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Abstract 

Autonomous vehicles are an emerging technology that faces challenges, both technical and 

socioeconomic. This paper first addresses specific technical challenges, such as parsing visual 

data, communicating with other entities, and making decisions based on environmental 

knowledge. The technical challenges are to be addressed by the fields of image processing, 

Vehicle to Everything Communication (V2X), and decision-making systems. Non-technical 

challenges such as ethical decision making, social acceptance, and economic pushback are also 

discussed. Ethical decision making is discussed in the framework of deontology vs utilitarianism, 

while social acceptance of utilitarian autonomous vehicles is also investigated. Last, the likely 

economic impact is described.  
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The Challenges Facing Autonomous Vehicles  

and the Progress in Addressing Them 

 

 Autonomous vehicles are a technology under heavy research and development, for good 

reasons. Transportation is a major industry worldwide, and this technology has the potential to 

revolutionize it. Despite all this attention, there have been relatively few functional autonomous 

vehicles. The technology always appears to be only a few years away and has been like this since 

the turn of the century. This raises the question of why autonomous vehicles have taken so long 

to develop. This paper seeks to provide an answer to this, by describing the challenges that face 

autonomous vehicle development, both technical and socioeconomic. Along with stating the 

challenges, this paper also describes the ways in which they can be overcome. 

 The technical challenges facing autonomous vehicles are from a broad array of fields and 

are based primarily on computational tasks. The first challenge is sensing the environment 

around the autonomous vehicle, then parsing these data into a useful form for the vehicle’s 

processor. The technical fields that are working to address this challenge are image processing, 

and Vehicle to Everything (V2X) Communication. Second, the possible additional benefits of 

V2X communication are also discussed. The third technical challenge to be discussed is 

developing a decision-making system for the vehicle and is covered in the section on decision 

making.  

 Decision making leads into the non-technical challenges such as ethical dilemmas, and 

socioeconomic factors. This paper describes the relevance of ethical systems for autonomous 

vehicle applications, with possible principles by which to program the artificial intelligence. 

Lastly, socioeconomic factors such as social acceptance and potential job losses are also 

discussed.   
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Image Processing 

 

The first step to being able to effectively navigate an environment is to have a clear 

understanding of the surrounding area. For a person, this is not a difficult task: visual 

information is easily taken in and interpreted by the brain. The process of separating objects from 

the background, tracking their movement, and classifying them is effortless. Autonomous 

vehicles need to accomplish the same task, without the help of an innate object recognition 

system. From this challenge comes the application of image processing technology to 

autonomous vehicles. Image processing is how optical data, from either LIDAR arrays or 

cameras, is analyzed and understood. The applications of this technology in the field of 

autonomous vehicles are numerous. These include recognizing traffic signs, navigating road 

construction areas, and tracking pedestrians (Teichman and Thrun, 2011). This process can be 

split into two primary steps: segmentation and classification.  

Segmentation 

 The first step to deciphering optical data comes in the form of segmentation. While a 

camera can take in a large stretch of road, there will only be a few items of relevance in any 

given image. To save processing power, it is advantageous to select only items in the image that 

differ from the expected background, for further analysis. This process is known as 

segmentation, which marks out unusual areas in an image for the purpose of a more thorough 

analysis. According to Harshitha & Manikandan (2017), this step is accomplished by creating a 

Histogram of Oriented Gradients, also known as an HOG. This algorithm takes an image frame, 

then divides it into a grid of cells. Within these cells, the algorithm determines the change in 

pixel brightness in the x and y directions for each pixel, then uses this to generate a gradient 
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vector. These vectors have a specific magnitude and angle, decomposing into vertical and 

horizontal components, Gx and Gy. They refer to the relative change in pixel brightness between 

the above pixel and the pixel below. For example, if the pixel above had a value of 155, and the 

pixel below was 100, Gy would be -55. Gx is calculated in the same manner. These values are 

used to generate gradient vectors for each pixel. 

This collection of gradient vectors is then arranged in a histogram, with bins based upon 

the angle. Vectors with higher magnitudes will contribute more to each bin, allowing the 

contents of a cell to be compressed and generalized. The end result will be a set of compressed 

cell gradients, creating a generalization of the high contrast areas. Instead of storing thousands of 

pixel gradients, this algorithm combines their overall effect into a set of cell gradients, which are 

stored in a string of values. This string of values has all the information gathered by breaking 

down the image into areas of high contrast, the object outlines. These gradients can later be used 

to classify specific objects, with the help of a classification algorithm.  

Once the HOG data is extracted, it can be used to represent possible obstacles. Since this 

process is computationally demanding, it is optimal to identify the object only once, then use 

other algorithms to track it. The most common tracking algorithm is a particle filter (Nkosi, 

Hancke, & Santos, 2015). This filter is a nonlinear tracking algorithm, based on probabilistic 

target trajectories. It assigns a target a set of possible motion vectors, based upon a probability 

distribution. Then at a predetermined time, it measures where the target is, and uses this motion 

data to update the vector probability distribution. From this, it can develop an accurate model of 

where the object is most likely to be, to track the target, regardless of occlusion or nonlinear 

movement. To summarize, image processing starts with using a HOG algorithm on an image 
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frame to identify areas of interest, and these areas are tracked using a particle filter. The next step 

is to identify useful information from these areas, which is the goal of classification.  

Classification 

 The gradient data is stored as a string of vectors, which can be generalized as a set of 

points. The goal of the classification process is to take an unlabeled set of gradient data, then 

determine what it is most likely to represent. While there are multiple ways to accomplish this, 

according to Teichman and Thrun (2011), the most common algorithm is to use a Support Vector 

Machine (SVM). Imagine a graph with points. Some of these points will be a member of a 

certain class, and other points will be a member of other classes. While each class will vary, it 

will be possible to draw a line to separate the two, where objects on either side are most likely to 

be one specific class. A visualization is shown in Figure 1. 

 
 

Figure 1: Linear Classification Example  

SVMs take this basic principle, then expand on it (Yuan, Hao, Chen, & Wei, 2014). 

Instead of using only two dimensions of data per each point, they use all of the data points 

available from the HOG gradient. This creates a multidimensional space in which to place these 

data points. Then a kernel function is chosen, to separate two distinct classes based upon this 
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data. Kernel functions can be linear, polynomial, sigmoid, or a radical basis function, but they all 

draw a dividing boundary between classes. These functions are formed based upon labeled 

training sets, and then are used to categorize unlabeled data. Depending on the data set, different 

kernel functions have varying performance: for example, nonlinear kernels are better when the 

class gradients are not related in a linear fashion. Larger training sets reduce the chances of error 

when classifying objects, but that requires a large database of pre-labeled images. Moreover, it is 

possible to discover categorical features which allow for easier classification. For example, it 

could be discovered that signs tend to be vaguely circular, and a few feet above the road. This 

means that the algorithm does not need to spend time determining if it is a pedestrian, and 

immediately works to determine what kind of sign it is. The result allows for a set of 

comparisons to determine which class a data set belongs to. The limiting factor of an SVM is that 

it only determines which of two possible classes an object is most similar to. This means that 

many different comparisons need to be done to identify the object, because it only answers basic 

yes/no questions of object class.  

Possible Improvements  

Image processing is a rapidly advancing field, due to the myriad of applications. As such, 

research is being done to increase the speed and accuracy of object recognition and 

classification. One way that it could improve is by the advance of computer processors: faster 

computation will lead to faster image processing. Another improvement would be based on 

kernel functions with larger training sets, allowing for more accurate classification. The last 

improvement discussed here is improving algorithms by understanding classification data 

clustering. Some object classes share the same features, such as shape or color, leading them to 
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be clustered around a specific area in the multidimensional space. Algorithms can use this fact to 

their advantages to rule out unlikely classifications, reducing the number of binary comparisons 

required to identify the object. While converting optical data into a usable form is a significant 

challenge, new technologies are being developed and tested to surmount it. The use of image 

processing allows for a better understanding of the world around an autonomous vehicle. 

Another way to facilitate this understanding is via active communication, a form of which is 

another key challenge facing the development of autonomous vehicles.  

Vehicle to Everything (V2X) Communication 

As stated previously, giving autonomous vehicles an understanding of the world around 

them is one of the key challenges that face the field. Sensors are helpful to provide an accurate 

view of the immediate surroundings to an autonomous vehicle, but they are limited in range and 

application. No sensor can tell that the road up ahead will be closed, nor can it coordinate with 

surrounding cars to manage traffic. However, a communication system from the autonomous 

vehicle to other vehicles, infrastructure, and pedestrians can. This communication system can be 

used to provide autonomous vehicles with accurate and collective information, which it can use 

to make good driving decisions. Collectively, these communication systems are described as 

Vehicle to Everything, or V2X communication. This technology has several useful applications 

in the field of autonomous vehicles, such as object recognition, intersection protocol, and 

advanced cooperative driving. Current technical limitations with 4G cellular networks limit the 

use of V2X communication, but upcoming 5G networks could be used to resolve these problems.  
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Applications of V2X Communication  

V2X communication is based upon nearby entities transmitting and receiving data 

through cellular networks. This communication encompasses Vehicle to Vehicle (V2V), Vehicle 

to Infrastructure (V2I) and Vehicle to Pedestrian (V2P) communication. For example, a vehicle 

could send out information in regular pulses regarding its location, heading, speed, which other 

vehicles could use. Intersections could communicate with vehicles to manage traffic, and 

pedestrians could have their phones send out information to assist vehicle object recognition 

software. This technology matters, because it simplifies difficult software problems for 

autonomous and semi-autonomous vehicles. The first problem that it helps solve is object 

recognition. Current technologies for recognizing moving images are slow and memory 

intensive. However, if there was a V2P protocol, a pedestrian could just have their location 

broadcast to nearby vehicles, circumventing a lengthy object recognition task (Hussein, García, 

Armingol, & Olaverri-Monreal, 2016). V2X communication would allow a vehicle to classify 

objects based upon the information they send out, improving their ability to rapidly identify 

nearby entities. Even for non-autonomous vehicles, this could be used to help prevent collisions, 

by sending warnings to human drivers, or automatically applying the brakes. V2X 

communication allows for vehicles to have a better awareness of the world around them, leading 

to safer road conditions for all (Chen et al., 2017).   

Intersection management. The next problem that it helps solve is vehicle interactions at 

intersections. Intersections pose a problem to autonomous vehicles, because of how many ways 

they can be set up. They can vary in terms of lanes, lights, turn restrictions, and pedestrian 

crossings. Along with these numerous setups, safe actions at these intersections is heavily 
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dependent on communication. From drivers waving pedestrians onward, to barely stopping at a 

stop sign, intersections require a great deal of coordination with other vehicles. Aside from other 

drivers, one also must be aware of traffic signals, a key feature of city infrastructure. All of these 

require precise communication, with little delay, and V2X communication systems can facilitate 

them. This makes information such as signal countdowns, pedestrian activity, and the actions of 

other vehicles into common knowledge for autonomous vehicles. The demystification of 

intersections is vital to autonomous vehicle artificial intelligence, and V2X communication is the 

perfect tool to accomplish this (Le, Festag, Baldessari, & Zhang, 2009).  

Collaborative driving. Aside from merely making the processing load on autonomous 

vehicles easier, V2X communication allows for advanced collaborative driving. Normal drivers 

need to leave roughly two seconds of following distance to avoid collisions. This is because 

drivers do not necessarily know what the vehicle ahead of them will do, and maintaining certain 

distance gives them more time to react to any sudden changes. Autonomous vehicles are not 

bounded by human reaction times, and V2X communication can address the problem of 

unpredictable drivers ahead. Due to this, V2X communication could allow for platooning, where 

autonomous vehicles communicate with each other to drive in tight formations at high speed. 

This has numerous advantages, such as improving road capacity, fuel efficiency, and greatly 

reducing traffic. This requires very low latency communications and software but has incredible 

rewards if executed effectively (Fernandes & Nunes, 2010). This requirement leads to the next 

subject, the problems facing V2X Communication. 
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Problems Facing V2X Communication 

 V2X communications has high baseline requirements. First, there needs to be reliable 

internet access, to pull information from online sources. This information includes road closures, 

weather data, and road conditions. Infrastructure data such as this is crucial for determining how 

an autonomous vehicle chooses a route and requires reliable internet access. This information is 

to be stored in a curated cloud server system, to be available to all autonomous vehicles that 

require it (Yao et al., 2018). This is Vehicle to Infrastructure communication, which stands with 

Vehicle to Vehicle communication and many other communication targets.  

A large amount of data used in autonomous driving is stored online, making reliable 

internet access indispensable. Also, a low latency way of transferring data between devices is 

critical. The best way to fulfill both requirements is with cellular networks, such as 4G LTE. 

However, this poses a serious problem: latency. A slight delay between receiving information 

and acting upon it can have large consequences in a driving scenario, so minimizing latency is a 

top priority. The acceptable margin of latency is roughly 10 ms for autonomous driving, using 

V2V and some V2I communication systems (Amjad, Sikora, Hilt, & Lauffenburger, 2018). 

Current 4G standards can only guarantee a minimum latency of 50 ms, far too high for V2X 

applications. Aside from network requirements, there are less technical issues at play. For V2X 

communications to be implemented, there must be a standardized communication protocol. 

Manufacturers would need to collaborate to ensure that their systems are compatible with other 

vehicle brands. Another concern is the security risks posed by V2X communications. Incorrect 

or falsified V2X data could be used to force a vehicle to crash, or otherwise lose control. To 

combat this fact, there must be strong cybersecurity measures and requirements on these 
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systems. To ensure that security requirements are universal, there needs to be a national standard 

for these regulations, which would require legislative action (Brecht et al., 2018). Outside of the 

automotive industry, phone manufacturers would need to implement automatic broadcasting of 

relevant pedestrian data. To summarize, V2X communication relies on networks with latency 

problems and faces obstacles to widespread adoption. New developments in 5G networks hold 

the potential to resolve these technical problems. 

Possible Improvements Through 5G 

To understand why 5G is so significant, some background on previous cellular networks 

is helpful. The first network in this scope is 3G. It offered good data rates, allowing bandwidth 

intensive applications such as video streaming to be practical. However, the coverage is limited, 

and the security measures it uses are weak. The next generation, 4G improves on 3G in almost 

all cases. OFDMA allows for much better spectral efficiency, and MIMO protocols allow for 

more users to be supported at a time (Ezhilarasan & Dinakaran, 2017). However, both of these 

technologies have latency specifications that are insufficient for autonomous vehicle 

applications. 5G technology can change this. The data rate that it can support far outstrips 4G, 

and its latency is far lower. As stated, V2X communications require less than 10 ms of latency 

(Amjad et al., 2018). 5G latency is typically under 3 ms, enabling autonomous vehicle 

communication in a way that both 3G and 4G cannot. This crucial latency reduction is what 

solves several problems that V2X communication faces. 5G technology also has the benefit of 

being new enough that standards can be built with autonomous vehicles in mind. 5G can operate 

at currently unused bandwidths, which means that certain portions of the spectrum can be 

reserved exclusively for V2X communications. China has done this for vehicle testing purposes, 
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to the great benefit of V2X testing (Chen et al., 2017). Since current devices do not use it, new 

developments could be subject to IEEE regulations. This means that 5G capable phones could 

automatically send out useful data for autonomous vehicles. For example, pedestrian data such 

location and speed would greatly improve the reliability and accuracy of pedestrian recognition 

by autonomous vehicles (Hussein et al., 2016). The combination of low latency, high data rates, 

and new regulations makes 5G a promising technology for V2X communication.  

Vehicle to Everything communication has the potential to revolutionize autonomous 

vehicles. By implementing it, autonomous vehicles can work more efficiently, safely, and use 

complex maneuvers such as platooning. However, this implementation requires strict network 

specifications. The latency requirements cannot be met by existing networks, limiting the 

application of V2X communications. Upcoming 5G networks can meet these specifications, 

making the implementation of V2X communication more feasible. Along with meeting higher 

specifications, the new network provides the opportunity to standardize communication 

protocols and security. Overall, 5G technology will be essential for the development of V2X 

communication systems.  

Decision Making 

The previous topics discuss the process in which an autonomous vehicle gathers 

information about the world around it. Furda & Vlacic (2011) move to describe how this can be 

synthesized into a so-called World Model, allowing the autonomous vehicle to understand the 

current context that it is in. Sensors, V2X communication, and GPS technology all feed into this 

understanding of the world. This model is a requirement for making driving decisions, because it 

provides required external context to guide the decisions made by a vehicle. After all, the options 
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available in a highway merging scenario are completely different from those available at a four-

way intersection. The concept is to break down the complexity of the world into a set of known 

events for which the autonomous vehicle has protocols to deal with. Once the vehicle has all of 

the information it needs, only then can it decide which maneuver it will use. These maneuvers 

are a sequence of inputs which will achieve an overall driving goal. For example, passing a 

vehicle on the left requires use of the accelerator, turn signal, and steering system. While there 

are multiple inputs required to accomplish this task, their combination is referred to as a single 

maneuver. To accomplish real-time decision making, autonomous vehicles will need a library of 

preplanned maneuvers to choose from. This will allow them to perform every driving action a 

human driver can, in a consistent manner. To choose effective maneuvers, information about the 

world around the vehicle is crucial.  The process of gathering information, using it to model the 

world, and then using that model to decide on a maneuver is the essence of autonomous driving.  

From V2X communication to sensor processing, each way of perceiving the outside world is 

crucial for developing a world model, and this model allows informed decisions to be made.  The 

result is a framework that provides the background information for the decision-making system 

to work as intended.  

 

Decision Making System 

 To understand this system, one must first understand the prerequisites. The first 

prerequisite is a set of maneuvers available, such as making a left turn, or merging on a freeway. 

The second prerequisite is a set of world model events, and the last is a planned route. The goal 

of this system is to select the most appropriate maneuver in any given situation, given the current 
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events in the world model and overall route. While there are many possible options that can be 

done in a specific situation, the first stage is to determine which of them are feasible given the 

current events. Feasible maneuvers are those that are safe and appropriate, and usually adhere to 

traffic rules. This set of maneuvers describes the overall set of options available to the vehicle. 

The next stage of decision making is picking an option from these, a much more complicated 

task. One way to do this is to have an objective hierarchy that maneuvers interact with. Different 

goals are assigned different priority values, and maneuvers are chosen based upon how well they 

accomplish these weighted goals. For example, staying in road boundaries is the top priority, 

with maintaining following distance beneath it, and minimizing waiting time beneath that. Each 

maneuver would have a utility function based upon a combination of the current events and the 

objective hierarchy. This method would simplify this decision-making stage to simulating each 

maneuver and choosing the one with the highest utility value. However, this is only a generalized 

decision-making model, while driving is filled with highly specific situations. Each of these 

situations needs to be anticipated, with a decision-making protocol in mind. The following is an 

example of one such preplanned situation. 

 

 

Decision Making Example – Urban Pedestrian Crossings 

 A 2019 paper by Batkovic, Zanon, Ali, & Falcone provides an example of a specific 

situation and a protocol to handle it. Their goal is to determine how a vehicle should act when a 

pedestrian crosses a street in front of it, outside of a crosswalk. They created an algorithm to deal 

with this event in an urban environment. The algorithm first determines the projected path of the 
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vehicle, which is based upon the preprogrammed route. The algorithm then tracks the motion of 

the pedestrian, to determine their probable position in the next few seconds. Their probable 

position is then used to create a zone in which the vehicle will avoid. Based upon this 

information, the vehicle plots a trajectory that it intends to take, then implements it. This 

trajectory is based upon required distance tolerances from both the pedestrian, and road 

boundaries. The algorithm leads to a variety of behaviors, from simply slowing down, changing 

course, or some combination of the two. Multiple trajectories are planned, then the one to 

execute is chosen from a utility function. Due to the simplicity of the algorithm, the time 

required for a decision to be made is very short, with an average decision time of 22.4 

milliseconds. This is a good example of how a specific situation that an autonomous vehicle 

would face can be handled (Batkovic et al., 2019). While this algorithm only works for this one 

situation, it works exceptionally well. A small protocol such as this one is not close to sufficient 

to operate a vehicle alone. However, if one combines enough protocols like this together, that 

changes. A patchwork of protocols can work together to navigate a host of situations as they are 

recognized by the world model. Along with being modular, algorithms such as this have the 

advantage of requiring relatively little computation time. The world model can identify any given 

situation, then hand the decision making off to the assigned protocol. A horde of small 

algorithms such as this is a possible implementation of an overarching decision-making system. 

However, preprogrammed protocols are not the only option available. Neural networks present a 

more flexible option, known as End-To-End Decision-Making.  

End-To-End Decision-Making Systems 
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 Recent research conducted by NVIDIA, which is documented in the work by Bojarski 

indicates another control scheme: End-To-End Decision-Making (Bojarski et al., 2016). This is 

the concept of training artificial intelligence directly using driver data, instead of programming 

actions for each situation. The input is controlled on one end, and a neural network is used to 

provide output commands on the other. The computation in the middle is not directly controlled, 

and it converts input images to output controls. The study gathered 72 hours of driver data, in the 

form of video footage. This footage was then divided into single images paired with steering 

inputs, to make a training set for a convolutional neural network (CNN). The overall goal of this 

is to allow this network to be sent images, then generate steering commands based upon them. 

For example, training the network to follow a lane would be done by providing it a set of images 

where the human driver was following their lane, along with steering commands. The network 

will then be able to mimic human steering commands in similar situations. Some of the images 

in the training set were deliberately rotated or set off center to instill error correction into the 

network.  

Empirical tests of the CNN show that it can follow road markings and stay in lane in both 

simulations and real-world conditions (Bojarski et al., 2016). This process of using training data 

and neural networks to allow vehicles to make decisions has several useful traits. First, it 

requires relatively small data sets to function, and does not need to be trained manually. There is 

no need to create an image classifier or define a set of decision-making protocol. One simply 

trains the CNN, and it mimics the inputs associated with the training data. This can save 

countless hours of hard coding responses to specific situations. Alongside this, a CNN is able to 

work more effectively in novel situations, reacting in a way similar to the training data. 
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However, this approach is not without drawbacks. It is very difficult to understand how a CNN 

makes individual decision, and this process is not entirely under the designer’s control. For a 

CNN that is designed to sort handwritten zip codes, this is not an issue. For a CNN that pilots a 

vehicle, precise knowledge and control of decision making is crucial. A developer needs to know 

exactly what a vehicle will do at an intersection, versus sending in a trained CNN and hoping for 

the best. While carefully curated training data can help define how a CNN will act, the 

developers do not have complete control over the CNN’s decision making. End-to-End Decision 

Making has promise, but this promise should be tempered with caution. 

Possible Improvements 

There are many projects with the defined goal of developing and testing autonomous 

vehicle decision making. There are studies in academia, along with research conducted by 

automotive companies like Tesla and software giants like Google. They are all working toward 

the same goal, but independently. Instead of having one universal protocol to manage highway 

merging, you have at least ten. This diversity has benefits, but it also makes it extremely difficult 

to centralize decision making modules and leads to repeated research on a small pool of 

problems. A way to fix this would be to make a central database of decision-making software, 

freely accessible to all researchers. That way, instead of having ten research teams working 

independently on the same problem, one team could solve a particular problem, and others could 

incorporate that software into their own research. A centralized database of control software 

would lead to more efficient research efforts, due to reducing research repetition. Another way to 

address the challenge of decision-making is by reformulating control systems with field data. 

Prototype vehicles are gathering test data to improve the algorithms that they follow. From this, 
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developers can experiment with new decision-making systems, and keep those that are most 

effective. This is of special importance to neural network-based control schemes, because they 

benefit greatly from higher volumes of test data. Experimentation and feedback are a crucial part 

of technological development, both of which are provided by road testing. Road testing can 

improve existing decision-making algorithms and provide the data to train new ones. Decision 

making is one of the key challenges to creating effective autonomous vehicles, and progress is 

being made to resolve it. However, decision making is not an entirely technical problem. The 

choices made by autonomous vehicles have lives at stake. Thus, there is an ethical component to 

how they should be made. This comprises a substantial portion of the socioeconomic challenges 

facing autonomous vehicles. 

Socioeconomic Challenges 

Ethical Considerations 

Driving is an inherently risky activity, with potential impacts that go beyond just the 

driver. According to a literature review by Fagnant and Kockelman (2015), there are roughly 5.5 

million crashes a year in the US, over 90% of which have a human cause as the primary factor. 

Even with perfect autonomous vehicle artificial intelligence, this indicates that there will be 

thousands of crashes that cannot be prevented. While autonomous vehicles can reduce the risk of 

accidents, eventually they will run into crashes, during which they face ethical dilemmas. Most 

crashes have little warning, leading to no time to decide on how to act during them. There is only 

a split second to determine what party will take the brunt of the damage. That is not enough time 

for a human driver to make an informed ethical judgement, but it is enough time for an 

autonomous vehicle to do so.  This leads to the complex topic of what ethical theories an 
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autonomous vehicle should follow, a topic explored in detail by Goodall (2014). The first theory 

investigated is deontology, where the behavior of a vehicle is governed by strict, unbreakable 

rules. An example of this type of system is Asimov’s three laws of robotics, an ordered list of 

maxims. Every decision the vehicle could make would be subject to an overarching principle, 

such as obeying traffic laws, or minimizing injuries. These principles can be arranged in 

importance, with lesser principles being able to be superseded by more important ones. To 

demonstrate, a vehicle could swerve into a turn lane to avoid a crash, valuing crash avoidance 

over following road laws. Deontology poses a problem in implementation, because each correct 

response for a particular situation would need to be programmed individually. This is because 

such rules need to be interpreted with common sense, with exceptions and clarifications 

depending on the situation. This leads to deontology being closer to a code of ethics for the 

decision-making system than anything else. This entails that a deontological judgement needs to 

be preprogrammed, hindering its application to unanticipated situations. The next theory of 

interest is utilitarianism, where the goal is to have the outcome of an action maximize some 

measure of utility. This means that acts such as saving a life or following rules of the road are 

given an explicit utility value, used to score the consequences of actions. This can then be used 

to rank possible maneuvers by their probable outcomes in terms of utility, then pick the highest. 

While this system is more adaptable than deontological ethics, it runs into issues of how utility 

should be assigned. This is the stems from the fact that this system would require putting a 

measured value on people’s lives, a large ethical controversy. Beyond that, utilitarianism also 

tends to maximize overall societal good, without respect to individual rights. For example, 

imagine a situation where a vehicle would need to swerve to avoid an oncoming obstacle, with a 
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motorcyclist on both sides. One of them is wearing a helmet, and the other is not. To avoid a 

crash that affects them all, the vehicle would need to swerve into one of the motorcyclists. For 

this case, a utilitarian system would choose to crash into the helmeted motorcyclist versus a non-

helmeted one. This is because the motorcyclist with the helmet is likely to incur less severe brain 

injuries than their non-helmeted counterpart, minimizing overall injury. Though society is made 

better off, it does not factor in individual rights or benefits. That said, utilitarianism is a practical 

basis by which machines can make ethical choices, because it can convert a complex moral 

choice to a utility function. While this may seem callous, it provides a set of guidelines for an 

autonomous vehicle to make a moral choice in unexpected situations, unlike deontological 

ethics. Autonomous vehicles will need a system of ethics, due to the unavoidable nature of 

certain accidents. However, regardless of the system of ethics chosen, one encounters a social 

dilemma, based upon the will of the driver.  

The Social Dilemma 

 A study conducted in 2016 showed that survey results indicate that the public at large 

would prefer autonomous vehicles to operate based upon a utilitarian system of ethics 

(Bonnefon, Shariff, & Rahwan, 2016). This is not unusual, but the data provides a dilemma 

along with this finding. Utilitarian ethical systems might determine that it is worth sacrificing the 

life of the driver to save a greater number of pedestrians. When this fact was posed to survey 

takers, a moral inconsistency emerged. They were asked two questions about their likelihood of 

purchasing an autonomous vehicle, which varied in the ethical system the vehicle used. The first 

option was regulated by utilitarian ethics, with the goal of minimizing overall casualties in the 

case of an accident. The second (non-regulated) ignored overall casualties and would be willing 
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to sacrifice up to twenty pedestrians to save the driver. Most of the survey respondents indicated 

that autonomous vehicles should minimize overall road casualties, even at the expense of the 

driver’s safety. The dilemma arises when one realizes that only 38% of respondents said that 

they would be willing to purchase a car that would sacrifice the driver to save pedestrians. On the 

other hand, 53% who would purchase a vehicle using an algorithm that prioritizes the protection 

of the driver. While most respondents favor utilitarian algorithms, most of them would not want 

to purchase a vehicle that follows one for themselves.  

            This data shows a classic conflict between self-interest and the common good, one with 

far-reaching consequences. There are three main groups that have a stake in the ethical systems 

of autonomous vehicles: consumers, governments, and manufacturers. Consumers have shown 

that algorithms that favor protecting the driver would be more popular, pushing manufacturers to 

make vehicles that use said algorithms. Governments have a stake in protecting the common 

welfare and can impose regulations on manufacturers regarding the ethical systems their vehicles 

use. These interactions make ethical frameworks a complex issue, with many interconnected 

parties. While ethical decision making will only be a factor in a tiny portion of crashes, it will 

bring conflict regardless. Only time will tell whether utilitarian frameworks will be regulated into 

prominence, or if more selfish algorithms become widespread. Keep in mind, that regardless of 

the ethical system in place, autonomous vehicles can prevent countless crashes. The projected 

reduction in automotive deaths provides ample reason to continue developing autonomous 

vehicles, despite the challenges in choosing an ethical system. While ethical systems are a 

significant part of the socioeconomic challenges facing autonomous vehicles, they do not stand 

alone. The economic effects prove to be just as relevant of a factor.  
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Economic Pushback 

         New innovations can have large impacts on old markets, both positive and negative. Old 

positions become obsolete due to new technologies, through the process of creative destruction. 

For example, the rise of the automobile was the downfall of countless stables, but also sparked a 

booming manufacturing industry. The autonomous vehicle is an innovation on a similar scale, 

with a similar level of impact. A study in 2017 investigated the likely economic impacts of 

autonomous vehicles, and research suggests that they will be expansive (Clements & 

Kockelman, 2017). To begin, it makes on-demand vehicle use much more practical, and personal 

ownership less so. Without the cost of a driver, companies such as Uber can charge lower prices, 

low enough to where consumers can choose to not own a car. A fleet of on-demand autonomous 

vehicles is the most efficient way to use the technology, as compared to individual ownership. 

The next major impact is in Vehicle Miles Travelled (VMT). As the time cost of driving goes 

down, the average miles travelled will go up. Simulations show that VMT will rise anywhere 

from 3.6% to 19.6%. This will induce faster vehicle turnover, resulting in greater sales for the 

automotive industry, a projected increase of anywhere between $29-57 billion USD a year. 

However, the impact of autonomous vehicles will not be entirely positive. The trucking industry 

employs over three million drivers in the US. If those drivers were eliminated by autonomous 

vehicle technology, the trucking industry stands to save $100-500 billion per year. While it is an 

economically advantageous option, it has the side effect of leaving three million drivers 

unemployed. The situation with the taxi industry is similar, with the likely result of taxi drivers 

losing up to 50% of their customer base. Previous statistics show that extremely good 

autonomous vehicle artificial intelligence can reduce crashes by up to 90%, reducing business for 
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automotive collision repair. While some of this business may be recovered due to the larger 

number of miles driven, common usage of autonomous vehicles will eliminate much of this 

market. All told, this would likely cause a $27 billion reduction to revenue for the automotive 

collision repair industry. These are all examples of industries that will be heavily impacted by the 

rise of autonomous vehicles, with both positive and negative effects. While society would be 

better off overall for the adoption of autonomous vehicles, parts of private industry would be 

devastated. Millions of people would lose their jobs, and companies would lose billions in 

revenue. Both groups have a large economic incentive to oppose the deployment of autonomous 

vehicles. The likely result is that there will be heavy lobbying efforts from affected industries to 

make it more difficult to build and use autonomous vehicles. If mass layoffs in the transportation 

industry come to pass, there will likely be large scale protests from newly unemployed truckers 

and taxi drivers. The overall benefits of the technology amount to $3,814 per capita in the US, 

but said benefits are not distributed evenly. The pushback from that fact becomes a challenge of 

its own. The economic conflict between the winners and losers in the rise of autonomous 

vehicles may not be a technical challenge, but it is a major obstacle to the widespread use of 

autonomous vehicles.   

 

 

Conclusion 

            Autonomous vehicles face many challenges that need to be addressed before they achieve 

widespread adoption. Technologies such as image processing and V2X communication can be 

used to greatly improve the ability of a vehicle to sense the world around them but will need 
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further improvements. The decision-making process bridges the gap between technical and social 

challenges, but it will improve with time and testing. Lastly, ethical and economic challenges 

will lead to social and economic pushback against this technology, but the overall benefits 

outweigh the costs. These challenges are being addressed, moving ever closer to effective 

solutions. As processing power grows cheaper and lighter, image processing becomes more 

practical and effective, as do real-time decision-making systems. 5G technology has been 

developed and deployed, setting the baseline requirements for V2X communications. While 

ethical concerns are a difficult matter to address, the overall lives saved by autonomous vehicles 

outweighs the rare cases in which a predetermined sacrifice will be necessary. Economic 

concerns will be an issue, but there is a precedent for new technologies displacing obselete 

industries. To conclude, while autonomous vehicles face several challenges in adoption, they are 

being addressed. As technical fields develop and research provides new findings, these 

challenges will fall, one by one. Currently, autonomous vehicles are not ready for widespread 

use. However, as the challenges are overcome, the viability of autonomous vehicles will grow. 

There is no longer a question of whether autonomous vehicles will be adopted or not. There is 

only the question of when. 
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