CODE 35

Kissel, Z. (2005). Obfuscation of the standard XOR encryption algorithm. Crossroads, 11(3), 6-

6.

Ligh, M. H. (2011). Malware analyst's cookbook and dvd: Tools and techniques for fighting

malicious code. Indianapolis, IN: Wiley.

Mavrogiannopoulos, N., Kisserli, N., & Preneel, B. (2011). A taxonomy of self-modifying code

for obfuscation. Computers & Security, 30(8), 679-691.

Morse, G. (2018). Pure infinitely self-modifying code is realizable and Turing-complete.

International Journal of Electronics and Telecommunications, 64(2), 123-129.

Figure 14. Principles of building self-modifying code. (n.d.). Reprinted from Flylib, (n.d.).

Retrieved from https://flylib.com/books/en/1.444.1.62/1/

Rschudin, C., & Yamamoto, L. (2006). Harnessing self-modifying code for resilient software.

Lecture Notes in Computer Science, 3825, 197-204.

Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., & Weippl, E. (2016). Protecting

software through obfuscation: can it keep pace with progress in code analysis? ACM

Computing Surveys, 49(1), 1-37.

Shan, L., & Emmanuel, S. (2011). Mobile agent protection with self-modifying code. Journal of

Signal Processing Systems, 65, 105-116.

Streib, J. (2011). Guide to assembly language: A concise introduction. London, England:

Springer-Verlag.

Figure 5. High-level language and assembly language translation to machine language.

Reprinted from Guide to assembly language: A concise introduction, by Streib, J. (2011).

OBFUSCATION THROUGH SELF-MODIFYING CODE 36

Figure 4. In-memory layout of a program (process). Reprinted from Computer Science,

Research, Data, and Code, by Tolomei, G. (n.d.). Retrieved from

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/

Tully, S. (2013, December 29). Writing a self-mutating x86_64 c program. Retrieved from

https://shanetully.com/2013/12/writing-a-self-mutating-x86_64-c-program/

Viega, J. (2003). Secure programming cookbook for C and C++. Sebastopol, CA: O'Reilly.

x86 Assembly Guide. (2018). Retrieved from

https://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Xu, H. (2016). Assessing the security properties of software obfuscation. IEEE Security and

Privacy Magazine, 14(5), 80-83.

Yazdanpanah, F., Alvarez-Martinez, C., & Jimenez-Gonzalez, D. (2014). Hybrid dataflow / von-

Neumann architectures. IEEE Transactions on Parallel and Distributed Systems, 25(6),

1489-1509.

Zarate, C., Garfinkel, S., Heffernan, A., Gorak, K., & Horras, S. (2014). A survey of XOR as a

digital obfuscation technique in a corpus of real data. Retrieved from

https://calhoun.nps.edu/bitstream/handle/10945/38680/NPS-CS-13-

005.pdf?sequence=1&isAllowed=y

