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Abstract 

With the extreme amount of data and software available on networks, the protection of online 

information is one of the most important tasks of this technological age.  There is no such thing as 

safe computing, and it is inevitable that security breaches will occur.  Thus, security professionals 

and practices focus on two areas: security, preventing a breach from occurring, and resiliency, 

minimizing the damages once a breach has occurred.  One of the most important practices for adding 

resiliency to source code is through obfuscation, a method of re-writing the code to a form that is 

virtually unreadable.  This makes the code incredibly hard to decipher by attackers, protecting 

intellectual property and reducing the amount of information gained by the malicious actor.  

Achieving obfuscation through the use of self-modifying code, code that mutates during runtime, is a 

complicated but impressive undertaking that creates an incredibly robust obfuscating system.  While 

there is a great amount of research that is still ongoing, the preliminary results of this subject suggest 

that the application of self-modifying code to obfuscation may yield self-maintaining software 

capable of healing itself following an attack.  

 Keywords: self-modifying code, autonomous software, obfuscation 
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Achieving Obfuscation Through Self-Modifying Code: A Theoretical Model 

Executive Summary 

Computing systems and modern networks have completely revolutionized the world in a 

startlingly short amount of time.  Information is available at the touch of a button, and cellular 

devices and Internet of Things (IoT) devices have brought connectivity into many facets of modern 

life.  In usual software development practices, programming is relatively straightforward and follows 

general standards.  One of the methods of programming that does not follow these standards, and is 

widely discouraged and very rarely used, is self-modifying code.  Often villainized for its incredibly 

complex and difficult nature, self-modifying code is exactly what it sounds like – code that can 

modify itself during execution.  This practice is fraught with difficulties and dangerous side effects, 

so much so that high-level languages do not allow for its use (it can only be accomplished using 

assembly code).  However, despite the difficulties, self-modifying code has many extraordinary uses, 

with research being done into its application in self-healing networks and autonomous software.  

Most commonly, however, it is used for obfuscation. 

  Protecting information stored online is one of the most critical jobs in existence.  There are 

many ways that security administrators work to protect information, with two popular and notably 

similar methods being encryption and obfuscation.  Encryption is a method of transforming data into 

an unreadable code using keys, while obfuscation attempts to render the data unreadable without 

using a key or a code.  The primary difference is that, in encryption, an attacker cannot decrypt the 

data without the key, even if he knows the encryption algorithm being used, while in obfuscation, 

the data can be understood if the attacker knows the algorithm used to obfuscate it.  Essentially, 

obfuscation is a faster but less secure method of hiding data.  There are many methods of 

obfuscating data; one of the most popular methods involves passing the binary digits of the data 
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through an exclusive OR (XOR) operation along with a generated key string to flip some of the bits 

and render the data into an unrecognizable state. 

A large amount of research is being done into creating self-obfuscating software applications 

using self-modifying code.  This thesis proposes a new theoretical method, which uses an XOR 

obfuscation algorithm that reapplies the obfuscation every few minutes using a different XOR input 

string with a key generated from a random byte of information gained from one of the memory 

registers.  This way, the obfuscated instructions are constantly changing, making it extremely 

difficult – nearly impossible – for an attacker to decipher the algorithm being used.  Although this 

algorithm is purely theoretical and requires a large amount of development and testing, it has the 

potential to offer a robust and easy-to-maintain method of protecting data. 
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Introduction to Self-Modifying Code 

In the realm of computer science and software development, certain subjects are 

generally avoided because of their inherent difficulty.  One such area is the design and 

implementation of self-modifying software, which is code that can dynamically modify itself at 

runtime (Cai, Shao, & Vaynberg, 2007).  Its unpopularity is mostly due to its extremely 

complicated nature in all areas, including design, implementation, and debugging.  However, 

when properly implemented, self-mutating code can provide startling improvements in code 

optimization and security practices and may provide the foundation for a software system that 

can independently identify a security breach, fix the problem, and modify its own code for future 

security. 

Self-modifying code has multiple definitions, and clarifying the meaning behind the term 

is an important step in order to fully grasp the concept.  One definition is something that is seen 

frequently throughout computer programming, where the code being executed depends on 

variables that are entered at runtime.  For example, consider the code segment below: 

 

Figure 1. Basic for loop code. 
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Figure 2. For loop code results. 

In this example of a basic for loop, the number of times that the loop executes is an unspecified 

variable that is entered at run-time by the user of the system.  Since this causes the code to be 

modified during execution, it can be considered an example of self-modifying code.  However, 

for the purposes of this project, this is not the kind of code being investigated.  Rather, when 

self-modifying code is referenced, it is referring to the modification of specific instructions by 

causing the compiler to store instructions as data: 

Writes and reads of the data memory both occur in the memory stage [of the stages taken 

by the processor to execute instructions].  By the time an instruction reading memory 

reaches this stage, any preceding instructions writing memory will have already done so.  

On the other hand, there can be interference between instructions writing data in the 

memory stage and the reading of instructions in the fetch stage, since the instruction and 

data memories reference a single address space.  This can only happen with programs 

containing self-modifying code, where instructions write to a portion of memory from 

which instructions are later fetched.  Some systems have complex mechanisms to detect 
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and avoid such hazards, while others simply mandate that programs should not use self-

modifying code. (Bryant & O’Hallaron, 2010, p. 471) 

This description presupposes the use of pipelining, a commonly used practice in modern 

computing where multiple instructions are executed at the same time.  

Source Code Obfuscation 

Data protection and information security has rapidly become one of the most in-demand 

fields in existence.  With the vast amount of data stored online via networks and source code, 

ensuring the confidentiality, integrity, and availability of the information is a crucial task to maintain 

the safety of internet data.  Ideally, source code and data would be completely unreachable by an 

unauthorized user; however, there is no such thing as safe computing, and it is inevitable that 

breaches to a system will occur.  Therefore, defense schemes aim to create defense-in-depth – 

multiple layers of security on each aspect of computation that aim to achieve security (preventing a 

breach from occurring) and resiliency (minimizing the damage after a breach).  One of the most 

popular methods of achieving resiliency is to mask its true meaning or value, rendering it useless to 

the attacker. 

The most popular means of hiding data or source are through encryption and obfuscation.  

While these topics may seem like the same concept, they are subtly different in method and overall 

goal.  Encryption is defined as transforming the data into a code using a key, which then also 

requires a key to translate the data back into its original form.  Obfuscation, however, does not 

require a key to translate the data into a predictable code; instead, obfuscation renders the data into 

an unreadable form that still accomplishes the same task: 
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The code obfuscation is a mechanism for hiding the original algorithm, data structures or the 

logic of the code, or to harden or protect the code (which is considered as intellectual 

property of the software writer) from the unauthorized reverse engineering process.  In 

general, code obfuscation involves hiding a program’s implementation details from an 

adversary, i.e. transforming the program into a semantically equivalent (same computational 

effect program, which is much harder to understand for an attacker). (Behera & Bhaskari, 

2015, p. 757) 

Obfuscation is especially useful to guarding against source code tampering, malicious reverse 

engineering, and the theft of intellectual property. 

Typically, encryption is performed on data, and obfuscation is performed on source code.  In 

this application, the goal of obfuscating source code is to hide what the code accomplishes.  This 

way, if an attacker gains access to the functions, it will be unclear what the purpose or variables of 

the code is.  For example, consider the code below: 
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Figure 3. Twelve Days of Christmas obfuscated code. 

 

 

While totally unreadable, this code outputs all 12 verses of the Christmas song The Twelve 

Days of Christmas (this particular code won the International Obfuscated C Code Competition in 

1998) (International Obfuscated C Code Winners 1988 - Least likely to compile successfully, n.d.). 
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Computer Architecture 

One of the chief reasons for the unpopularity of self-modifying code is the extreme level 

of difficulty in successfully implementing it.  To fully understand why this is the case, as well as 

how to properly implement self-mutating code, an understanding of computer hardware and 

modern processes must be established.  Modern computer architecture is based on the von 

Neumann architecture, which contains multiple hardware units that work together to execute 

software: 

The von Neumann computation model is the most common and commercially successful 

model to date. The main characteristic of this model is a single separate storage structure 

(the memory) that holds both program and data. Another important characteristic is the 

transfer of control between addressable instructions, using a program counter (PC). The 

transfer is either implicit (auto-increment of PC) or through explicit control instructions 

(jumps and branches, assignment to PC). It is for this reason that the von Neumann model 

is commonly referred to as a control flow model. (Yazdanpanah, Alvarez-Martinez, & 

Jimenez-Gonzalez, 2014, p. 1490) 

A von Neumann system is made up of many components.  The central processing unit 

(CPU) is the cornerstone of the hardware system, and it is the unit that interprets instructions 

written by the software to manipulate and compute data.  For this project, the key components to 

understand are registers, set locations inside of the CPU that contain small amounts of memory.  

Data can be moved from memory into one of these registers, where manipulations are made to 

the value, and then the new value is transferred back into memory.  Memory holds a program 

being executed, and input/output (I/O) devices can read in information from the user and write it 

out to either a disk or a screen.  Electrical conduits called buses ferry bytes between all the 
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different components, and the number of bits that the buses can carry determines the word size of 

the machine.  Modern day machines typically implement either 4-byte (32-bit) or 8-byte (64-bit) 

word sizes. 

Two crucial sections of memory to understand are the heap and the stack, two of the most 

fundamental data structures that computers implement.  The heap is the memory section that 

provides additional memory for an application when requested, and the stack contains the 

instruction sequence, arguments, and variables that run during execution.  This can be seen in 

Figure 4 below: 

 

Figure 4. How a program appears in main memory. 

 

Although depictions of computer architecture divide main memory and control structures into 

sections and divisions, this organization is purely logical and not physical (Mavrogiannopoulos, 
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Kisserli, & Preneel, 2011).  This flat layout causes a lack of distinction between code and data, 

and this allows applications to store data in memory that will later be interpreted as instructions. 

Ultimately, all information processed by computer systems are binary digits, and can be 

either a 0 or a 1.  These individual 0’s and 1’s, known as bits (short for ‘binary digits’), represent 

all the information on a system.  This includes programs stored and running in memory, user 

data, network transmissions and information, and every other piece of information stored in 

internal or external memory.  The binary nature of bits is because they represent electrical 

voltage, with 0’s being a low voltage and 1’s being a high voltage.  While specific voltage 

capacity meters vary, values of 0 – 0.3 MHz are interpreted as a 0, and values of 0.7 – 1 MHz are 

interpreted as a 1.  Since all information is represented as bits, the only differentiation between 

the different values is the context in which they are viewed: “The only thing that distinguishes 

different data objects is the context in which we view them.  For example, in different contexts, 

the same sequence of bytes might represent an integer, floating-point number, character string, or 

machine instructions” (Bryant & O’Hallaron, 2010, p. 39).  How are these bits turned into useful 

information? 

High-level programming languages, such as C++ and Java, are modified several times by 

the computer system.  First, the compiler translates the program (to which the necessary headers 

have been added by the preprocessor) into assembly language, a low-level language that 

represents the commands using English characters and semi-readable mnemonics.  From the 

assembly language, the assembler generates object code, represented by hexadecimal values, and 

finally, the object code is turned into machine code, long strings of binary digits that the 

computer hardware interprets as electrical signals.  The vast majority of modern programming is 

accomplished by high-level programming languages, which are readable by humans and can 
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provide safeguards and debugging for code developers.  However, most of these languages use 

said safeguards to prevent self-modifying code; therefore, writing a self-modifying program is 

best developed using assembly language, which does not contain code guidelines and 

communicates directly with the physical hardware of the system.  This is part of what makes 

self-modifying code so difficult; although assembly language uses English characters arranged 

into somewhat comprehensible words, it is highly tedious to develop in as it requires developers 

to move values individually to and from each register, specify specific memory locations, and to 

interact directly with the stack. 

Assembly Language 

The first computers, developed in the 1950s, were vast, complicated machines that could 

carry out only one computation at a time.  Initially, they were powered by thousands of electrical 

devices called vacuum tubes that controlled electric current flow, but these were soon replaced 

by transistors, semiconductor devices which generated less heat and led to faster computing.  

Improving software performance was a slower process than improving the hardware, however; 

but it was John von Neumann’s development of binary instructions that laid the groundwork for 

modern-day software.  When von Neumann formulated the architecture of modern processors, he 

organized it so that a string of bits would be used to encode both the instructions and the data of 

the program, leading to the development of modern assembly language.  Paul Dunne (n.d.). 

explains: 

Following this approach a machine that operated on, say 16 bit words, the memory 

locations that held the program would have the instructions interpreted as follows: the 

first few bits (4 for example) would indicate a particular operation (ADD, STORE, 

LOAD etc) and the remaining bits (12 in this case) would indicate where the data for the 
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operation was stored in memory. For a such a program to be executable by the computer, 

however, the binary pattern corresponding to each individual instruction would have to 

be entered into the memory. A typical application program for a complex scientific 

calculation might break down into 200 or more such instructions and so to carry out the 

calculation 3200 0s and 1s would have to be produced and loaded into memory. (para. 2) 

Initially, commands were issued using punched cards representing individual bits, but this was 

soon replaced by assembly language, a low-level language slightly higher than the machine code.  

This was then built upon with the advent of high-level languages, beginning with FORTRAN 

(FORmula TRANslation) and then COBOL (Common Or Business Oriented Language), which 

enabled programmers to create more efficient code with less errors.  Assembly language still 

remains in use, as modern programming languages are disassembled into assembly code before 

object and machine code; however, it is very rare to develop software directly in assembly 

language anymore.  This process of translation between languages is diagrammed in Figure 5:  

 
Figure 5. High-level language and assembly language translation to machine language.   

 

 

Despite the difficulties involved in developing assembly language, there are several 

advantages that make it worth the hassle in certain situations: “The advantage of programming in 
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assembly language over a high-level language is that one can gain a very detailed look at the 

architecture of a computer system and write very efficient programs, in terms of both increasing 

speed and saving memory” (Streib, 2011, p. 1).  Because assembly programs deal directly with 

the computer hardware, registers and memory locations can be directly accessed, thus making its 

development much more dangerous but also much more powerful. 

To demonstrate the syntax and setup of assembly language, a comparison between a 

program written in C++ and the same program written in assembly code is shown below: 

 

Figure 6. A basic C++ program. 
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Figure 7. Assembly language program of Figure 41. 

Upon first inspection, the assembly code is very difficult to understand, as its syntax is 

mnemonic in nature and does not use full English words the way high-level languages do.  The 

first thing to understand is the difference between directives and instructions.  Instructions are 

implemented by the CPU, and can be seen in the commands on lines 7-8 and 12-15.  Directives, 

however, tell the assembler what to do, and can be seen in lines 1-4, 6, 10, and 17-18.  For 

example, the .386 directive at the beginning of the program instructs the assembler that the 

program will be run on an Intel 386 or newer processor (used on 64-bit systems), and the 

.stack 4096 directive tells the assembler how large the stack will be (in this case, 100 

hexadecimal bytes). 

 
1 This program is written in the Microsoft Macro Assembler (MASM), an x86 assembler implemented on Intel 

processors. 
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In the x86 architecture, there are a total of 16 registers that the system uses to manipulate 

data (although 64-bit architectures contain additional, rarely used registers), and are denoted in 

the Microsoft Macro Assembler (MASM) with a percent sign (%).  Eight of these sixteen are 

designated as general-purpose registers, and are used to temporarily save data inside the 

processor: 

1. Accumulator register (AX) 

2. Counter register (CX) 

3. Data register (DX) 

4. Base register (BX) 

5. Stack Pointer register (SP) 

6. Stack Base Pointer register (BP) 

7. Source Index register (SI) 

8. Destination Index register (DI) 

Six of the remaining registers are called segment registers, and typically do not change value 

during the execution of a program: 

1. Stack Segment register (SS) 

2. Code Segment register (CS) 

3. Data Segment register (DS) 

4. Extra Segment register (ES) 

5. F Segment register (FS) 

6. G Segment register (GS) 
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The two remaining registers are the Instruction Pointer register (IP), which contains the address 

of the next instruction that the CPU will execute, and the Flags register, which is set to a specific 

value in certain cases (for example, if the result of an operation results in a value too large for the 

register to represent, the ‘Overflow’ flag is set).  In 64-bit registers, the register acronyms are 

prefixed by an ‘R’, and in 32-bit registers, they are prefixed by an ‘E’ (in other words, the ax 

register is referred to as %rax or %eax).   

With this basic understanding of assembly language now established, the instructions in 

the MASM program above can be examined.  The num1 sdword ? and num2 sdword ? 

instructions create two variables, named num1 and num2, that are 32-bits in length (the size of an 

sdword).  In the main program, denoted by the main proc (which stands for ‘main procedure’), 

the value of 5 is moved into the num1 variable by the command mov num1, 5.  The mov 

%eax, num1 command then loads this variable into the %eax register, and then stores this 

register into num2 with the command mov num2, %eax.  The ret command returns the value 

of zero, signaling the end of the program. 

Application 

With a firm understanding of computer architecture and assembly language, self-

modifying code can now be understood and implemented.  The applications of dynamically 

mutating code range from software optimization and independent code adaptation to security and 

obfuscation.  It has been fully established that there is no such thing as completely secure 

software; no matter how many security devices are put in place, new advances in malware will 

always pose new threats and exploit unforeseen vulnerabilities in the software.  Security, 

therefore, is a living process that must be constantly monitored and maintained.  Current security 
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processes are done largely by humans or with the use of a semi-automated process.  The 

application of self-modifying code, however, could play a key role in the creation of a full-

automated, independent software system capable of adapting to new security situations and 

healing itself from breaches and hardware failures (Rschudin & Yamamoto, 2006).    

While there are many applications in a variety of programs, most common of which are 

viruses and malware that can replicate themselves over and over again, the application that will 

be discussed in this project will be overwriting data and source code for obfuscation and security.  

Masking the machine code, and thus making software unintelligible to the attacker, provides a 

layer of security that will be crucial for the probable (possibly inevitable) event of a security 

breach, allowing the system time to find and correct the vulnerabilities without losing all data to 

the attacker (Mavrogiannopoulos, Kisserli, & Preneel, 2011).  When used in this way, if the 

program being executed senses a network breach, it can execute a loop that will overwrite the 

data section of the program with bogus values.  This renders the data unusable to the intruder, 

although it may also destroy the data permanently.  Overwriting the data using a specific 

encryption technique achieves obfuscation, which renders the variables unusable temporarily but 

allows for them to be decrypted back into their original values.  The other popular method of 

obfuscation, which will be explored later, is overwriting the instructions themselves with a 

different command.  As this obfuscation does not change the output of the application, it can be 

carried out at certain intervals over and over again as the program runs, thus causing the 

assembly commands to be constantly re-obfuscated.  This adds a great level of complexity to the 

algorithm, making it drastically harder to an intruder to decipher. 

One way to achieve data obfuscation, purposefully overwriting data values, is by causing 

bogus values to overwrite the values in the stack.  As was discussed previously, computer 
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memory is shown and explained with different sections for data and program executions, but in 

fact this distinction is purely logical and is not actually achieved in the underlying architecture.  

Thus, it is possible to intentionally overwrite values in the data section directly using instructions 

in the code section.  As an example, consider an assembly language program with stack that 

begins at .pos 0x100.  As values are pushed, the stack grows ‘upward’ towards the smaller 

memory addresses.  This is illustrated below: 

 

Figure 8.  Basic assembly program.2 

 
2 This program is written in a Y86 Simulator.  Y86 is similar to the x86, but is used as an introduction to assembly 

language development as it contains fewer instructions and simpler syntax.  It is used purely for educational 

purposes. 
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In this example, the assembly code (shown in the far-left column) sets up the base pointer 

register %ebp (which contains the address of the base of the stack) and the stack pointer register 

%esp (which contains the address of the top of the stack), moves the value of 5 into the %eax 

register, and then pushes this value onto the stack.  At the bottom, the .pos 0x100 command is 

an assembler directive that causes the Stack variable to be created at that position in memory.  

In the far-right column, the values of each position in memory are shown, along with the position 

of the base and top of the stack3.  As this column illustrates, the memory locations grow 

downwards, but the stack values grow upwards (towards the smaller memory addresses).  In 

order to overwrite the values on the stack, an assembly command would cause the value in a 

register to be written to the position in memory where the stack resides.  High-level 

programming languages do not allow for this capability, as it is incredibly dangerous and can 

have disastrous consequences when it occurs unintentionally.  When used intentionally, however, 

obfuscation and data protection can be achieved directly and efficiently. 

While masking the values and variables of an application is a popular application of 

obfuscation, the primary method of obfuscation involves masking the source code itself.  Thus, 

instead of overwriting the values in the stack, the commands themselves are hidden and 

obscured.  This method of obfuscation is evaluated closely in the next section, and a theoretical 

algorithm for achieving source code obfuscation with self-modifying code is proposed and 

outlined. 

 

 
3 Please note, this free version of the Y86 simulator contains an error that causes the %ebp and %esp registers to 

point to the wrong position in memory.  The correct position is 3 bytes above. 
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Methods of Source Code Obfuscation 

XOR Obfuscation 

One of the most popular methods of obfuscation in use is known as XOR obfuscation, 

which takes its name from the Boolean algebra truth table known as exclusive OR (XOR) 

(Kissel, 2005).  Boolean truth tables take inputs of binary digits (i.e., either 0 or 1), and output a 

binary digit based on the combination of the input.  An OR table outputs a 1 if either one of the 

two bits input is a 1; it’s derivate XOR outputs a one if either of the two bits is a 1, but not both.  

This is displayed in the following tables: 

 

Figure 9. OR Table. 

 

 

Figure 10. XOR Table. 

 

In computer science, the XOR operator is a bitwise operator that takes two binary strings 

as inputs and creates a resulting binary string by performing the XOR operation on all the bits.  

For example, the XOR results of the string 01011101 and the string 1110001 is 10111100.  

When applied to obfuscation, a key string is generated that is then passed to an XOR function 

along with the code, and the original binary digits are then overwritten with the results of this 

operation.  This method of obfuscation is extremely similar to encryption, which always involves 
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the use of keys, but is still classified as obfuscation because of the method and goal of the 

operation: “XOR(255) has the advantage of being fast (it typically executes in less than 1 clock 

cycle on modern architectures), reversible, and can be performed in-place.  XOR(255) has the 

additional property of leaving a file’s entropy unchanged, allowing processed data to remain 

invisible to tools that search for encrypted data using entropy techniques” (Zarate, Garfinkel, 

Herrernan, Gorak, & Horas, 2014, p. 1). 

Achieving XOR obfuscation is accomplished in a variety of ways.  The most basic 

method is performing an XOR operation on two bytes, and keeping the result.  For example, 

consider obfuscating the letter ‘J’ by XORing it with the letter ‘v’.  The first step is to find the 

American Standard Code for Information Interchange) ASCII values that correspond to these 

letters by consulting a table such as the one below.  ASCII values are universal codes, displayed 

in the hexadecimal number system, that the computer translates into numbers and symbols: 

 

Figure 11. ASCII Table. 
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By this table, ‘J’ is equal to the hexadecimal value of 0x4A and ‘v’ is the hexadecimal value of 

0x76.  Converting these values into binary values results in 01001010 and 01110110.  

Performing an XOR operation on these bytes results in the value of 00111100.  Turning this byte 

back into a hexadecimal value results in 0x3C, which by referencing the table results in the 

symbol ‘<’. 

Another method of obfuscation, which is more advanced and complicated, combines 

machine language with assembly language.  This is possible due to the extremely basic nature of 

assembly commands.  This method is demonstrated below: 

 

Figure 12. Combining machine and assembly languages. 

 

Since assembly language is one step above machine language, the machine code 

‘10111010’ is the machine translation of ‘Mov DX’.  Converting 35537 into binary results in 

‘1000101011010001’, in the format of ‘Mov-dw-11-DL-CL’ (which results in Mov Dl, CL) 

(Behera & Bhaskari, 2015). 

Other Methods 

 Although XOR obfuscation is arguably the most popular obfuscation method in use 

today, several other methods exist.  Dead-Code Insertion is a method that simply adds 

commands that do not accomplish anything, making the malicious actor think that the code is 
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accomplishing a different task.  Instruction Subroutines replace original commands with other 

commands that accomplish the same task (for example, xor can be replaced by sub, and mov is 

equivalent to push).  Code Transportation, possibly the most difficult method of obfuscation, 

rearranges the commands of an applications in a way that does not affect the output (Iliev, 2017). 

Achieving Obfuscation through Self-Modifying Code: A Theoretical Algorithm 

One of the most popular applications of self-modifying code is in the realm of obfuscation.  

However, the extremely difficult nature of dynamically modifying code has resulted in a lack of 

research and development in the subject.  Therefore, the goal of this senior thesis is to propose an 

algorithm, written for assembly language, that will present a means of modifying commands during 

execution to obfuscate the commands.  The general flow of the algorithm is as follows: first, 

variables key and counter are declared, and counter is set to 0.  key is an 8-bit (1-byte) value that 

contains a binary string gained from the stack pointer (SP) register.  As discussed previously, the SP 

register is one of the eight general-purpose registers used to temporarily save data inside of the 

processor, and its purpose is to hold the address of the most recent value on the stack.  Therefore, the 

value contained in it is constantly changing as various programs are executed, making the resulting 

value of key nearly impossible to discern by an attacker.  Using this value may cause security 

concerns; however, since this value is only being used as the key by which to obfuscate the desired 

information, these concerns are minimal.  After these values are set up, the necessary data that the 

code is manipulating is loaded into the stack.  In a real-life application, these values could represent 

usernames, passwords, email addresses, or other necessary data.  These values are then manipulated 

according to the needs of the program, but after every command is executed, the counter variable is 

incremented.  Once counter is equal to 10, key will be regenerated according to the current value in 

the SP register, and the command to be obfuscated (which for the sake of this program will be a mov 
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command) is passed through an XOR operation with key.  The original command will then be 

replaced with this new value.  This algorithm is explained in pseudocode in the following figure: 

  

Figure 13. Proposed algorithm. 

 To properly understand how this algorithm works, consider the result of obfuscating a 

mov command.  In assembly language, mov is used to move data values between registers and 

memory.  “This instruction has two operands: the first is the destination and the second specifies 

the source.  Some examples of mov instructions using address computations are: 

mov eax, [ebx] ; Move the 4 bytes in memory at the address contained in EBX into 

EAX 

mov [var], ebx   ; Move the contents of EBX into the 4 bytes at memory address 

var. (Note, var is a 32-bit constant). 

mov eax, [esi-4]   ; Move 4 bytes at memory address ESI + (-4) into EAX 

mov [esi+eax], cl   ; Move the contents of CL into the byte at address ESI+EAX 
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mov edx, [esi+4*ebx]    ; Move the 4 bytes of data at address ESI+4*EBX into EDX 

 

(x86 Assembly Guide, 2018, para. 11).  In the assembly command mov al, 61h, the value of 61 in 

hexadecimal digits (97 in the decimal system) is loaded into the AL register, and this can be 

broken down into four specific parts of binary digits.  The opcode of the mov command is 1011; 

the single bit 0 is used to specify if the data is a byte or a full-size of 16/32 bits; the binary 

identifier for AL is 000; and the binary representation is 0x61 is 01100001.  Adding these values 

together results in the complete binary opcode of 10110000 01100001 (Computer architecture 

and assembly language, n.d.). 

 To obfuscate this command, the algorithm must first generate a key based on the location 

of the current instruction on the stack, contained in the SP register.  For this example, the data 

inside of SP is 10010001, and therefore this value is copied into key giving it a value of 

10010001.  This key will first be passed through an XOR operation with the first byte of the 

opcode, resulting in the value of 00100001.  The same operation will then be applied to the 

second byte of the opcode, giving a value of 11110000.  With the new obfuscated version of the 

opcode now generated, the program must now overwrite the original command with the new 

opcode.  This can be accomplished in several ways; the command itself can be overwritten 

directly, or new commands can be generated that skip the original command and instead execute 

from the newly generated one.  For example, consider this self-modifying code example: 
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Figure 14. Self-modifying code example. 

 When the get_eip function is called in the first function, the address of the ADD 

instruction is popped from the stack and replaced by the new one generated by the command 

XOR byte ptr [edx], 28h: “Self-modifying code replaces the ADD machine code with SUB and 
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sub with ADD ; therefore, calling self_mod_code in a loop returns the following sequence of 

numbers : 06 02 06 02... , thus confirming successful completion of self-modification” 

(Principles of building self-modifying code, n.d., para. 7).   

Conclusion 

High-level programming languages are created for a number of reasons.  In early years, 

computer programming was done completely with assembly language, but the tedious nature of 

the logic and syntax, coupled with the lack of debuggers or data protection, caused many issues 

for developers.  Thus, creating languages like Java, Python, and the C variations led to more 

efficient programming that could create software much easier and with far fewer errors.  Now, 

assembly language is rarely used, and is usually only taught to rising developers as a means of 

understanding computer architecture.  However, harnessing the power of assembly language can 

lead to dynamic programs with a variety of applications, with self-mutating code being one of 

the most common applications.  Autonomous software may not be practical for every 

application, but in applications like embedded networks or satellite technology that cannot be 

accessed in real-time, it may provide answers to the problem of security (Rschudin & 

Yamamoto, 2006).   

Dynamic and self-modifying code may be difficult and time-consuming, but applying it 

to the topic of security may lead to exciting developments and programs that can automatically 

protect sensitive data from intruders.  In addition to obfuscation, self-mutating code can also be 

used to directly create new instructions, modify source code, and even create and execute a 

dynamic program that can write itself without human interaction (Becker, 2013).  Other possible 

applications of self-modifying code include software that can automatically optimize itself for 

maximum efficiency and self-healing software that can develop its own updates and source code 
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modification.  When coupled with the emerging capabilities of artificial intelligence (AI), the 

future of self-modifying code is limitless. 
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