
Running head: AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH 1

An ACO-Inspired, Probabilistic, Greedy Approach

to the Drone Traveling Salesman Problem

Jessica Houseknecht

A Senior Thesis submitted in partial fulfillment

of the requirements for graduation

in the Honors Program

Liberty University

Spring 2019

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

2

Acceptance of Senior Honors Thesis

This Senior Honors Thesis is accepted in partial

fulfillment of the requirements for graduation from the

Honors Program of Liberty University.

Andy Ham, Ph.D.

Thesis Chair

 Robert K. Rich, M.S.

Committee Member

 Scott Long, Ph.D.

Committee Member

 David Schweitzer, Ph.D.

Assistant Honors Director

Date

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

3

Abstract

In recent years, major companies have done research on using drones for parcel delivery.

Research has shown that this can result in significant savings, which has led to the

formulation of various truck and drone routing and scheduling optimization problems.

This paper explains and analyzes a new approach to the Drone Traveling Salesman

Problem (DTSP) based on ant colony optimization (ACO).

 The ACO-based approach has an acceptance policy that maximizes the usage of

the drone. The results reveal that the pheromone causes the algorithm to converge quickly

to the best solution. The algorithm performs comparably to the MIP model, CP model,

and EA of Rich & Ham (2018), especially in instances with a larger number of stops.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

4

An ACO-Inspired, Probabilistic, Greedy Approach

to the Drone Traveling Salesman Problem

Introduction

Integrated Drone Delivery Applications

 An unmanned aerial vehicle (UAV) or drone is an aircraft that operates

autonomously, via remote control, or both (Guilmartin & Taylor, 2018). In 2013 during a

broadcast on 60 Minutes, Amazon’s CEO, Jeff Bezos (as cited in Murray & Chu, 2015),

announced the company had developed a fleet of drones. However, Carlson (2013) had

reported that the so-called Amazon Prime Air service would not be available “for many

years” (para. 2). In December of 2016, the first short unmanned aerial flight of Amazon

Prime Air was made in Britain (Amazon, n.d.). It has now been five years since Bezos

made this claim, but he has not given up on the prospect of using drones for delivery

(Barrabi, 2018). Studies show that utilizing a drone in-tandem with a truck to make

deliveries can save costs in time and fuel. Other companies including Alibaba and UPS

have also experimented with drones for small parcel “last-mile” delivery (Popper, 2013).

This notion of using drones to make deliveries has helped inspire the Drone

Traveling Salesman Problem (DTSP), where a drone works in-tandem with a truck to

deliver parcels to customers on its route. The DTSP is an extension of the thoroughly

researched traveling salesman problem (TSP). Research on various truck-drone problems

has shown evidence of savings from using a drone. This paper seeks to, first, show that a

new probabilistic, greedy approach to the DTSP that is based on ant colony optimization

(ACO) can produce comparable results to those in the literature. Second, it seeks to show

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

5

that while ACO appears to have been only theoretically discussed in the literature, its

inspiration for the successful implementation in this study reveals that it is a conceivable

method for application to truck-drone problems. For this reason, it is worth further

investigating extensions to the ACO-based algorithm in this paper as well as utilizing

ACO-based approaches in other truck-drone problems.

The Traveling Salesman Problem (TSP)

The traveling salesman problem (TSP) is one of the most researched NP-hard

combinatorial optimization problems in the literature. An NP-hard problem is one such

that “there is no exact algorithm to solve it in polynomial time” and in which one cannot

know whether the answer obtained is correct in polynomial time (Brezina & Čičková,

2011, p. 1). The objective of the TSP is to minimize the time or distance that it takes a

traveling salesman to visit each city along his route. The basic TSP consists of a structure

called a graph which consists of nodes, representing the different stops in his route, and

edges, representing the paths between the cities that he can take. The objective of the TSP

is to minimize the distance that a traveling salesman takes to visit every city exactly once,

and then return to the starting city. This problem has been solved using several

optimization techniques, including ant colony optimization, the technique motivating the

approach to the DTSP explored in this study.

The Drone Traveling Salesman Problem (DTSP)

Like the TSP, the DTSP is an NP-hard problem (Ponza, 2016). In this problem, a

drone flies in-tandem with the truck to help deliver parcels. The drone rides with the

truck when it is not delivering a parcel. The goal of the DTSP is to minimize the amount

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

6

of time it takes to service all customers by either the drone or by the truck, visiting each

customer exactly once (Rich & Ham, 2018). The drone and truck start at a depot and

must return to the depot after delivering to each of the customers. A sample routing of the

truck and drone is shown in Figure 1, with the solid black lines representing the truck

route and the broken blue lines representing the drone route.

The drone has a limited range of  kilometers and moves by a speed factor ds of

the truck’s speed. While not considered in this construction, it may not be feasible for the

drone to deliver a package to a customer due to other factors such as the parcel weight,

“parcels requiring a signature, or customer locations not amenable to safely landing the

UAV” (Murray & Chu, 2015, p. 90).

Figure 1. Sample routing plot output from MATLAB for the DTSP problem.

When separated from the truck, the drone travels in short trips called sorties,

consisting of three nodes (Murray & Chu, 2015). The DTSP given by Rich & Ham

(2018) is virtually the same problem as the Flying Sidekick Traveling Salesman Problem

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

7

(FSTSP) coined by Murray & Chu (2015), except that the problem addressed by Rich &

Ham (2018) and in this paper has two additional restrictions. First, it does not allow the

truck to stop at more than one location while separated from the drone. Thus, only three-

tuple configurations as shown by the sortie in Figure 2 are allowed. In a sortie, the drone

departs from the truck at the node i, which can either be the depot (where the truck and

drone start their route) or the current customer; it then drops off a parcel at the second

node l; finally, it rendezvouses with the truck at a new unvisited customer location j

(Murray & Chu, 2015). Using this notation, sorties shall be denoted as <i, l, j>. The

second restriction of the DTSP forces the drone to rendezvous with the truck at a

customer node rather than the depot.

Figure 2. Illustration of a sortie <i, l, j>.

Ant Colony Optimization (ACO)

Swarm intelligence is a field of research that examines intelligent multi-agent

systems, which use autonomous agents that individually are not intelligent, but,

collectively, can solve complex problems (Selvi & Umarani, 2010). Independent agents

follow certain rules to cause swarm-like behavior (Marzolla & Babaoglu, 2014).

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

8

Ant colony optimization (ACO) is a type of swarm optimization metaheuristic

inspired by ants in nature. It has been shown by a series of experiments called the Double

Bridge Experiments that foraging ants, by releasing pheromone, will converge to the

shortest path between their food source and nest (Dorigo & Stützle, 2004).

Ants find the shortest path between their nest and food source by releasing a

chemical called pheromone. This pheromone attracts other ants, causing them to take

paths with more pheromone. Over time, the pheromone accumulates on the shorter paths,

due to ants moving from point A to point B in less time. In contrast, pheromone on longer

paths tends to get depleted since ants take longer to move between the nest and the food

source on these trails. Over several iterations, the amount of pheromone evaporating on

these paths is higher than the amount of pheromone that gets laid down.

Similarly, for ant colony optimization in the TSP, artificial ants leave pheromone

along the edges in a network and use other information to construct tours. The

pheromone evaporates at a certain rate according to a learning rule, which can help

discourage search in unpreferable directions (Ellabib, Calamai, & Basir, 2007). This is

modeled by decreasing the values of pheromone on trails. Ant movement is stochastic,

allowing for a few individuals to take normally unfavorable paths, even as pheromone

builds up, to see whether a better solution may be found (Brezina & Čičková, 2011).

Several ACO algorithms were applied to the TSP. The first version of ACO was

Ant System. Ant Colony System (which considers the best-so-far solution) and MAX-MIN

Ant System (which considers the best-this-iteration) are the best performing ACO

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

9

algorithms for the TSP. The implementation in this study uses extensions on the classical

Ant System, modifying the acceptance criteria used in the TSP to solve the DTSP.

Literature Review

Previous Related Work on the DTSP

Several truck and drone assignment and routing problems are present in the

literature. This paper solves the DTSP as presented by Rich & Ham (2018). In their

paper, they use a mixed integer programming (MIP) model, a constraint programming

(CP) model, and an evolutionary algorithm (EA). This problem is a more specific version

of the FSTSP given by Murray & Chu (2015). The FSTSP allows the truck to visit

multiple customers while the drone is in flight. Murray & Chu (2015) use an MIP model,

and a route and re-assign heuristic that solves the TSP and, subsequently, determines

savings for reassigning customers to the drone. Ponza (2016) implements a simulated

annealing approach to solve the FSTSP.

Agatz, Bouman, & Schmidt (2016) model the TSP with Drone, or TSP-D, a

similar problem to the FSTSP using integer programming (IP) and several route-first

cluster-second approaches based on local search and dynamic programming. Unlike the

FSTSP, a customer node can be visited more than once in the TSP-D (Agatz et al., 2016).

Additionally, the drone can return to the node where it was launched (Ha, Deville, Pham,

& Hà, 2018). The results of Agatz et al. (2016) have shown significant savings: by a

factor of time on average between 1.4 and 2. Ha et al. (2018) solve a variant of the TSP-

D that seeks to minimize operational costs: transportation costs plus the time one vehicle

must wait for the other. They address this problem with two heuristics: 1) a greedy

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

10

heuristic and 2) a heuristic adapted from Murray & Chu (2015) that solves the TSP and

locally searches for a TSP-D solution. Ferrandez, Harbison, Weber, Sturges, & Rich

(2016) utilize K-Means clustering and a genetic algorithm to approach an in-tandem

truck-drone delivery problem.

Murray & Chu (2015) explore a second problem in their paper called the parallel

drone scheduling traveling salesman problem (PDSTSP). In this problem, upon dropping

off a parcel, the drone has the option to go directly back to the depot for another parcel or

to pick up a parcel at a customer location. In their problem, there is one truck, one depot,

and m drones. They use a heuristic approach to solve this problem. Ham (2018) solves an

m-truck, m-depot, and m-drone version of this problem using constraint programming.

In his thesis, Ponza (2016) provides a proposal for approaching the DTSP with

ACO and Naïve approaches. The ACO approach proposed would include different types

of pheromone, one for the truck route and the other for the drone route. Ponza (2016)

remarks that “[ACO] is the second [behind simulated annealing] most interesting

approach in need of analysis: it [has] never been tried before for the FSTSP or drone-

related problems, has very promising characteristics, but it is slightly more difficult to

approach as a metaheuristic than SA” (p. 21).

Two-Pheromone Approaches

Members of George Mason University’s Evolutionary Computation

Laboratory and the GMU Center for Social Complexity built a multi-agent simulator

called MASON (George Mason University), for which Panait & Luke (2004a, 2004b,

2004c) modeled ant foraging behavior. Their simulations were unique in that they

http://cs.gmu.edu/~eclab/
http://cs.gmu.edu/~eclab/
http://cs.gmu.edu/~eclab/
http://cs.gmu.edu/~eclab/
http://socialcomplexity.gmu.edu/
http://socialcomplexity.gmu.edu/

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

11

considered the use of two types of pheromone: one deposited from the ant home to the

food source, and the second, from the food source to the ant home. They use an approach

that mirrors dynamic programming. Ants use the maximum pheromone deposited to

determine the direction in which the ant travels: towards the food source or home.

Ponza (2016) notes that to approach the DTSP, “the ACO approach would most

likely…have two kinds of pheromone, one for truck and one for drone paths, and then

follow the basic framework of the metaheuristic” (p. 21). The approach explored under

study in this paper uses two pheromones in the sense that Ponza (2016) describes. The

Ant System approach for the TSP uses only one type of ant (to construct the truck’s

route). Analogously, this problem uses ant pairs since each construction of a tour

requires a truck route and drone route, the latter of which consists of sorties. Each ant in

the pair lays down a different type of pheromone when constructing its path, and each

type of ant is attracted to its respective type of pheromone.

Research Questions

 This study seeks to answer the following questions:

1. What is the effect of using two pheromones, one for the truck route and the other

for the drone route, on the algorithm’s results?

2. Are the rules that govern the truck ant’s and drone ant’s movements (i.e., the

acceptance criteria) effective?

The second question is especially important because the literature appears to show that

ACO-based techniques have not been implemented to solve the DTSP or related truck-

drone problems before.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

12

Ant System Model and Explanation

 Before explaining the ant colony optimization-based method used in this study to

solve the DTSP, it is important to understand the mathematical formulation of ACO for

the TSP. This study used Ant System (AS), the most basic ACO algorithm, as the basis

for the DTSP algorithm developed. The equations presented are part of the mathematical

formulation of AS.

Acceptance Criteria

 In the TSP, the parameters 𝛼𝑝 𝛽 and 𝜌 are established at the beginning of the

algorithm as well as the number of ants, number of iterations, and number of stops along

the route. The parameters 𝛼𝑝 and 𝛽 are part of the probability equation that determines

the likelihood of the ants visiting certain cities. In Equation 1, 𝑝𝑖𝑗
𝑘 gives the probability

that ant 𝑘 will take the path from its current city 𝑖 to city 𝑗, where 𝑗 is in the neighborhood

𝛮𝑖
𝑘. The neighborhood 𝛮𝑖

𝑘 is the feasible set of cities that can be visited by ant 𝑘 from its

current city 𝑖, that is, the remaining cities in the route of ant 𝑘.

Parameter 𝛼𝑝 regulates the influence of pheromone 𝜏𝑖𝑗 on the edge from city 𝑖 to

city 𝑗, and 𝛽 regulates the influence of the visibility (or proximity) 𝜂𝑖𝑗 of city 𝑗 to city 𝑖 to

determine the desirability of choosing the next city. A higher value of pheromone 𝜏𝑖𝑗,

results in a greater probability of choosing the path from city 𝑖 to city 𝑗. The parameter

𝜂𝑖𝑗 is equal to the inverse of the distance 𝑑𝑖𝑗 as expressed by Equation 2.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

13

𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝛼𝑝

[𝜂𝑖𝑗]
𝛽

𝛴𝑙𝜖𝛮𝑖
𝑘[𝜏𝑖𝑙]

𝛼𝑝[𝜂𝑖𝑙]𝛽
, if 𝑗 ϵ 𝛮𝑖

𝑘 (1)

𝜂𝑖𝑗 =

1

𝑑𝑖𝑗
 (2)

Thus, a greater distance between city 𝑖 and city 𝑗 gives a smaller value in 𝜂𝑖𝑗, resulting in

a lesser probability of choosing city 𝑗. Conversely, a shorter distance 𝑑𝑖𝑗, indicates closer

proximity 𝜂𝑖𝑗, giving a greater probability of choosing city 𝑗.

A higher value of the exponent 𝛼𝑝 gives greater magnitude to the value of 𝜏𝑖𝑗, and

a higher value of the exponent 𝛽 gives greater magnitude to the value of 𝜂𝑖𝑗. If 𝛼𝑝 were

equal to zero, then the probability 𝑝𝑖𝑗
𝑘 would be purely greedy and consider only the

proximity in determining the next city. If 𝛽 were equal to zero, then the probability would

only consider the amount of pheromone along the trail. This tends to lead to poor results.

It is important to set these parameters appropriately. Experimental results show that

setting 𝛼𝑝 equal to one and 𝛽 between two and five produce good performance when

using Ant System (without local search) to solve the TSP (Dorigo & Stützle, 2004). Note

that the 𝛼𝑝 used in Equation 1 for affecting the influence of pheromone is distinguished

from 𝛼𝑑𝑠 which is the ratio of the drone speed to the truck speed, discussed later in

the paper. Optimizing the parameters 𝛼𝑝 and 𝛽 are beyond the scope of this paper.

After these parameters have been initialized, the first iteration begins. At the

beginning of an iteration, the ants are assigned to random start cities. During the

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

14

iteration all ants construct their tours. Equation 1 is used to select the next city in the

tour until all cities have been visited, at which point the truck and drone ants return to

the starting depot.

Calculating Change in Pheromone

If an ant 𝑘 takes an edge from city 𝑖 to city 𝑗, the pheromone level along that

path will change. The change in pheromone Δ𝜏 𝑖𝑗
𝑘 on an edge from city 𝑖 to city 𝑗 that

an ant 𝑘 takes is a function of that ant’s tour length. The length 𝐶𝑘 of the tour 𝑇𝑘, the

tour of ant 𝑘, is used to determine the amount of pheromone to deposit on these edges;

specifically, ants that create shorter tours, will leave greater amounts of pheromone on

the edges that are elements of their tours, than ants that take longer routes. This is shown

by Equation 3.

Δ𝜏 𝑖𝑗
𝑘 = {

1

𝐶𝑘
, if arc (𝑖, 𝑗) belongs to 𝑇𝑘

0, otherwise
 (3)

Pheromone Evaporation/Subtraction

After all ants have constructed their tours in an iteration, the amount of

pheromone on each trail is updated with a two-phase process: pheromone evaporation

and deposit. Equation 4 represents the pheromone left on all paths after evaporation:

 𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗, ∀(𝑖, 𝑗) ϵ 𝐿 (4)

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

15

where 0 < 𝜌 ≤ 1 is the evaporation constant (Dorigo & Stützle, 2004).

The set 𝐿 consists of the edges connecting the nodes of the graph. Equation 4 causes the

current amount of pheromone 𝜏𝑖𝑗 on the paths to decrease. It has been found

experimentally that setting 𝜌 to 0.5 results in good performance when using Ant System

without local search to solve the TSP (Dorigo & Stützle, 2004).

Pheromone Deposit/Addition

 After pheromone has been evaporated from all paths in the network, the

pheromone values for all paths are updated according to the amount of pheromone

“deposited” by the ants in the current iteration. If 𝑚 is the number of ants used in the

algorithm, then Equation 5 is used to deposit pheromone:

𝜏𝑖𝑗 ← 𝜏𝑖𝑗 + ∑ Δ

𝑚

𝑘=1

𝜏 𝑖𝑗
𝑘 , ∀(𝑖, 𝑗) ϵ 𝐿 (5)

Equation 3 shows that Δ𝜏 𝑖𝑗
𝑘 , the change in the amount of pheromone on the path from

city 𝑖 to city 𝑗, has an inverse relationship with the length of an ant 𝑘’s tour. Thus, a

greater amount of pheromone will be deposited on the edges (𝑖, 𝑗) by ants that took

shorter tours.

Pseudocode

 The pseudocode below describes one implementation of Ant System. The

pseudocode for the DTSP algorithm builds off this structure.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

16

Part Procedure Ant System Metaheuristic

1 Initialize

2
 Set number of cities, number of ants, number of iterations, 𝛼𝑝, 𝛽 and 𝜌 distance matrix

Distanceij, 𝜅 and 𝛼𝑑𝑠

3 nitialize all pheromone trails (values must be > 0)

4 minCost = infinity // Set minimum cost

5 Body

6
Initialize canChoose vector to contain all cities

While iteration budget remains

7
 Randomize ant start cities

Set all Δ𝜏𝑖𝑗 = 0

8 For 𝑘 = 1 to number of ants

9

 Route(𝑘, 1) = start city for 𝑘

 𝑖 = Route(𝑘, 1)

 numCitiesVisited = 1

10 While numCitiesVisited < number of cities

11

 Calculate all 𝑝𝑖𝑗
𝑘

 in 𝑁𝑖
𝑘 using Equation 1

[maxProb, destIndex] = max(𝑝𝑖𝑗
𝑘)

probAcceptance = rand()

probCumulative = maxProb

probReached = false

While probReached == false

If probCumulative ≥ 1 – probAcceptance

 probReached = true

Else

 Remove city at destIndex from canChoose vector

[maxProb, destIndex] = max(remaining cities under consideration)

probCumulative = probCumulative + maxProb

End If

End While Loop

Visited(city at destIndex) = true

numCitiesVisited = numCitiesVisited + 1

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

17

Route(𝑘, numCitiesVisited) = city at destIndex

cost(𝑘) = cost(𝑘) + Distanceij(𝑖, city at destIndex)

Reset canChoose vector to contain any unvisited cities

𝑖 = city at destIndex // Make the destination city the new current city

12

End While Loop

cost(𝑘) = cost(𝑘) + Distanceij(𝑖, 1) // Return truck to depot

For each path (𝑖, 𝑗) traversed by ant 𝑘

 Δ𝜏𝑖𝑗 = Δ𝜏𝑖𝑗 + 1/cost(𝑘)

End For Loop

13

End For Loop

min(cost array) < minCost // If the best solution this iteration is better than global minimum

 minCost = min(cost array)

bestRoute = route of minimum length tour

End If

Update Pheromone Levels using Equations (4) and (5)

14 End While Loop

15 End Body

Method

Algorithm and Rationale

 The algorithm implemented is based off the work of Rich & Ham (2018) and

takes concepts of Ant System, applying them to the DTSP.

Algorithm assumptions. A few assumptions were made. First, the truck only

delivers to one customer while the drone takes a sortie. Second, like Rich & Ham (2018),

the drone must rendezvous with the truck at the last customer node in the route. Unlike

the problem presented by Murray & Chu (2015), it cannot rendezvous with the truck at

the depot. Third, the algorithm assumes the network used in the DTSP is symmetric like

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

18

the TSP: the distance dij from city node 𝑖 to 𝑗 is equal to the distance dji. Fourth, delivery

is considered instantaneous. Finally, the program allows for the distance matrix to have

entries of “0.” This was done in order to be able to test the algorithm on the 90-instance

stop of the distance matrices used by Rich & Ham (2018) in their data set. To avoid

division by zero, neighbors that were zero units away from the current city are

automatically picked next.

Cost function. The cost of ant 𝑘’s tour is based on the cost function used in the

evolutionary algorithm of Rich & Ham (2018). An operation consists of at least two

nodes: a start node and an end node. If there are feasible sorties the drone could take to

meet up with the truck at the selected end node, then the drone will be forced to travel to

an intermediary node and the operation will consist of three nodes. For every operation,

the maximum of the two values of (1) the truck distance traveled in the sortie and (2) the

drone distance traveled in the sortie divided by the speed factor 𝛼𝑑𝑠 is added to the

cumulative distance traveled so far. However, for an operation where the truck and drone

move together, the distance traveled by the truck (moving together with the drone) is

added onto the cumulative distance traveled so far. The cost of a tour taken by ant pair k

can be found using Equation 6 iteratively until all cities are visited by the truck or drone:

 𝐶𝑘 ← 𝐶𝑘 + max(truckDistance𝑜
𝑘,

droneDistance𝑜
𝑘

𝛼𝑑𝑠
) (6)

where truckDistance𝑜
𝑘 is the truck’s distance during operation o and droneDistance𝑜

𝑘 is

the drone’s distance during operation o. The value of droneDistance𝑜
𝑘 is zero if the drone

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

19

rides with the truck. The number of operations can vary between ant pairs and iterations.

The best tour found has the minimum cost of all tours created by the ant pairs.

Conformance to Ant System benchmarks. The algorithm was designed to

conform to the basic rules of Ant System used in the TSP with modifications for solving

the DTSP. It was deemed appropriate to start the ant pairs at random starting stops in

order to conform with the Ant System algorithm as much as possible and increase the

chances of finding the best solution. This did not seem to be a problem, since the

evolutionary algorithm of Rich & Ham (2018) created several strings of routes with

different starting stops as well. Each of the paths of the network was initialized with a

pheromone intensity equal to the number of ants divided by the nearest neighbor heuristic

path length. This is in conformance with a good pheromone initialization heuristic in Ant

System: that is, to set the pheromone value “slightly higher than the expected amount of

pheromone deposited by the ants in one iteration” (Dorigo & Stützle, 2004, p. 70).

Acceptance criteria. To reduce the computation time for larger data sets, the

probability equations used to route the drone only consider the closest 10 cities when

determining how to route the truck and drone. The rationale for considering only the

closest 10 was that the algorithm would converge on better solutions more quickly, and,

thus, be more competitive with the current algorithms in the literature in terms of

processing time. Equation 1 used in Ant System for the TSP is also used for choosing the

next city for the truck in this approach; it has been reformulated, however, as Equation 7,

with 𝜏𝑖𝑗
𝑡 representing the amount of truck pheromone along the path from i to j.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

20

𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗
𝑡]

𝛼𝑝
[𝜂𝑖𝑗]

𝛽

𝛴𝑙ϵΝ𝑖
𝑘[𝜏𝑖𝑙

𝑡]𝛼𝑝[𝜂𝑖𝑙]𝛽
, if 𝑗 ϵ 𝑁𝑖

𝑘 (7)

If the drone can create a sortie from the start node to that end node that is within

range, Equation 8 is used to determine where to route the drone from the start city 𝑖 to the

midpoint city 𝑙 to the end city 𝑗.

𝑝𝑖𝑙𝑗
𝑘 =

[𝜏𝑖𝑙
𝑑 + 𝜏𝑙𝑗

𝑑]
𝛼𝑝

[𝑑𝑖𝑙 + 𝑑𝑙𝑗]
𝛽

𝛴𝑞ϵ𝛮𝑖
𝑘[𝜏𝑖𝑞

𝑑 + 𝜏𝑞𝑗
𝑑]

𝛼𝑝
[𝑑𝑖𝑞 + 𝑑𝑞𝑗]

𝛽
, if 𝑙 ϵ 𝑁𝑖

𝑘 (8)

Equation 8 is designed to maximize the distance that the drone travels separately

from the track; in other words, the equation helps increase the probability of choosing in-

range neighbors that make for a longer sortie. However, moving the drone to the city

furthest away from the truck’s destination will not always be optimal. If there is no

feasible sortie, the drone moves with the truck to its destination city.

Finishing tour construction. The chosen cities for the truck and drone are taken

out of the pool of the remaining cities, and then the process of choosing the city the truck

and drone will visit next repeats. After all cities have been visited by either the drone or

by the truck, the next ant constructs its tour.

Updating pheromone. The change in pheromone Δ𝜏 𝑖𝑗
𝑘 caused by ant pair 𝑘 to an

edge (𝑖, 𝑗) is like Equation 3, except that the cost of a tour 𝐶𝑘 is now given by Equation 6

rather than by the length of the truck’s tour in the TSP. After all ants have constructed

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

21

their tours, the process of updating pheromone occurs. The evaporation equation for the

truck in the DTSP algorithm is like Equation 4 used in the Ant System algorithm for the

TSP. However, an evaporation equation must now also be applied to the drone

pheromone. Equations 9 and 10 represent the evaporation of truck pheromone and drone

pheromone, respectively, from all paths in the network:

 𝜏𝑖𝑗
𝑡 ← (1 − 𝜌)𝜏𝑖𝑗

𝑡

,
 ∀(𝑖, 𝑗) ϵ 𝐿 (9)

 𝜏𝑖𝑗
𝑑 ← (1 − 𝜌)𝜏𝑖𝑗

𝑑

,
 ∀(𝑖, 𝑗) ϵ 𝐿 (10)

where 𝜏𝑖𝑗
𝑡 and 𝜏𝑖𝑗

𝑑 are the amount of truck pheromone and drone pheromone on the path

from city 𝑖 to city 𝑗, respectively. Recall that 𝐿 consists of all edges in the network.

The pheromone deposit equation for the truck is like that in the TSP, but

pheromone is only applied to the paths the truck takes. An additional equation is needed

to model deposit of drone pheromone on its paths. The pheromone deposit equations for

the truck and drone are given by Equations 11 and 12, respectively:

𝜏𝑖𝑗

𝑡 ← 𝜏𝑖𝑗
𝑡 + ∑ Δ

𝑚

𝑘=1

𝜏 𝑖𝑗
𝑘 , ∀(𝑖, 𝑗) ϵ 𝐿𝑡

𝑘 (11)

where 𝐿𝑡
𝑘 is the set that consists of the edges that are in the tour of the truck in ant pair 𝑘.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

22

𝜏𝑖𝑗

𝑑 ← 𝜏𝑖𝑗
𝑑 + ∑ Δ

𝑚

𝑘=1

𝜏 𝑖𝑗
𝑘 , ∀(𝑖, 𝑗) 𝜖 𝐿𝑑

𝑘 (12)

where 𝐿𝑑
𝑘 is the set that consists of the edges that are in the tour of the drone in ant pair 𝑘.

Pseudocode

The pseudocode for the DTSP algorithm is shown below. The MATLAB source

code is also available in Appendix A. The nearest-neighbor heuristic used to initialize the

amount of pheromone on all edges is given in Appendix B.

Procedure ACO-Inspired Probabilistic Greedy Approach

Initialize

 Set number of cities, number of ant pairs, number of iterations, 𝛼𝑝, 𝛽 and 𝜌 distance matrix

Distanceij, 𝜅 and 𝛼𝑑𝑠

 nitialize all pheromone trails for both truck and drone (values must be > 0)

 minCost = infinity // Set minimum cost

 Find the top 9 closest cities to each of the NUM_CITIES and store in array top10dMat

Body

While iteration budget remains

 Randomize ant pair start cities

Set all Δ𝜏𝑖𝑗
𝑡 = 0

Set all Δ𝜏𝑖𝑗
𝑑 = 0

 For 𝑘 = 1 to number of ants

 TruckRoute(𝑘, 1) = start city for 𝑘

 𝑖 = TruckRoute(𝑘, 1)

 numCitiesVisited = 1

tMove = 2 // Position in TruckRoute vector

dMove = 0 // Position in DroneRoute vector, assume no sorties until we start building

them

 While numCitiesVisited < number of cities

 If the number of cities remaining > 10 then

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

23

 Fill up currentTop10 array to have 10 unvisited cities

Else

 Fill up currentTop10 array with remaining cities

End if

Choose truck destination city: Follow procedure found in Part 11 of the Pseudocode

section in Ant System Model and Explanation

// destStop contains the city the truck ant chose

truckMoveDist = Distanceij(𝑖, destStop)

Calculate all 𝑝𝑖𝑙𝑗
𝑘 using Equation 6 from the currentTop10 array (which can now only

contain up to 9 cities, since the truck chose the first city of this operation)

If there is at least one l that creates a feasible sortie between 𝑖 and 𝑗

 [maxProb, midIndex] = mid-point l that maximizes the distance from 𝑖 to 𝑙 to 𝑗

probAcceptance = rand()

probCumulative = maxProb

probReached = false

While probReached == false

 If probCumulative ≥ 1 – probAcceptance

 // Store the drone sortie

DroneRoute(dMove + 1) = 𝑖

DroneRoute(dMove + 2) = city at midIndex

DroneRoute(dMove + 3) = destStop

probReached = true

numCitiesVisited = numCitiesVisited + 1

Visited(city at midIndex) = true

droneMoveDist = Distanceij(𝑖, city at midIndex) + Distanceij(city at

midIndex, destStop)

dMove = dMove + 3

Else

 Remove city at midIndex from consideration

[maxProb, midIndex] = max(remaining cities under consideration)

probCumulative = probCumulative + maxProb

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

24

End if

End While Loop

Else

 droneMoveDist = 0

End If

If truck and drone moved together then

 cost(𝑘) = cost(𝑘) + truckMoveDist

Else If drone took a sortie then

 cost(𝑘) = cost(𝑘) + max(truckMoveDist, droneMoveDist/𝛼𝑑𝑠)

End If

tMove = tMove + 1

𝑖 = destStop // Make the destination city the new current city

End While Loop

cost(𝑘) = cost(𝑘) + Distanceij(𝑖, 1) // Return truck and drone to depot

For each path (𝑖, 𝑗) traversed by ant pair 𝑘

 Δ𝜏𝑖𝑗
𝑡 = Δ𝜏𝑖𝑗

𝑡 + 1/cost(𝑘)

Δ𝜏𝑖𝑗
𝑑 = Δ𝜏𝑖𝑗

𝑑 + 1/cost(𝑘)

End For Loop

 End For Loop

If min(cost array) < minCost // If the best solution this iteration is better than global minimum

 Update the minCost, best truck route, and best drone route

End If

Update Truck and Drone Pheromone Levels using Equations 9, 10, 11, and 12

End While Loop

End Body

Experiment Benchmarking

 The experiments done for this study are based off the work of Rich & Ham

(2018). The experiments use the same data set as Rich & Ham (2018). The data set

consists of distance matrices for 10 to 100 stops. Each distance matrix includes an

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

25

additional row and column for the depot starting location. The range limit  of the drone

is 14 miles, and the speed ratio αds of the drone to the truck is two, which were the

parameters used in the experiments done by Rich & Ham (2018). To mirror the trials

done by Rich & Ham (2018), particularly those for the EA, three trials were run on each

of the ten data sets.

Time measurements were taken to calculate the efficiency of the algorithm in

speed and accuracy. Elapsed times for improved solutions were taken after constructing

all the tours in an iteration. If the minimum cost found in an iteration was lower than the

global minimum cost found up to that iteration, then the elapsed time was output to the

screen.

 The settings for the pheromone tuning parameter, 𝛼𝑝 = 1; proximity tuning

parameter, 𝛽 = 3 and the evaporation constant, 𝜌 = 0.5 were all held constant. These

parameter settings were experimentally found to result in good performance for Ant

System in the TSP (Dorigo & Stützle, 2004). However, the author does not assume that

these are necessarily the best values for the DTSP.

Table 1 shows the settings of parameters used at each level of the experiment. In

general, greater numbers of ants and iterations were used for the trials that involved more

stops. The rationale for this is that a greater number of ants and iterations increases

exploration, which is especially important for many stops. Using an excessive number of

ants and iterations for a smaller number of jobs can increase computation time

unnecessarily.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

26

The number of iterations was not always greater for a greater number of stops,

however. The number of iterations and ants were chosen so that they produced a runtime

close to those used for the evolutionary algorithm of Rich & Ham (2018). For example,

the 80-stop instance was run for more iterations than the 90 and 100-stop instances

because more iterations were needed to reach a time span of 120 seconds, which was the

runtime given by Rich & Ham (2018) for all three of these test instances.

Table 1

Parameters Used for Test Instances of the Proposed Algorithm

Results

Table 2 shows the results of the trials run on the data sets of Rich & Ham (2018).

The iteration during which the best solution was found is denoted by the Iter column for

each trial. The approximate time when it was found is recorded in the column marked

Elapsed (s). This time was taken after all tours had been constructed for an iteration, and

Number of Stops Number of Ants Number of Iterations

10 100 110

20 150 160

30 275 175

40 300 225

50 300 275

60 300 305

70 300 390

80 300 460

90 300 410

100 300 360

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

27

when it was determined that the best solution so far was found in that iteration. Elapsed

time was calculated in MATLAB to a precision of ± 0.000001 seconds, but the results

were reported in Table 2 to the nearest hundredth place. In the last column, Error refers

to the percent variation across the three trials run at each level.

Table 2

Results for three trials of each test instance (job) level

 Trial 1

Trial 2

Trial 3

Jobs f Iter
Elapse

d (s)

f Iter

Elapse

d (s)

f Iter

Elapse

d (s)

Error

10 228 4 0.04 229 9 0.08 229 1 0.01 0.4%

20 287 140 4.11 288 116 3.44 290 49 1.46 1.1%

30 373 28 2.48 373 58 4.91 375 113 9.50 0.5%

40 433 110 14.49 431 124 16.53 433 36 4.83 0.5%

50 487 91 14.79 486 124 20.68 486 8 1.40 0.2%

60 429.5 293 57.72 430.5 184 35.49 430 121 23.87 0.2%

70 516.5 89 20.45 529 316 72.10 524.5 9 2.18 2.4%

80 534 21 5.68 542 26 7.08 544 114 30.12 1.9%

90 585.5 370 107.77 591 378 110.86 586 307 90.34 0.9%

100 620 207 68.73 621.5 105 35.58 628 76 25.51 1.3%

Table 3 shows the results of the ACO-based algorithm in comparison to the MIP,

CP, and EA models implemented by Rich & Ham (2018). In this table, the values given

for f were the minimum values obtained from several trials. The code was implemented

in MATLAB, and trials were run on a personal computer with an Intel Core i7-8750H

CPU @ 2.20 GHz processor and 16 GB of RAM. For their experiments, Rich & Ham

(2018) used a personal computer with an Intel Core i5-3537 @ 2.5 GHz processor and 8

GB of RAM. The Gap column in the table shows the percentage difference obtained from

the best solution of the probabilistic, greedy approach compared to the best solution of

each approach used by Rich & Ham (2018).

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

28

Results for the MIP and CP models report the time at which the best solution was

reached. In contrast, the EA results report the total time given to find the best solution.

Tests for the ACO-based approach were run for a total time close to the runtimes used for

the corresponding EA instances (shown in Table 3).

Table 3

Results of four DTSP optimization techniques

Note. Adapted from “The truck-drone scheduling problem with a theoretical insight into system

configuration,” by R. Rich and A. Ham, 2018, p. 10.

Discussion

It should be noted that the number of ants, number of iterations, and the subjective

changes in computer processing time may have affected the time it took to execute the

source code from trial to trial. However, the order of trials was performed randomly, and

as was shown in Table 2, consistently low variation (< 2.5%) between the three trials at

each level suggests consistency in the results. Table 3 shows that results obtained from

the new algorithm are comparable to those reached in the MIP, CP, and EA. Specifically,

the bolded values in Table 3 indicate any values that were equal or better than at least one

of the other three techniques.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

29

The first research question addressed in this paper stated, What is the effect of

using two pheromones, one for the truck route and the other for the drone route, on the

algorithm’s results? This probabilistic greedy approach based on Ant System produced

comparable results to the MIP, CP, and EA. The greatest percent error (gap) reached by

the ACO-based approach across all levels was 4.3% at 50 stops. This is lower than the

gap obtained by the EA at 70 stops, 4.5%. The algorithm also produced results better than

the EA at 80, 90, and 100 stops. By inspection, it appears that the use of two pheromones

in this ACO-based algorithm is the best of the four approaches for handling solution sizes

of at least 90 stops.

However, the use of two pheromones works well up to a point. For most trials, the

algorithm converged quickly, finding the best solution in early iterations of the run. In

most cases, adding extra time did not result in significant improvement per unit of time

added. Towards the beginning of the algorithm, the intensity of the pheromone on the

path is significantly lower compared to the amount of pheromone accumulated by the last

iteration. Figure 3 shows a typical convergence plot output by the program. The solution

converges quickly for the first 27 iterations, but then the solution does not improve until

iteration 159. The long horizontal line before the improvement at iteration 159 may

indicate that the current parameter settings at that point were ineffective. That is, the

algorithm may have performed better at this point had the parameters been optimized.

Recall that 𝛼𝑝, 𝛽 𝜌 and the number of ants were held constant in these experiments.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

30

Figure 3. Convergence Plot for Instance of DTSP Algorithm.

One general pattern that was observed was that the pheromone intensity on

underutilized paths approached zero as iterations increased. In general, better overall

solutions were found if found in early iterations. This could discourage ants from

following paths that may have led to a better solution and instead redundantly choose

paths with the most pheromone. The influence of the pheromone could have been

decreased or the number of ants constructing paths could have been decreased to prevent

pheromone from becoming too great.

Figure 4 shows the best routing found in a 20-stop instance (including the depot),

and Figure 5 is the corresponding convergence plot. In Figure 6, red and green lines show

the relative amount of truck and pheromone on each path, respectively. The order in

which the truck completed its route is as follows: 1, 14, 19, 9, 13, 17, 6, 20, 18, 3, 12, 15,

1. The path with the most truck pheromone, from stop 9 to stop 13, was part of the best

solution found. However, the path from stop 1 to stop 12, which has the second greatest

amount of pheromone, was not part of the best solution found. Part of the reason why this

occurred is related to acceptance criteria, which leads into the next research question: Are

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

31

the rules that govern the truck ant’s and drone ant’s movements (i.e., the acceptance

criteria) effective?

Figure 4. Plot showing the best truck and drone routing found for 20-stop instance

(including depot) of the DTSP algorithm.

Figure 5. Convergence plot for 20-stop (including depot) instance of DTSP algorithm.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

32

Figure 6. Plot showing the relative levels of truck and drone pheromone on the paths

between all cities in 20-stop (including depot) instance of the DTSP algorithm.

 The acceptance criteria for the truck in this ACO-based approach was the same as

that for the truck in the classical TSP: amount of pheromone on a path (𝑖, 𝑗) and

proximity
1

𝑑𝑖𝑗
 to city j increased the probability of selecting a city. The drone acceptance

criteria probability 𝑝𝑖𝑙𝑗
𝑘 most likely affected the quality of results more than the truck’s

probability 𝑝𝑖𝑗
𝑘 . Equation 7 was designed to maximize the utilization of the drone by

increasing the probability for selecting a middle sortie node that would cause the sortie to

be longer. This could have negatively affected the way pheromone was laid down by the

drone. For example, in Figure 6, there is more drone pheromone laid down on the sortie

created by edges (14, 10) and (10, 19) than on the sortie created by (14, 7) and (7, 19),

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

33

even though the latter edges form the sortie (i.e., <14, 7, 19>) that is part of the best

solution found. The drone may lay down too much pheromone on inferior edges.

Another case where the acceptance criteria may have suffered was due to the

interaction between the choice of the truck’s next city and the drone’s next city. The truck

was designed to visit the closest city and the drone was designed to lengthen the sortie as

much as possible. The next city for the truck was always chosen first. This may have led

to the drone traveling inefficiently: moving in one direction for a great distance only to

rendezvous at a node that was in an opposite direction (greater than 90° from its initial

direction). The acceptance criteria would likely have been more effective if the

probabilities for choosing the next cities for the truck and drone were designed to

minimize wait time of the truck and drone rather than maximize drone utilization.

Future Work

 The ACO-based algorithm presented has contributed a new perspective to truck

and drone routing problems in the literature, as no other drone-related problems have

used ACO. The results show that ACO techniques have promise, especially for

addressing data sets with a greater number of cities, since it had superior performance at

higher levels to the EA presented by Rich & Ham (2018).

Modifying the acceptance criteria is one direction in which this could be explored

further. Currently, the probability 𝑝𝑖𝑙𝑗
𝑘 of a drone taking sortie < 𝑖, 𝑙, 𝑗> is designed to

maximize the utilization of the drone. It would be worthwhile to modify 𝑝𝑖𝑙𝑗
𝑘 to be set up

to minimize the waiting time of the truck and the waiting time of the drone. In fact, Ha et

al. (2018) consider the cost of waiting in their variant of the TSP-D. In this case, the

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

34

probability minimizes the gap between (1) the distance traveled by the truck in an

operation and (2) the distance traveled by the drone divided by its speed factor in that

operation. Results may improve if this policy is adopted.

 Tuning the parameters such as 𝛼𝑝 𝛽 and 𝜌 is another important area of

research The recommended settings for Ant System in the context of the TSP were

adopted for the DTSP, but it would be beneficial to optimize the parameters specifically

for the DTSP. Another consideration related to tuning is that the drone probability

equation for 𝑝𝑖𝑙𝑗
𝑘 may have different values for 𝛼𝑝 and 𝛽 than the acceptance equation for

the truck 𝑝𝑖𝑗
𝑘 . These could be optimized using a full factorial or fractional factorial

experimental design approach. Doing this should help address the issues that arise when

the solution converges too quickly and levels out for the remaining iterations.

Another area of exploration is performing the ant algorithm in a broader

neighborhood than the 10 closest unvisited, feasible cities. This may increase the quality

of results since the neighborhood is expanded. Another way that a greater solution space

can be achieved is by changing the problem: it would be worthwhile to consider the

possibility of having the truck visit more than one city while separated as Murray & Chu

(2015) assume.

Anti-pheromone, which has been used in three Ant Colony System variants,

might also be useful in solving this problem (Montgomery & Randall, 2002). Once the

solution has converged and the convergence graph has leveled out for several iterations

with pheromone built up to a high degree on several paths, anti-pheromone can be

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

35

applied to the worst paths in the iterations to discourage taking paths that contribute to

suboptimal solutions.

 Another area of research would be to perform a comparative analysis between the

author’s approach and other heuristic approaches. A paired t-test could be conducted on

larger test instances (of at least 80 stops) to provide statistical evidence as to whether the

approach performs better on larger data sets than the EA of Rich & Ham (2018).

 Finally, the basic framework could be extended by exploring other ant colony

optimization techniques used to solve the DTSP. Other techniques applied to solve the

classical TSP such as Elite Ant System, Ant Colony System, and MAX-MIN Ant System

could potentially be used to solve the DTSP. They may perform better since they are

superior to AS in the TSP. Since the literature has shown that local search techniques

coupled with ACO have improved the performance of ACO techniques such as MAX-

MIN Ant System in the TSP, local search techniques may also be applied to this problem

to see whether they improve the quality of the solution.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

36

References

Agatz, N., Bouman, P., & Schmidt, M. (2015). Optimization approaches for the

traveling salesman problem with drone. SSRN Electronic Journal.

doi:10.2139/ssrn.2639672

Amazon (n.d.). First Prime Air Delivery [Video file]. Retrieved from

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011

Barrabi, T. (2018, December 03). Amazon drone delivery? Jeff Bezos' timeline is past

due. Retrieved from https://www.foxbusiness.com/business-leaders/amazon-

drone-delivery-jeff-bezos-timeline-is-past-due

Brezina, I., Jr., & Čičková, Z. (2011). Solving the travelling salesman

problem using the ant colony optimization. Management Information Systems,

6(4), 10-14. Retrieved from http://www.ef.uns.ac.rs/mis/

Calik, S. K., Kugu, E., Birtane, S., & Sahingoz, O. K. (2016). A multi agent solution for

UAV path planning problem with NetLogo. International Journal of Applied

Engineering Research, 11(15), 8397-8401.

Carlson, N. (2013, December 02). The real reason Amazon announced delivery drones

last night: $3 million in free advertising on Cyber Monday. Retrieved from

http://www.businessinsider.com/why-amazon-announced-delivery-drones-2013-

12

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolutionary

Computation, 1, 53-66. doi:10.1109/4235.585892

https://www.foxbusiness.com/business-leaders/amazon-drone-
https://www.foxbusiness.com/business-leaders/amazon-drone-
https://www.foxbusiness.com/business-leaders/amazon-drone-
https://www.foxbusiness.com/business-leaders/amazon-drone-

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

37

Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT.

DTSP_Test_Instances. (2018). The truck-drone scheduling problem with a theoretical

insight into system configuration [Zip file and data files]. Retrieved from

https://drive.google.com/file/d/19ZZ9ukEwSSfjCqNID1P1kPsGMOyMefXC/vie

w

Ellabib, I., Calamai, P., & Basir, O. (2007). Exchange strategies for multiple Ant Colony

System. Information Sciences, 177, 1248-1264. doi:10.1016/j.ins.2006.09.016

Ferrandez, S. M., Harbison, T., Weber, T., Sturges, R., & Rich, R. (2016). Optimization

of a truck-drone in tandem delivery network using k-means and genetic

algorithm. Journal of Industrial Engineering and Management, 9, 374-388.

doi:10.3926/jiem.1929

George Mason University. (n.d.). MASON Multiagent Simulation Toolkit. Retrieved from

https://cs.gmu.edu/~eclab/projects/mason/

Guilmartin, J. F., & Taylor, J. W. (2018). Military aircraft. In Encyclopedia

 Britannica. Retrieved February 3, 2019, from

https://www.britannica.com/technology/military-aircraft/Unmanned-aerial-

vehicles-UAVs

Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2018). On the min-cost Traveling

Salesman Problem with Drone. Transportation Research Part C: Emerging

Technologies, 86, 597-621. doi:10.1016/j.trc.2017.11.015

Ham, A. M. (2018). Integrated scheduling of m-truck, m-drone, and m-depot constrained

by time-window, drop-pickup, and m-visit using constraint

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

38

programming. Transportation Research Part C: Emerging Technologies, 91, 1-

14. doi:10.1016/j.trc.2018.03.025

Laftello. “Other drone.” Openclipart. Retrieved from

openclipart.org/detail/305390/other-drone.

Luke, S., Balan, G. C., Sullivan, K., Panait, L., Cioffi-Revilla, C., Paus, S., Kuebrich, D.,

Harrison, J., & Desai, A. (n.d.). MASON Multiagent Simulation Toolkit

[Computer software]. Retrieved from https://cs.gmu.edu/~eclab/projects/mason/

Malakar, G. (Producer). (2017, October 15). Tutorial - Introduction to ant colony

optimization algorithm n [sic] how it is applied on TSP [Video file]. Retrieved

from https://www.youtube.com/watch?v=wfD5xlEcmuQ

Marzolla, M., & Babaoglu, O. (2014). Agent-based systems [PowerPoint presentation].

Montgomery, J., & Randall, M. (2002). Anti-pheromone as a tool for better exploration

of search space. Ant Algorithms Lecture Notes in Computer Science, 2463, 100-

110. doi:10.1007/3-540-45724-0_9

Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem:

Optimization of drone-assisted parcel delivery. Transportation Research Part C:

Emerging Technologies, 54, 86-109. doi:10.1016/j.trc.2015.03.005

Panait, L., & Luke, S. (2004a). A pheromone-based utility model for collaborative

foraging. Proceedings of 2004 Conference on Autonomous Agents and Multiagent

Systems.

Panait, L., & Luke, S. (2004b). Ant foraging revisited. Proceedings of the Ninth

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

39

International Conference on the Simulation and Synthesis of Living Systems

(ALIFE9).

Panait, L., & Luke, S. (2004c). Learning foraging behaviors. Proceedings of the Ninth

International Conference on the Simulation and Synthesis of Living Systems

(ALIFE9).

Pierini, D. (2015, February 5). Alibaba one-ups Amazon with drone delivery of tea in

China. Retrieved from https://www.cultofmac.com/311193/alibaba-one-ups-

amazon-drone-delivered-tea/

Ponza, A. (2016). Optimization of Drone-Assisted Parcel Delivery (Unpublished master's

thesis). Università Degli Studi Di Padova.

Popper, B. (2013, December 03). UPS researching delivery drones that could compete

with Amazon's Prime Air. Retrieved from

https://www.theverge.com/2013/12/3/5169878/ups-is-researching-its-own-

delivery-drones-to-compete-with-amazons

Resnick, M. (2002). Turtles, termites, and traffic jams: Explorations in massively parallel

microworlds. Cambridge, MA: MIT Press.

Rich, R. K. (2017). dtsp_ga_basic(nStops, popSize, numIter, xy, range, speed)

[Computer software]. Retrieved from

https://www.mathworks.com/matlabcentral/fileexchange/60640-dtsp_ga_basic-

nstops-popsize-numiter-xy-range-speed?s_tid=prof_contriblnk

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

40

Rich, R. K. (2017). tsp_ga_basic(nStops, popSize, numIter, xy) [Computer software].

Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/60640-

dtsp_ga_basic-nstops-popsize-numiter-xy-range-speed?s_tid=prof_contriblnk

Rich, R. K., & Ham, A. M. (2018). The truck-drone scheduling problem with a

theoretical insight into system configuration. Manuscript submitted for

publication.

Selvi, V., & Umarani, D. (2010). Comparative analysis of ant colony and particle

swarm optimization techniques. International Journal of Computer

Applications, 5, 1-6. doi:10.5120/908-1286

Stützle, T., & Hoos, H. (1999). Max-Min Ant System. Elsevier Science, 1-39.

doi:10.1007/978-3-7091-6492-1_54

Vaughan, R. T., Støy, K., Sukhatme, G. S., & Matarić, M. J. (2000). Whistling in the

dark. Proceedings of the Fourth International Conference on Autonomous Agents

– AGENTS 00. doi:10.1145/336595.337351

Wodrich, M., & Bilchev, G. (1997). Cooperative distributed search: The ants'

way. Controls and Cybernetics, 26(3), 413-445.

Yan, X., Zhang, C., Luo, W., Li, W., Chen, W., & Liu, H. (2012). Solve traveling

salesman problem using particle swarm optimization algorithm. International

Journal of Computer Science Issues, 9(6), 264-271.

Yang, J., Shi, X., Marchese, M., & Liang, Y. (2008). An ant colony optimization method

for generalized TSP problem. Progress in Natural Science, 18, 1417-1422.

doi:10.1016/j.pnsc.2008.03.028

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

41

Appendix A

function [bestMinCost] = DTSP_ACOTop10(nStops, nAntPairs, numIter, ALPHA,
BETA, RHO, dMat, DRONE_DIST_LIMIT, DRONE_SPEED)
 % Notes about inputs:
 % -- nStops INCLUDES the depot.
 % -- dMat should be formatted as a symmetrical matrix. The matrix may
 % have 0s in spots NOT along the diagonal as well as on the
 % diagonal of the matrix.

 % This algorithm forces the drone and truck to be together by the last
 % city visited. It allows for the truck to wait for the drone AND
 % vice-versa.
 tic % Start timing the algorithm

%***
 % Title: dtsp_ga_basic(nStop?s, popSize, numIter, xy, range, speed)
 % Author: Robert Rich
 % Date: October 12, 2017
 % Code version: 1.4.0.0
 % Availability:
https://www.mathworks.com/matlabcentral/fileexchange/60640-dtsp_ga_basic-
nstops-popsize-numiter-xy-range-speed?s_tid=prof_contriblnk
 %

%***
 if nargin < 9 % If the user provided less than 9 input variables, use
 defaults.
 nStops=20; nAntPairs=150; numIter=160; ALPHA = 1; BETA = 3; RHO = 0.5;
 DRONE_DIST_LIMIT = 14; DRONE_SPEED = 2;
 xy = 25*rand([nStops, 2]);
 numColors = 100;
 nPoints = size(xy,1);
 meshg = meshgrid(1:nPoints);
 dMat = reshape(sqrt(sum((xy(meshg,:)-
xy(meshg',:)).^2,2)),nPoints,nPoints);

 % Preparations for making the pheromone graph
 scale = [1 1 1];
 scale2 = scale;
 factor = 1 / numColors;
 controller = 1;
 for i = 2:numColors
 scale = cat(1, scale,[1 controller controller]);
 scale2 = cat(1, scale2,[controller 1 controller]);
 controller = controller - factor;
 end
 end

 % The algorithm

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

42

 NU = zeros(nStops,nStops); % This contains the inverses of the distance
matrix values.

 for i = 1:nStops
 for j = 1:nStops
 if dMat(i,j) ~= 0
 NU(i,j) = 1 / dMat(i,j);
 elseif i == j % If it is along the diagonal
 NU(i,j) = inf;
 dMat(i,j) = inf;
 % The only way neither of these if statements are executed is
 % if a non-diagonal cell value == 0.
 % The non-diagonal 0s should not be changed to inf.
 end
 end
 end

 % Find the top 10 closest stops to each of the nStops.
 % Output from for loop: in every row (i) in the closestCities array, there
 will be the
 % top 10 closest cities for each respective city i
 tempdMat = dMat;

 if nStops > 10
 closestCities = zeros(nStops, 9);
 for j=1:9
 [~, cityIdx] = min(tempdMat,[],2);
 closestCities(:,j) = cityIdx;
 % Remove for the next iteration the last smallest value:
 for i = 1:nStops
 tempdMat(i,cityIdx(i)) = inf;
 end
 end
 end

 % Find length of the greedy heuristic path so we know how to initialize
 pheromone
 % level on paths in the network (must start at value > 0).
 Cnn = NearestNeighbor(dMat, nStops);

 % Initialize pheromone along paths
 TauT = zeros(nStops,nStops);
 TauD = zeros(nStops,nStops);
 for i = 1:nStops
 for j = 1:nStops
 if i ~= j
 TauT(i,j) = nAntPairs ./ Cnn; % Contains truck pheromone on
 path from city i to city j
 TauD(i,j) = nAntPairs ./ Cnn; % Contains drone pheromone on

path from city i to city j
 end
 end
 end

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

43

 % Initialize Best Solution Variables
 bestMinCost = inf; % This contains the global minimum cost.
 bestTruckRoute = 0; % Vector containing order truck visits cities
 bestDroneRoute = 0; % Vector containing order drone visits cities
 distHistory = zeros(numIter,1); % Contains best solutions so far (found
 during or before the current iteration)
 droneMoveDist = 0;

 % Construct tours for k ant pairs, numIter times
 for iter = 1:numIter
 % Initialize start stops for each ant pair (random)
 startStops = zeros(nAntPairs,1);
 RouteT = zeros(nAntPairs,1);
 RouteD = zeros(nAntPairs,1);
 for k = 1:nAntPairs
 startStops(k) = randi(nStops);
 RouteT(k, 1) = startStops(k);
 end

 % These variables are necessary for determining by how much the
 % pheromone on the paths change at the end of an iteration.
 sumOfChangeInTauT = zeros(nStops, nStops);
 sumOfChangeInTauD = zeros(nStops, nStops);

 % The route costs for antPairs
 cost = zeros(nAntPairs,1);

 % Initialize moves for all ants
 moveT = zeros(nAntPairs);
 moveD = zeros(nAntPairs);

 % Find feasible route for ant pair k
 for k = 1:nAntPairs
 % ---
 % Preliminary Initialization for ant pair k
 % ---

 % Initialize the remainingStops to all stops except for the
 % first (ant pair is already at the first)
 remainingStops = 1:nStops;
 remainingStops(startStops(k)) = [];

 % Initialize the current move the truck and drone are on
 moveT(k) = 2;
 moveD(k) = 0; % no sorties until we start building them

 % Set the current stop equal to the starting stop
 currentStop = startStops(k);
 currentTop10 = zeros(1,9);

 % Determine (based on the number of cities) whether there is
 % need to keep track of any cities that have not yet been added
 % to the top 10 (this would only happen if nStops > 10)

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

44

 % Any cities that will not be in the top 10 initially need to be
 rotated in
 % (and will be tracked using the dMatLookUp variable)
 if nStops > 10
 dMatLookUp = dMat; % This helps us keep track of the cities
 that are not already part of our top 10 (which ones that
 we will need to eventually add to our currentTop10 to be
 visited)
 % Copy over the 10 closest cities we calculated earlier
 for t = 1:length(closestCities(currentStop,:))
 currentTop10(t) = closestCities(currentStop,t);
 end
 else % There are no more than 10 cities so there is no need to
 rotate in unvisited stops (all of the stops will be in the
 currentTop10 immediately)
 currentTop10 = remainingStops;
 end

 % Exclude the cities that are already in the top 10, to prevent
 possibility of them being added again
 if nStops > 10
 dMatLookUp(1:nStops, currentStop) = inf;
 for i = 1:nStops
 for c = 1:length(currentTop10)
 dMatLookUp(i, currentTop10(c)) = inf;
 end
 end
 end

 % ---
 % Body of algorithm
 % ---

 while ~isempty(remainingStops) % While not all cities have been
 visited
 % Build the route
 if length(remainingStops) >= 10 && nStops > 10 % This helps us
 ensure there are at least 10 cities under consideration in
 Pijk

 while length(currentTop10) < 10
 [~, cityIdx] = min(dMatLookUp(currentStop,:));
 currentTop10(length(currentTop10) + 1) = cityIdx;
 % keep the value from being rotated in again
 dMatLookUp(1:nStops,cityIdx) = inf;
 end

 elseif nStops > 10

 while length(currentTop10) ~= length(remainingStops)
 [~, cityIdx] = min(dMatLookUp(currentStop,:));
 currentTop10(length(currentTop10) + 1) = cityIdx;
 % keep the value from being rotated in again

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

45

 dMatLookUp(currentStop,cityIdx) = inf;
 end

 end

 % If there is a stop 0 units away from the current stop, move
 % to it next
 if min(dMat(currentStop,currentTop10)) == 0
 [~, cityIdx] = min(dMat(currentStop,currentTop10));
 RouteT(k,moveT(k)) = currentTop10(cityIdx);
 remainingStops(remainingStops==currentTop10(cityIdx)) =
 [];
 currentTop10(cityIdx) = [];
 % move on to choose next city
 currentStop = RouteT(k,moveT(k));
 moveT(k) = moveT(k) + 1;
 else

 % Generate all possible probabilities
 % First, calculate the denominator of the probabilities
 sumOfTauNu = 0.0;
 for j = 1:length(currentTop10)
 sumOfTauNu = sumOfTauNu +
 (TauT(currentStop,currentTop10(j)) ^ ALPHA *
 NU(currentStop,currentTop10(j)) ^ BETA);
 end

 % Calculate the individual probability for ant k to move
 % from city i to city j
 Pijk = zeros(1,length(currentTop10)); % Vector containing
 probabilities

 for j = 1:length(currentTop10)
 Pijk(j) = ((TauT(currentStop, currentTop10(j))) ^
 ALPHA * (NU(currentStop, currentTop10(j))) ^
 BETA) / sumOfTauNu;
 end

 % Determine the most likely city
 maxProb = max(Pijk);
 maxStopIndex = find(Pijk==maxProb); % Get the index where
 the max probability was found
 while length(maxStopIndex) > 1 % In the chance that two
 cities had equal probability, choose 1
 maxStopIndex(randi([1 length(maxStopIndex)])) = [];
 end

 % Accept one of the cities as the next city
 consideration = currentTop10; % These are the city numbers
 under consideration.
 probAcceptance = rand(); % Probability that the city
 corresponding to the cumulative probability will be
 accepted

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

46

 probCumulative = maxProb; % Initialized to the most likely
 city; this probCumulative is added on to when the most
 likely city is not accepted
 probReached = false; % Indicates whether probCumulative is
 high enough to accept the last considered city.

 % Assume the first city is not accepted until shown
 otherwise.
 while probReached == false

 if (probCumulative >= 1 - probAcceptance) % If the
 probability of acceptance is high enough
 RouteT(k, moveT(k)) = consideration(maxStopIndex);

 % Add the max stop to the route.

 % Remove the stop just added from the
 % remainingStops and the currentTop10, and exit
 the
 % loop.

remainingStops(remainingStops==consideration(maxStopIndex)) = [];

currentTop10(currentTop10==consideration(maxStopIndex)) = [];
 probReached = true;
 else
 % Remove this stop from consideration this move
 Pijk(maxStopIndex) = [];
 consideration(maxStopIndex) = [];
 maxProb = max(Pijk);
 maxStopIndex = find(Pijk==maxProb);
 while length(maxStopIndex) > 1
 maxStopIndex(randi([1 length(maxStopIndex)]))

 = [];
 end
 probCumulative = probCumulative + maxProb;
 end

 end

 % Calculate move distance for the truck
 destStop = RouteT(k, moveT(k));
 truckMoveDist = dMat(currentStop, RouteT(k,moveT(k)));
 % Move the drone if possible
 % If after the truck is moved to the destStop (i.e.,
 potential "rendezvous node"), there is at
 % least one location unvisited, then see if it can
 % be serviced by the drone.
 if length(currentTop10) >= 1
 sumOfTauD = 0.0; % Calculate the denominator we will
 use to determine the probabilities of choosing
 different
 % cities as the middle node in a
 % sortie.

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

47

 % See if it is possible to move the drone in a
 % sortie configuration.
 for l = 1:length(currentTop10)
 if dMat(currentStop, currentTop10(l)) +
 dMat(currentTop10(l), destStop) <=

 DRONE_DIST_LIMIT
 sumOfTauD = sumOfTauD + ((TauD(currentStop,

 currentTop10(l)) + TauD(currentTop10(l),
 destStop)) ^ ALPHA * (dMat(currentStop,
 currentTop10(l)) + dMat(currentTop10(l),
 destStop)) ^ BETA);

 end
 end

 if sumOfTauD > 0 % If there are any cities that were
 feasible for the drone to visit
 % Find max drone probability
 consideration = currentTop10;
 Piljk = zeros(1,length(currentTop10));

 % Calculate individual drone probabilities
 for l = 1:length(currentTop10) % l is the
 intermediate node between the node of
 departure and rendezvous node with the truck
 if dMat(currentStop, currentTop10(l)) +

dMat(currentTop10(l), destStop) <=
DRONE_DIST_LIMIT

Piljk(l) = ((TauD(currentStop,
 currentTop10(l)) +
 TauD(currentTop10(l), destStop)) ^
 ALPHA * (dMat(currentStop,
 currentTop10(l)) +
 dMat(currentTop10(l), destStop)) ^
 BETA) / (sumOfTauD);

 end
 end

 % Find the most likely event
 maxDroneProb = max(Piljk);
 maxInterStopIndex = find(Piljk==maxDroneProb);
 while length(maxInterStopIndex) > 1
 maxInterStopIndex(randi([1
 length(maxInterStopIndex)])) = [];
 end

 probReached = false;
 probAcceptance = rand();
 probCumulative = maxDroneProb;

 while probReached == false

 if (probCumulative >= 1 - probAcceptance)

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

48

 RouteD(k,moveD(k)+1) = currentStop;
 RouteD(k,moveD(k)+2) =
 consideration(maxInterStopIndex);

remainingStops(remainingStops==consideration(maxInterStopIndex)) = [];

currentTop10(currentTop10==consideration(maxInterStopIndex)) = [];
 RouteD(k,moveD(k)+3) = destStop;
 probReached = true;
 droneMoveDist = dMat(currentStop,
 RouteD(k, moveD(k) + 2)) +
 dMat(RouteD(k, moveD(k) + 2),
 destStop);
 moveD(k) = moveD(k) + 3;
 else
 % remove this stop from consideration this
 move
 Piljk(maxInterStopIndex) = [];
 consideration(maxInterStopIndex) = [];
 maxDroneProb = max(Piljk);
 maxInterStopIndex =

 find(Piljk==maxDroneProb);
 while length(maxInterStopIndex) > 1 %

 maxInterStopIndex might return a
 vector but take only one instance

 maxInterStopIndex(randi([1
 length(maxInterStopIndex)])) = [];
 end
 probCumulative = probCumulative +
 maxDroneProb;

 end

 end

 cs = 2;

 else % There is not a feasible sortie for the drone,
 so
 % just move the drone straight to where the truck
 % went (move the drone with the truck in this
 % move).

 cs = 1;

 end
 moveT(k) = moveT(k) + 1;
 currentStop = destStop; % Reset the currentStop to the
 stop where the truck and drone just arrived.

 elseif isempty(currentTop10) % The truck has visited the
 last stop, so the drone should join it there.
 moveT(k) = moveT(k) + 1;

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

49

 cs = 1;
 end

 switch cs
 case 1 % The truck and drone moved together
 cost(k) = cost(k) + truckMoveDist;
 case 2 % The drone took a sortie, so take the max of
 the individual distances
 cost(k) = cost(k) + max(truckMoveDist,

 droneMoveDist / DRONE_SPEED);
 end

 end
 end

 % Complete the circuit from the last city to the first
 RouteT(k, moveT(k)) = RouteT(k, 1); % Return the truck home
 cost(k) = cost(k) + dMat(RouteT(k, moveT(k) - 1), RouteT(k,
 moveT(k)));

 % Calculate the amount of change in truck pheromone along the
 paths taken by truck k (but don't apply pheromone yet)
 for i = 1:moveT(k) - 1
 currentCity = RouteT(k, i);
 nextCity = RouteT(k, i + 1);
 sumOfChangeInTauT(currentCity, nextCity) =

 sumOfChangeInTauT(currentCity, nextCity) + 1 / cost(k);
 sumOfChangeInTauT(nextCity, currentCity) =

 sumOfChangeInTauT(currentCity, nextCity); % Do the same in
 other direction

 end

 % Calculate the amount of change in drone pheromone along the

 paths taken by drone k (but don't apply pheromone yet)
 for sortie = 1:moveD(k)/4
 s1 = 3*sortie - 2;
 s2 = s1 + 1;
 s3 = s2 + 1;
 sumOfChangeInTauD(RouteD(k,s1), RouteD(k,s2)) =

 sumOfChangeInTauD(RouteD(k,s1), RouteD(k,s2)) + 1 /
 cost(k);

 sumOfChangeInTauD(RouteD(k,s2), RouteD(k,s1)) =
 sumOfChangeInTauD(RouteD(k,s1), RouteD(k,s2)); % Do the
 same in other direction

 sumOfChangeInTauD(RouteD(k,s2), RouteD(k,s3)) =
 sumOfChangeInTauD(RouteD(k,s2), RouteD(k,s3)) + 1 /
 cost(k);

 sumOfChangeInTauD(RouteD(k,s3), RouteD(k,s2)) =
 sumOfChangeInTauD(RouteD(k,s2), RouteD(k,s3)); % Do the
 same in other direction

 end

 % Ant pair k is done constructing its tour this iteration

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

50

 end

 % All ant pairs have constructed their tours

 % Check to see if the best truck and drone route found this iteration
 % is better than the bestMinCost so far.
 [minIterCost, bestIdx] = min(cost);
 if minIterCost < bestMinCost
 toc % Output the elapsed time to find this solution
 bestMinCost = minIterCost;
 bestTruckRoute = nonzeros(RouteT(bestIdx,:));
 bestDroneRoute = nonzeros(RouteD(bestIdx,:));
 end

 % Keep Track of Best Cost Each Iteration for the Convergence Plot

%***
 % Title: tsp_ga_basic(nStops?, popSize, numIter, xy)
 % Author: Robert Rich
 % Date: October 6, 2017
 % Code version: 1.0.1.0
 % Availability:
https://www.mathworks.com/matlabcentral/fileexchange/60640-dtsp_ga_basic-
nstops-popsize-numiter-xy-range-speed?s_tid=prof_contriblnk
 %

%***
 distHistory(iter) = bestMinCost;

 % Update the pheromone levels in the network
 for i = 1:nStops
 for j = 1:nStops
 if (i ~= j)
 %Pheromone evaporation
 TauT(i, j) = (1 - RHO) * TauT(i, j);
 TauD(i, j) = (1 - RHO) * TauD(i, j);

 % Pheromone deposit
 TauT(i, j) = TauT(i, j) + sumOfChangeInTauT(i, j);
 TauD(i, j) = TauD(i, j) + sumOfChangeInTauD(i, j);
 end
 end
 end

 iter

 end % Do another iteration of pheromone updating
 toc % Output the elapsed time to complete the algorithm

 % The algorithm has finished all of its iterations.

 % Make the Convergence Plot

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

51

%***
 % Title: tsp_ga_basic(nStops?, popSize, numIter, xy)
 % Author: Robert Rich
 % Date: October 6, 2017
 % Code version: 1.0.1.0
 % Availability:
https://www.mathworks.com/matlabcentral/fileexchange/64653-tsp_ga_basic-
nstops-popsize-numiter-xy
 %

%***
 iterHist = 1:iter;
 subplot(2,2,1)
 plot(iterHist, distHistory(iterHist),'k-+');
 title(sprintf('Convergence: Min Cost = %1.4f',bestMinCost));
 xlabel('Iteration'); ylabel('Cost');

 % If the program generated its own coordinates and distance matrix
 if exist('xy','var')
 % Update graph with new pheromone levels
 % This gives us the rgb values.
 % Color the pheromone paths for the truck -- these paths are black.
 colormap(scale)
 v = TauT; % my matrix
 map = colormap;
 minv = min(v(:));
 maxv = max(v(:));
 ncol = size(map,1);
 s = round(1+(ncol-1)*(v-minv)/(maxv-minv));
 rgb_image = ind2rgb(s,map);

 % Color the pheromone paths for the drone -- these paths are blue.
 colormap(scale2)
 v2 = TauD; % my matrix
 map = colormap;
 minv = min(v2(:));
 maxv = max(v2(:));
 ncol = size(map,1);
 s = round(1+(ncol-1)*(v2-minv)/(maxv-minv));
 rgb_image2 = ind2rgb(s,map);

 % Plot the graphs showing the relative pheromone levels (brighter
 % colors indicate more intense pheromone levels).
 subplot(2,2,3);
 gMinimum1 = min(min(rgb_image(:,:,2)));
 bMinimum1 = min(min(rgb_image(:,:,3)));
 rMinimum2 = min(min(rgb_image2(:,:,1)));
 bMinimum2 = min(min(rgb_image2(:,:,3)));
 for num = 1:nStops
 for j = 1:nStops - num
 i=num:j:num+j;
 if (rgb_image(num, num+j, 2) == gMinimum1) &&

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

52

 (rgb_image(num, num+j, 3) == bMinimum1)
 p1 = plot(xy(i,1), xy(i,2),'ks-', 'Color', [rgb_image(num,

num+j, 1) rgb_image(num, num+j, 2) rgb_image(num,
num+j,3)], 'LineWidth',8); hold on;

 elseif (rgb_image2(num, num+j, 1) == rMinimum2) &&
 (rgb_image2(num, num+j, 3) == bMinimum2)
 p2 = plot(xy(i,1), xy(i,2), 'k--', 'Color',
 [rgb_image2(num, num+j, 1) rgb_image2(num, num+j, 2)
 rgb_image2(num, num+j,3)], 'LineWidth',2); hold on;
 else
 plot(xy(i,1), xy(i,2),'ks-', 'Color', [rgb_image(num,
 num+j, 1) rgb_image(num, num+j, 2) rgb_image(num,
 num+j,3)], 'LineWidth',8);
 plot(xy(i,1), xy(i,2), 'k--', 'Color', [rgb_image2(num,
 num+j, 1) rgb_image2(num, num+j, 2) rgb_image2(num,
 num+j,3)], 'LineWidth',2); hold on;
 end
 end
 end

 p3 = plot(xy(:,1), xy(:,2),'k.','MarkerSize',20); hold on; % Show the
 cities

 for i = 1:nStops

text(xy(i,1),xy(i,2),num2str(i),'VerticalAlignment','bottom','Horizontal
 Alignment','center')

 end

 title('Relative Pheromone Values on Graph')
 xlabel('x-coordinate (km)')
 ylabel('y-coordinate (km)')
 legend([p1 p2 p3],{'Truck', 'Drone', 'Stop'},

 'Location','bestoutside','Orientation','horizontal')

 % Plot the best cost drone and truck routes found

%***
 % Title: dtsp_ga_basic(nStop?s, popSize, numIter, xy, range, speed)
 % Author: Robert Rich
 % Date: October 12, 2017
 % Code version: 1.4.0.0
 % Availability:
https://www.mathworks.com/matlabcentral/fileexchange/60640-dtsp_ga_basic-
nstops-popsize-numiter-xy-range-speed?s_tid=prof_contriblnk
 %

%***
 subplot(2,2,2);

 % Plot the truck route
 p1 = plot(xy(bestTruckRoute,1), xy(bestTruckRoute,2),'ks-', 'Color',

 'k'); hold on;

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

53

 % Plot the drone route
 for startNode = 1:3:length(bestDroneRoute) % number of sorties
 vectorToPlot = bestDroneRoute(startNode:startNode+1);
 plot(xy(vectorToPlot,1), xy(vectorToPlot,2), 'k--', 'Color', [0 0
 1]); hold on;
 vectorToPlot = bestDroneRoute(startNode+1:startNode+2);
 p2 = plot(xy(vectorToPlot,1), xy(vectorToPlot,2), 'k--', 'Color',

 [0 0 1]); hold on;
 end

 % Plot the cities
 p3 = plot(xy(:,1), xy(:,2),'k.');

 title('Best Routing Found for Truck and Drone');
 xlabel('x-coordinate (km)');
 ylabel('y-coordinate (km)');
 legend([p1 p2 p3],{'Truck', 'Drone', 'Stop'},
 'Location','bestoutside','Orientation','horizontal')
 end

end % end of function

AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH

54

Appendix B

function [Cnn] = NearestNeighbor(dMat, nStops)
% This greedy algorithm constructs a route starting at stop 1. The function
 returns
% the total distance of the route, which is constructed by consecutively
 choosing the next
% closest stop ("nearest neighbor") to the currentStop until all nStops have
 been visited.
 Cnn = 0.0; % Length of the tour formed by NearestNeighbor Heuristic
 firstStop = 1;
 currentStop = firstStop;
 remainingStops = 2:nStops;

 while ~isempty(remainingStops)
 minValue = inf;
 for destCity = 1:length(remainingStops)
 if dMat(currentStop,remainingStops(destCity)) < minValue
 minCityIndex = destCity;
 minValue = dMat(currentStop,remainingStops(destCity));
 end
 end
 Cnn = Cnn + minValue;
 currentStop = remainingStops(minCityIndex);
 remainingStops(minCityIndex) = [];
 end
 Cnn = Cnn + dMat(currentStop,firstStop);
end

