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Abstract 

In recent years, major companies have done research on using drones for parcel delivery. 

Research has shown that this can result in significant savings, which has led to the 

formulation of various truck and drone routing and scheduling optimization problems. 

This paper explains and analyzes a new approach to the Drone Traveling Salesman 

Problem (DTSP) based on ant colony optimization (ACO). 

 The ACO-based approach has an acceptance policy that maximizes the usage of 

the drone. The results reveal that the pheromone causes the algorithm to converge quickly 

to the best solution. The algorithm performs comparably to the MIP model, CP model, 

and EA of Rich & Ham (2018), especially in instances with a larger number of stops.  
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An ACO-Inspired, Probabilistic, Greedy Approach 

to the Drone Traveling Salesman Problem 

Introduction 

Integrated Drone Delivery Applications 

 An unmanned aerial vehicle (UAV) or drone is an aircraft that operates 

autonomously, via remote control, or both (Guilmartin & Taylor, 2018). In 2013 during a 

broadcast on 60 Minutes, Amazon’s CEO, Jeff Bezos (as cited in Murray & Chu, 2015), 

announced the company had developed a fleet of drones. However, Carlson (2013) had 

reported that the so-called Amazon Prime Air service would not be available “for many 

years” (para. 2). In December of 2016, the first short unmanned aerial flight of Amazon 

Prime Air was made in Britain (Amazon, n.d.). It has now been five years since Bezos 

made this claim, but he has not given up on the prospect of using drones for delivery 

(Barrabi, 2018). Studies show that utilizing a drone in-tandem with a truck to make 

deliveries can save costs in time and fuel. Other companies including Alibaba and UPS 

have also experimented with drones for small parcel “last-mile” delivery (Popper, 2013).   

This notion of using drones to make deliveries has helped inspire the Drone 

Traveling Salesman Problem (DTSP), where a drone works in-tandem with a truck to 

deliver parcels to customers on its route. The DTSP is an extension of the thoroughly 

researched traveling salesman problem (TSP). Research on various truck-drone problems 

has shown evidence of savings from using a drone. This paper seeks to, first, show that a 

new probabilistic, greedy approach to the DTSP that is based on ant colony optimization 

(ACO) can produce comparable results to those in the literature. Second, it seeks to show 
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that while ACO appears to have been only theoretically discussed in the literature, its 

inspiration for the successful implementation in this study reveals that it is a conceivable 

method for application to truck-drone problems. For this reason, it is worth further 

investigating extensions to the ACO-based algorithm in this paper as well as utilizing 

ACO-based approaches in other truck-drone problems. 

The Traveling Salesman Problem (TSP)   

The traveling salesman problem (TSP) is one of the most researched NP-hard 

combinatorial optimization problems in the literature. An NP-hard problem is one such 

that “there is no exact algorithm to solve it in polynomial time” and in which one cannot 

know whether the answer obtained is correct in polynomial time (Brezina & Čičková, 

2011, p. 1). The objective of the TSP is to minimize the time or distance that it takes a 

traveling salesman to visit each city along his route. The basic TSP consists of a structure 

called a graph which consists of nodes, representing the different stops in his route, and 

edges, representing the paths between the cities that he can take. The objective of the TSP 

is to minimize the distance that a traveling salesman takes to visit every city exactly once, 

and then return to the starting city. This problem has been solved using several 

optimization techniques, including ant colony optimization, the technique motivating the 

approach to the DTSP explored in this study. 

The Drone Traveling Salesman Problem (DTSP) 

Like the TSP, the DTSP is an NP-hard problem (Ponza, 2016). In this problem, a 

drone flies in-tandem with the truck to help deliver parcels. The drone rides with the 

truck when it is not delivering a parcel. The goal of the DTSP is to minimize the amount 
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of time it takes to service all customers by either the drone or by the truck, visiting each 

customer exactly once (Rich & Ham, 2018). The drone and truck start at a depot and 

must return to the depot after delivering to each of the customers. A sample routing of the 

truck and drone is shown in Figure 1, with the solid black lines representing the truck 

route and the broken blue lines representing the drone route.  

The drone has a limited range of  kilometers and moves by a speed factor ds of 

the truck’s speed. While not considered in this construction, it may not be feasible for the 

drone to deliver a package to a customer due to other factors such as the parcel weight, 

“parcels requiring a signature, or customer locations not amenable to safely landing the 

UAV” (Murray & Chu, 2015, p. 90).  

 

Figure 1. Sample routing plot output from MATLAB for the DTSP problem. 

When separated from the truck, the drone travels in short trips called sorties, 

consisting of three nodes (Murray & Chu, 2015). The DTSP given by Rich & Ham 

(2018) is virtually the same problem as the Flying Sidekick Traveling Salesman Problem 
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(FSTSP) coined by Murray & Chu (2015), except that the problem addressed by Rich & 

Ham (2018) and in this paper has two additional restrictions. First, it does not allow the 

truck to stop at more than one location while separated from the drone. Thus, only three-

tuple configurations as shown by the sortie in Figure 2 are allowed. In a sortie, the drone 

departs from the truck at the node i, which can either be the depot (where the truck and 

drone start their route) or the current customer; it then drops off a parcel at the second 

node l; finally, it rendezvouses with the truck at a new unvisited customer location j 

(Murray & Chu, 2015). Using this notation, sorties shall be denoted as <i, l, j>. The 

second restriction of the DTSP forces the drone to rendezvous with the truck at a 

customer node rather than the depot. 

 

Figure 2. Illustration of a sortie <i, l, j>. 

Ant Colony Optimization (ACO) 

Swarm intelligence is a field of research that examines intelligent multi-agent 

systems, which use autonomous agents that individually are not intelligent, but, 

collectively, can solve complex problems (Selvi & Umarani, 2010). Independent agents 

follow certain rules to cause swarm-like behavior (Marzolla & Babaoglu, 2014).  
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Ant colony optimization (ACO) is a type of swarm optimization metaheuristic 

inspired by ants in nature. It has been shown by a series of experiments called the Double 

Bridge Experiments that foraging ants, by releasing pheromone, will converge to the 

shortest path between their food source and nest (Dorigo & Stützle, 2004). 

Ants find the shortest path between their nest and food source by releasing a 

chemical called pheromone. This pheromone attracts other ants, causing them to take 

paths with more pheromone. Over time, the pheromone accumulates on the shorter paths, 

due to ants moving from point A to point B in less time. In contrast, pheromone on longer 

paths tends to get depleted since ants take longer to move between the nest and the food 

source on these trails. Over several iterations, the amount of pheromone evaporating on 

these paths is higher than the amount of pheromone that gets laid down. 

Similarly, for ant colony optimization in the TSP, artificial ants leave pheromone 

along the edges in a network and use other information to construct tours. The 

pheromone evaporates at a certain rate according to a learning rule, which can help 

discourage search in unpreferable directions (Ellabib, Calamai, & Basir, 2007). This is 

modeled by decreasing the values of pheromone on trails. Ant movement is stochastic, 

allowing for a few individuals to take normally unfavorable paths, even as pheromone 

builds up, to see whether a better solution may be found (Brezina & Čičková, 2011). 

Several ACO algorithms were applied to the TSP. The first version of ACO was 

Ant System. Ant Colony System (which considers the best-so-far solution) and MAX-MIN 

Ant System (which considers the best-this-iteration) are the best performing ACO 
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algorithms for the TSP. The implementation in this study uses extensions on the classical 

Ant System, modifying the acceptance criteria used in the TSP to solve the DTSP.  

Literature Review 

Previous Related Work on the DTSP 

Several truck and drone assignment and routing problems are present in the 

literature. This paper solves the DTSP as presented by Rich & Ham (2018). In their 

paper, they use a mixed integer programming (MIP) model, a constraint programming 

(CP) model, and an evolutionary algorithm (EA). This problem is a more specific version 

of the FSTSP given by Murray & Chu (2015). The FSTSP allows the truck to visit 

multiple customers while the drone is in flight. Murray & Chu (2015) use an MIP model, 

and a route and re-assign heuristic that solves the TSP and, subsequently, determines 

savings for reassigning customers to the drone. Ponza (2016) implements a simulated 

annealing approach to solve the FSTSP. 

Agatz, Bouman, & Schmidt (2016) model the TSP with Drone, or TSP-D, a 

similar problem to the FSTSP using integer programming (IP) and several route-first 

cluster-second approaches based on local search and dynamic programming. Unlike the 

FSTSP, a customer node can be visited more than once in the TSP-D (Agatz et al., 2016). 

Additionally, the drone can return to the node where it was launched (Ha, Deville, Pham, 

& Hà, 2018). The results of Agatz et al. (2016) have shown significant savings: by a 

factor of time on average between 1.4 and 2. Ha et al. (2018) solve a variant of the TSP-

D that seeks to minimize operational costs: transportation costs plus the time one vehicle 

must wait for the other. They address this problem with two heuristics: 1) a greedy 
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heuristic and 2) a heuristic adapted from Murray & Chu (2015) that solves the TSP and 

locally searches for a TSP-D solution. Ferrandez, Harbison, Weber, Sturges, & Rich 

(2016) utilize K-Means clustering and a genetic algorithm to approach an in-tandem 

truck-drone delivery problem.  

Murray & Chu (2015) explore a second problem in their paper called the parallel 

drone scheduling traveling salesman problem (PDSTSP). In this problem, upon dropping 

off a parcel, the drone has the option to go directly back to the depot for another parcel or 

to pick up a parcel at a customer location. In their problem, there is one truck, one depot, 

and m drones. They use a heuristic approach to solve this problem. Ham (2018) solves an 

m-truck, m-depot, and m-drone version of this problem using constraint programming. 

In his thesis, Ponza (2016) provides a proposal for approaching the DTSP with 

ACO and Naïve approaches. The ACO approach proposed would include different types 

of pheromone, one for the truck route and the other for the drone route. Ponza (2016) 

remarks that “[ACO] is the second [behind simulated annealing] most interesting 

approach in need of analysis: it [has] never been tried before for the FSTSP or drone-

related problems, has very promising characteristics, but it is slightly more difficult to 

approach as a metaheuristic than SA” (p. 21). 

Two-Pheromone Approaches 

Members of George Mason University’s Evolutionary Computation 

Laboratory and the GMU Center for Social Complexity built a multi-agent simulator 

called MASON (George Mason University), for which Panait & Luke (2004a, 2004b, 

2004c) modeled ant foraging behavior. Their simulations were unique in that they 

http://cs.gmu.edu/~eclab/
http://cs.gmu.edu/~eclab/
http://cs.gmu.edu/~eclab/
http://cs.gmu.edu/~eclab/
http://socialcomplexity.gmu.edu/
http://socialcomplexity.gmu.edu/
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considered the use of two types of pheromone: one deposited from the ant home to the 

food source, and the second, from the food source to the ant home. They use an approach 

that mirrors dynamic programming. Ants use the maximum pheromone deposited to 

determine the direction in which the ant travels: towards the food source or home.  

Ponza (2016) notes that to approach the DTSP, “the ACO approach would most 

likely…have two kinds of pheromone, one for truck and one for drone paths, and then 

follow the basic framework of the metaheuristic” (p. 21). The approach explored under 

study in this paper uses two pheromones in the sense that Ponza (2016) describes. The 

Ant System approach for the TSP uses only one type of ant (to construct the truck’s 

route). Analogously, this problem uses ant pairs since each construction of a tour 

requires a truck route and drone route, the latter of which consists of sorties. Each ant in 

the pair lays down a different type of pheromone when constructing its path, and each 

type of ant is attracted to its respective type of pheromone. 

Research Questions 

 This study seeks to answer the following questions:  

1. What is the effect of using two pheromones, one for the truck route and the other 

for the drone route, on the algorithm’s results? 

2. Are the rules that govern the truck ant’s and drone ant’s movements (i.e., the 

acceptance criteria) effective? 

The second question is especially important because the literature appears to show that 

ACO-based techniques have not been implemented to solve the DTSP or related truck-

drone problems before. 
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Ant System Model and Explanation 

 Before explaining the ant colony optimization-based method used in this study to 

solve the DTSP, it is important to understand the mathematical formulation of ACO for 

the TSP. This study used Ant System (AS), the most basic ACO algorithm, as the basis 

for the DTSP algorithm developed. The equations presented are part of the mathematical 

formulation of AS. 

Acceptance Criteria 

 In the TSP, the parameters 𝛼𝑝  𝛽 and 𝜌 are established at the beginning of the 

algorithm as well as the number of ants, number of iterations, and number of stops along 

the route. The parameters 𝛼𝑝 and 𝛽 are part of the probability equation that determines 

the likelihood of the ants visiting certain cities. In Equation 1, 𝑝𝑖𝑗
𝑘  gives the probability 

that ant 𝑘 will take the path from its current city 𝑖 to city 𝑗, where 𝑗 is in the neighborhood 

𝛮𝑖
𝑘. The neighborhood 𝛮𝑖

𝑘 is the feasible set of cities that can be visited by ant 𝑘 from its 

current city 𝑖, that is, the remaining cities in the route of ant 𝑘.  

Parameter 𝛼𝑝 regulates the influence of pheromone 𝜏𝑖𝑗 on the edge from city 𝑖 to 

city 𝑗, and 𝛽 regulates the influence of the visibility (or proximity) 𝜂𝑖𝑗 of city 𝑗 to city 𝑖 to 

determine the desirability of choosing the next city. A higher value of pheromone 𝜏𝑖𝑗, 

results in a greater probability of choosing the path from city 𝑖 to city 𝑗. The parameter 

𝜂𝑖𝑗 is equal to the inverse of the distance 𝑑𝑖𝑗 as expressed by Equation 2.  
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𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝛼𝑝

[𝜂𝑖𝑗]
𝛽

𝛴𝑙𝜖𝛮𝑖
𝑘[𝜏𝑖𝑙]

𝛼𝑝[𝜂𝑖𝑙]𝛽
, if 𝑗 ϵ 𝛮𝑖

𝑘 (1) 

 

 
𝜂𝑖𝑗 =

1

𝑑𝑖𝑗
 (2) 

 

Thus, a greater distance between city 𝑖 and city 𝑗 gives a smaller value in 𝜂𝑖𝑗, resulting in 

a lesser probability of choosing city 𝑗. Conversely, a shorter distance 𝑑𝑖𝑗, indicates closer 

proximity 𝜂𝑖𝑗, giving a greater probability of choosing city 𝑗.  

A higher value of the exponent 𝛼𝑝 gives greater magnitude to the value of 𝜏𝑖𝑗, and 

a higher value of the exponent 𝛽 gives greater magnitude to the value of 𝜂𝑖𝑗. If 𝛼𝑝 were 

equal to zero, then the probability 𝑝𝑖𝑗
𝑘  would be purely greedy and consider only the 

proximity in determining the next city. If 𝛽 were equal to zero, then the probability would 

only consider the amount of pheromone along the trail. This tends to lead to poor results. 

It is important to set these parameters appropriately. Experimental results show that 

setting 𝛼𝑝  equal to one and 𝛽 between two and five produce good performance when 

using Ant System (without local search) to solve the TSP (Dorigo & Stützle, 2004). Note 

that the 𝛼𝑝  used in Equation 1 for affecting the influence of pheromone is distinguished 

from 𝛼𝑑𝑠 which is the ratio of the drone speed to the truck speed, discussed later in 

the paper. Optimizing the parameters 𝛼𝑝  and 𝛽 are beyond the scope of this paper. 

After these parameters have been initialized, the first iteration begins. At the 

beginning of an iteration, the ants are assigned to random start cities. During the 
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iteration all ants construct their tours. Equation 1 is used to select the next city in the 

tour until all cities have been visited, at which point the truck and drone ants return to 

the starting depot. 

Calculating Change in Pheromone 

If an ant 𝑘 takes an edge from city 𝑖 to city 𝑗, the pheromone level along that 

path will change. The change in pheromone Δ𝜏 𝑖𝑗
𝑘  on an edge from city 𝑖 to city 𝑗 that 

an ant 𝑘 takes is a function of that ant’s tour length. The length 𝐶𝑘 of the tour 𝑇𝑘, the 

tour of ant 𝑘, is used to determine the amount of pheromone to deposit on these edges; 

specifically, ants that create shorter tours, will leave greater amounts of pheromone on 

the edges that are elements of their tours, than ants that take longer routes. This is shown 

by Equation 3. 

 

 

Δ𝜏 𝑖𝑗
𝑘 = {

1

𝐶𝑘
,          if arc (𝑖, 𝑗) belongs to 𝑇𝑘

0,                                        otherwise
 (3) 

 

Pheromone Evaporation/Subtraction 

After all ants have constructed their tours in an iteration, the amount of 

pheromone on each trail is updated with a two-phase process: pheromone evaporation 

and deposit. Equation 4 represents the pheromone left on all paths after evaporation: 

 

 𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗, ∀(𝑖, 𝑗) ϵ 𝐿 (4) 
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where 0 < 𝜌 ≤ 1 is the evaporation constant (Dorigo & Stützle, 2004).  

The set 𝐿 consists of the edges connecting the nodes of the graph. Equation 4 causes the 

current amount of pheromone 𝜏𝑖𝑗 on the paths to decrease. It has been found 

experimentally that setting 𝜌 to 0.5 results in good performance when using Ant System 

without local search to solve the TSP (Dorigo & Stützle, 2004). 

Pheromone Deposit/Addition 

 After pheromone has been evaporated from all paths in the network, the 

pheromone values for all paths are updated according to the amount of pheromone 

“deposited” by the ants in the current iteration. If 𝑚 is the number of ants used in the 

algorithm, then Equation 5 is used to deposit pheromone:  

 

 
𝜏𝑖𝑗 ← 𝜏𝑖𝑗 + ∑ Δ

𝑚

𝑘=1

𝜏 𝑖𝑗
𝑘 ,      ∀(𝑖, 𝑗) ϵ 𝐿 (5) 

 

Equation 3 shows that Δ𝜏 𝑖𝑗
𝑘 , the change in the amount of pheromone on the path from 

city 𝑖 to city 𝑗, has an inverse relationship with the length of an ant 𝑘’s tour. Thus, a 

greater amount of pheromone will be deposited on the edges (𝑖, 𝑗) by ants that took 

shorter tours. 

Pseudocode 

 The pseudocode below describes one implementation of Ant System. The 

pseudocode for the DTSP algorithm builds off this structure. 
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Part Procedure Ant System Metaheuristic 

1 Initialize 

2 
 Set number of cities, number of ants, number of iterations, 𝛼𝑝, 𝛽 and 𝜌 distance matrix 

Distanceij, 𝜅 and 𝛼𝑑𝑠  

3 nitialize all pheromone trails (values must be > 0) 

4 minCost = infinity // Set minimum cost 

5 Body 

6 
Initialize canChoose vector to contain all cities 

While iteration budget remains 

7 
 Randomize ant start cities 

Set all Δ𝜏𝑖𝑗 = 0 

8  For 𝑘 = 1 to number of ants 

9 

           Route(𝑘, 1) = start city for 𝑘 

 𝑖  = Route(𝑘, 1) 

 numCitiesVisited = 1 

10  While numCitiesVisited < number of cities 

11 

 Calculate all 𝑝𝑖𝑗
𝑘

 in 𝑁𝑖
𝑘 using Equation 1 

[maxProb, destIndex] = max(𝑝𝑖𝑗
𝑘 ) 

probAcceptance = rand() 

probCumulative = maxProb 

probReached = false 

 

While probReached == false  

 

 

 

 

 

If probCumulative ≥ 1 – probAcceptance 

 probReached = true 

Else 

          Remove city at destIndex from canChoose vector 

[maxProb, destIndex] = max(remaining cities under consideration)                    

probCumulative = probCumulative + maxProb 

End If 

End While Loop 

 

Visited(city at destIndex) = true 

numCitiesVisited = numCitiesVisited + 1 
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Route(𝑘, numCitiesVisited) = city at destIndex 

cost(𝑘) = cost(𝑘) + Distanceij(𝑖, city at destIndex) 

Reset canChoose vector to contain any unvisited cities  

 

𝑖 = city at destIndex // Make the destination city the new current city 

12 

End While Loop 

cost(𝑘) = cost(𝑘) + Distanceij(𝑖, 1) // Return truck to depot 

 

For each path (𝑖, 𝑗) traversed by ant 𝑘 

 Δ𝜏𝑖𝑗 = Δ𝜏𝑖𝑗  + 1/cost(𝑘) 

End For Loop 

13 

End For Loop 

 

min(cost array) < minCost // If the best solution this iteration is better than global minimum 

 minCost = min(cost array) 

bestRoute = route of minimum length tour 

End If 

Update Pheromone Levels using Equations (4) and (5) 

14 End While Loop 

15 End Body 

 

Method 

Algorithm and Rationale 

 The algorithm implemented is based off the work of Rich & Ham (2018) and 

takes concepts of Ant System, applying them to the DTSP.  

Algorithm assumptions. A few assumptions were made. First, the truck only 

delivers to one customer while the drone takes a sortie. Second, like Rich & Ham (2018), 

the drone must rendezvous with the truck at the last customer node in the route. Unlike 

the problem presented by Murray & Chu (2015), it cannot rendezvous with the truck at 

the depot. Third, the algorithm assumes the network used in the DTSP is symmetric like 
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the TSP: the distance dij from city node 𝑖 to 𝑗 is equal to the distance dji. Fourth, delivery 

is considered instantaneous. Finally, the program allows for the distance matrix to have 

entries of “0.” This was done in order to be able to test the algorithm on the 90-instance 

stop of the distance matrices used by Rich & Ham (2018) in their data set. To avoid 

division by zero, neighbors that were zero units away from the current city are 

automatically picked next. 

Cost function. The cost of ant 𝑘’s tour is based on the cost function used in the 

evolutionary algorithm of Rich & Ham (2018). An operation consists of at least two 

nodes: a start node and an end node. If there are feasible sorties the drone could take to 

meet up with the truck at the selected end node, then the drone will be forced to travel to 

an intermediary node and the operation will consist of three nodes. For every operation, 

the maximum of the two values of (1) the truck distance traveled in the sortie and (2) the 

drone distance traveled in the sortie divided by the speed factor 𝛼𝑑𝑠 is added to the 

cumulative distance traveled so far. However, for an operation where the truck and drone 

move together, the distance traveled by the truck (moving together with the drone) is 

added onto the cumulative distance traveled so far. The cost of a tour taken by ant pair k 

can be found using Equation 6 iteratively until all cities are visited by the truck or drone: 

 

 𝐶𝑘 ← 𝐶𝑘 + max(truckDistance𝑜
𝑘,

droneDistance𝑜
𝑘

𝛼𝑑𝑠
) (6) 

 

where truckDistance𝑜
𝑘 is the truck’s distance during operation o and droneDistance𝑜

𝑘 is 

the drone’s distance during operation o. The value of droneDistance𝑜
𝑘 is zero if the drone 
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rides with the truck. The number of operations can vary between ant pairs and iterations. 

The best tour found has the minimum cost of all tours created by the ant pairs. 

Conformance to Ant System benchmarks. The algorithm was designed to 

conform to the basic rules of Ant System used in the TSP with modifications for solving 

the DTSP. It was deemed appropriate to start the ant pairs at random starting stops in 

order to conform with the Ant System algorithm as much as possible and increase the 

chances of finding the best solution. This did not seem to be a problem, since the 

evolutionary algorithm of Rich & Ham (2018) created several strings of routes with 

different starting stops as well. Each of the paths of the network was initialized with a 

pheromone intensity equal to the number of ants divided by the nearest neighbor heuristic 

path length. This is in conformance with a good pheromone initialization heuristic in Ant 

System: that is, to set the pheromone value “slightly higher than the expected amount of 

pheromone deposited by the ants in one iteration” (Dorigo & Stützle, 2004, p. 70).  

Acceptance criteria. To reduce the computation time for larger data sets, the 

probability equations used to route the drone only consider the closest 10 cities when 

determining how to route the truck and drone. The rationale for considering only the 

closest 10 was that the algorithm would converge on better solutions more quickly, and, 

thus, be more competitive with the current algorithms in the literature in terms of 

processing time. Equation 1 used in Ant System for the TSP is also used for choosing the 

next city for the truck in this approach; it has been reformulated, however, as Equation 7, 

with 𝜏𝑖𝑗
𝑡  representing the amount of truck pheromone along the path from i to j. 
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𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗
𝑡 ]

𝛼𝑝
[𝜂𝑖𝑗]

𝛽

𝛴𝑙ϵΝ𝑖
𝑘[𝜏𝑖𝑙

𝑡 ]𝛼𝑝[𝜂𝑖𝑙]𝛽
, if 𝑗 ϵ 𝑁𝑖

𝑘 (7) 

 

If the drone can create a sortie from the start node to that end node that is within 

range, Equation 8 is used to determine where to route the drone from the start city 𝑖 to the 

midpoint city 𝑙 to the end city 𝑗. 

 

 

𝑝𝑖𝑙𝑗
𝑘 =

[𝜏𝑖𝑙
𝑑  +  𝜏𝑙𝑗

𝑑 ]
𝛼𝑝

[𝑑𝑖𝑙 +  𝑑𝑙𝑗]
𝛽

𝛴𝑞ϵ𝛮𝑖
𝑘[𝜏𝑖𝑞

𝑑  +  𝜏𝑞𝑗
𝑑 ]

𝛼𝑝
[𝑑𝑖𝑞 +  𝑑𝑞𝑗]

𝛽
, if 𝑙 ϵ 𝑁𝑖

𝑘 (8) 

 

Equation 8 is designed to maximize the distance that the drone travels separately 

from the track; in other words, the equation helps increase the probability of choosing in-

range neighbors that make for a longer sortie. However, moving the drone to the city 

furthest away from the truck’s destination will not always be optimal. If there is no 

feasible sortie, the drone moves with the truck to its destination city. 

Finishing tour construction. The chosen cities for the truck and drone are taken 

out of the pool of the remaining cities, and then the process of choosing the city the truck 

and drone will visit next repeats. After all cities have been visited by either the drone or 

by the truck, the next ant constructs its tour. 

Updating pheromone. The change in pheromone Δ𝜏 𝑖𝑗
𝑘  caused by ant pair 𝑘 to an 

edge (𝑖, 𝑗) is like Equation 3, except that the cost of a tour 𝐶𝑘 is now given by Equation 6 

rather than by the length of the truck’s tour in the TSP. After all ants have constructed 
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their tours, the process of updating pheromone occurs. The evaporation equation for the 

truck in the DTSP algorithm is like Equation 4 used in the Ant System algorithm for the 

TSP. However, an evaporation equation must now also be applied to the drone 

pheromone. Equations 9 and 10 represent the evaporation of truck pheromone and drone 

pheromone, respectively, from all paths in the network: 

 

 𝜏𝑖𝑗
𝑡 ← (1 − 𝜌)𝜏𝑖𝑗

𝑡

,
 ∀(𝑖, 𝑗) ϵ 𝐿 (9) 

 

 𝜏𝑖𝑗
𝑑 ← (1 − 𝜌)𝜏𝑖𝑗

𝑑

,
 ∀(𝑖, 𝑗) ϵ 𝐿 (10) 

 

where 𝜏𝑖𝑗
𝑡  and 𝜏𝑖𝑗

𝑑  are the amount of truck pheromone and drone pheromone on the path 

from city 𝑖 to city 𝑗, respectively. Recall that 𝐿 consists of all edges in the network.  

The pheromone deposit equation for the truck is like that in the TSP, but 

pheromone is only applied to the paths the truck takes. An additional equation is needed 

to model deposit of drone pheromone on its paths. The pheromone deposit equations for 

the truck and drone are given by Equations 11 and 12, respectively: 

 

 
𝜏𝑖𝑗

𝑡 ← 𝜏𝑖𝑗
𝑡 + ∑ Δ

𝑚

𝑘=1

𝜏 𝑖𝑗
𝑘 ,      ∀(𝑖, 𝑗) ϵ 𝐿𝑡

𝑘 (11) 

 

where 𝐿𝑡
𝑘  is the set that consists of the edges that are in the tour of the truck in ant pair 𝑘. 
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𝜏𝑖𝑗

𝑑 ← 𝜏𝑖𝑗
𝑑 + ∑ Δ

𝑚

𝑘=1

𝜏 𝑖𝑗
𝑘 ,      ∀(𝑖, 𝑗) 𝜖 𝐿𝑑

𝑘  (12) 

 

where 𝐿𝑑
𝑘  is the set that consists of the edges that are in the tour of the drone in ant pair 𝑘. 

Pseudocode 

The pseudocode for the DTSP algorithm is shown below. The MATLAB source 

code is also available in Appendix A. The nearest-neighbor heuristic used to initialize the 

amount of pheromone on all edges is given in Appendix B.  

Procedure ACO-Inspired Probabilistic Greedy Approach 

Initialize 

 Set number of cities, number of ant pairs, number of iterations, 𝛼𝑝, 𝛽 and 𝜌 distance matrix 

Distanceij, 𝜅 and 𝛼𝑑𝑠  

 nitialize all pheromone trails for both truck and drone (values must be > 0) 

 minCost = infinity // Set minimum cost 

 Find the top 9 closest cities to each of the NUM_CITIES and store in array top10dMat 

Body 

While iteration budget remains 

 Randomize ant pair start cities 

Set all Δ𝜏𝑖𝑗
𝑡 = 0 

Set all Δ𝜏𝑖𝑗
𝑑 = 0 

 For 𝑘 = 1 to number of ants 

           TruckRoute(𝑘, 1) = start city for 𝑘 

 𝑖 = TruckRoute(𝑘, 1) 

 numCitiesVisited = 1 

tMove = 2 // Position in TruckRoute vector 

dMove = 0 // Position in DroneRoute vector, assume no sorties until we start building 

them 

  While numCitiesVisited < number of cities 

 If the number of cities remaining > 10 then 
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 Fill up currentTop10 array to have 10 unvisited cities  

Else  

 Fill up currentTop10 array with remaining cities 

End if 

Choose truck destination city: Follow procedure found in Part 11 of the Pseudocode 

section in Ant System Model and Explanation 

                

// destStop contains the city the truck ant chose 

truckMoveDist = Distanceij(𝑖, destStop) 

 

Calculate all 𝑝𝑖𝑙𝑗
𝑘 using Equation 6 from the currentTop10 array (which can now only 

contain up to 9 cities, since the truck chose the first city of this operation)  

 

If there is at least one l that creates a feasible sortie between 𝑖 and 𝑗 

  [maxProb, midIndex] = mid-point l that maximizes the distance from 𝑖 to 𝑙 to 𝑗 

probAcceptance = rand() 

probCumulative = maxProb 

probReached = false 

 

While probReached == false     

 If probCumulative ≥ 1 – probAcceptance 

 // Store the drone sortie 

DroneRoute(dMove + 1) = 𝑖 

DroneRoute(dMove + 2) = city at midIndex 

DroneRoute(dMove + 3) = destStop 

probReached = true 

numCitiesVisited = numCitiesVisited + 1 

Visited(city at midIndex) = true 

droneMoveDist = Distanceij(𝑖, city at midIndex) + Distanceij(city at 

midIndex, destStop) 

dMove = dMove + 3 

Else  

 Remove city at midIndex from consideration 

[maxProb, midIndex] = max(remaining cities under consideration) 

probCumulative = probCumulative + maxProb 
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End if 

End While Loop 

Else 

 droneMoveDist = 0 

End If 

 

If truck and drone moved together then 

 cost(𝑘) = cost(𝑘) + truckMoveDist 

Else If drone took a sortie then 

  cost(𝑘) = cost(𝑘) + max(truckMoveDist, droneMoveDist/𝛼𝑑𝑠)  

End If 

tMove = tMove + 1 

𝑖 = destStop // Make the destination city the new current city 

End While Loop 

cost(𝑘) = cost(𝑘) + Distanceij(𝑖, 1) // Return truck and drone to depot 

 

For each path (𝑖, 𝑗) traversed by ant pair 𝑘 

     Δ𝜏𝑖𝑗
𝑡  = Δ𝜏𝑖𝑗

𝑡 + 1/cost(𝑘) 

Δ𝜏𝑖𝑗
𝑑  = Δ𝜏𝑖𝑗

𝑑 + 1/cost(𝑘) 

End For Loop 

 End For Loop 

If min(cost array) < minCost // If the best solution this iteration is better than global minimum 

 Update the minCost, best truck route, and best drone route 

End If 

Update Truck and Drone Pheromone Levels using Equations 9, 10, 11, and 12 

End While Loop 

End Body 

 

Experiment Benchmarking 

 The experiments done for this study are based off the work of Rich & Ham 

(2018). The experiments use the same data set as Rich & Ham (2018). The data set 

consists of distance matrices for 10 to 100 stops. Each distance matrix includes an 
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additional row and column for the depot starting location. The range limit  of the drone 

is 14 miles, and the speed ratio αds of the drone to the truck is two, which were the 

parameters used in the experiments done by Rich & Ham (2018). To mirror the trials 

done by Rich & Ham (2018), particularly those for the EA, three trials were run on each 

of the ten data sets.  

Time measurements were taken to calculate the efficiency of the algorithm in 

speed and accuracy. Elapsed times for improved solutions were taken after constructing 

all the tours in an iteration. If the minimum cost found in an iteration was lower than the 

global minimum cost found up to that iteration, then the elapsed time was output to the 

screen.  

 The settings for the pheromone tuning parameter, 𝛼𝑝 = 1; proximity tuning 

parameter, 𝛽 = 3 and the evaporation constant, 𝜌 = 0.5 were all held constant. These 

parameter settings were experimentally found to result in good performance for Ant 

System in the TSP (Dorigo & Stützle, 2004). However, the author does not assume that 

these are necessarily the best values for the DTSP. 

Table 1 shows the settings of parameters used at each level of the experiment. In 

general, greater numbers of ants and iterations were used for the trials that involved more 

stops. The rationale for this is that a greater number of ants and iterations increases 

exploration, which is especially important for many stops. Using an excessive number of 

ants and iterations for a smaller number of jobs can increase computation time 

unnecessarily.  
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The number of iterations was not always greater for a greater number of stops, 

however. The number of iterations and ants were chosen so that they produced a runtime 

close to those used for the evolutionary algorithm of Rich & Ham (2018). For example, 

the 80-stop instance was run for more iterations than the 90 and 100-stop instances 

because more iterations were needed to reach a time span of 120 seconds, which was the 

runtime given by Rich & Ham (2018) for all three of these test instances.  

 

Table 1 

 

Parameters Used for Test Instances of the Proposed Algorithm  

 

 

 

 

 

 

 

 

 

Results 

Table 2 shows the results of the trials run on the data sets of Rich & Ham (2018). 

The iteration during which the best solution was found is denoted by the Iter column for 

each trial. The approximate time when it was found is recorded in the column marked 

Elapsed (s). This time was taken after all tours had been constructed for an iteration, and 

Number of Stops Number of Ants Number of Iterations 

10 100 110 

20 150 160 

30 275 175 

40  300 225 

50  300 275 

60 300 305 

70 300 390 

80 300 460 

90 300 410 

100 300 360 
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when it was determined that the best solution so far was found in that iteration. Elapsed 

time was calculated in MATLAB to a precision of ± 0.000001 seconds, but the results 

were reported in Table 2 to the nearest hundredth place. In the last column, Error refers 

to the percent variation across the three trials run at each level. 

 

Table 2 

 

Results for three trials of each test instance (job) level 

 

 Trial 1 
 

Trial 2 
 

Trial 3 
 

 

Jobs f Iter 
Elapse

d (s) 

 
f Iter 

Elapse

d (s) 

 
f Iter 

Elapse

d (s) 

 
Error 

10 228 4 0.04  229 9 0.08  229 1 0.01  0.4% 

20 287 140 4.11  288 116 3.44  290 49 1.46  1.1% 

30 373 28 2.48  373 58 4.91  375 113 9.50  0.5% 

40 433 110 14.49  431 124 16.53  433 36 4.83  0.5% 

50 487 91 14.79  486 124 20.68  486 8 1.40  0.2% 

60 429.5 293 57.72  430.5 184 35.49  430 121 23.87  0.2% 

70 516.5 89 20.45  529 316 72.10  524.5 9 2.18  2.4% 

80 534 21 5.68  542 26 7.08  544 114 30.12  1.9% 

90 585.5 370 107.77  591 378 110.86  586 307 90.34  0.9% 

100 620 207 68.73  621.5 105 35.58  628 76 25.51  1.3% 

 

Table 3 shows the results of the ACO-based algorithm in comparison to the MIP, 

CP, and EA models implemented by Rich & Ham (2018). In this table, the values given 

for f were the minimum values obtained from several trials. The code was implemented 

in MATLAB, and trials were run on a personal computer with an Intel Core i7-8750H 

CPU @ 2.20 GHz processor and 16 GB of RAM. For their experiments, Rich & Ham 

(2018) used a personal computer with an Intel Core i5-3537 @ 2.5 GHz processor and 8 

GB of RAM. The Gap column in the table shows the percentage difference obtained from 

the best solution of the probabilistic, greedy approach compared to the best solution of 

each approach used by Rich & Ham (2018).  
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Results for the MIP and CP models report the time at which the best solution was 

reached. In contrast, the EA results report the total time given to find the best solution. 

Tests for the ACO-based approach were run for a total time close to the runtimes used for 

the corresponding EA instances (shown in Table 3). 

 

Table 3 

Results of four DTSP optimization techniques 

 

Note. Adapted from “The truck-drone scheduling problem with a theoretical insight into system 

configuration,” by R. Rich and A. Ham, 2018, p. 10. 

 

Discussion 

It should be noted that the number of ants, number of iterations, and the subjective 

changes in computer processing time may have affected the time it took to execute the 

source code from trial to trial. However, the order of trials was performed randomly, and 

as was shown in Table 2, consistently low variation (< 2.5%) between the three trials at 

each level suggests consistency in the results. Table 3 shows that results obtained from 

the new algorithm are comparable to those reached in the MIP, CP, and EA. Specifically, 

the bolded values in Table 3 indicate any values that were equal or better than at least one 

of the other three techniques.  
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The first research question addressed in this paper stated, What is the effect of 

using two pheromones, one for the truck route and the other for the drone route, on the 

algorithm’s results? This probabilistic greedy approach based on Ant System produced 

comparable results to the MIP, CP, and EA. The greatest percent error (gap) reached by 

the ACO-based approach across all levels was 4.3% at 50 stops. This is lower than the 

gap obtained by the EA at 70 stops, 4.5%. The algorithm also produced results better than 

the EA at 80, 90, and 100 stops. By inspection, it appears that the use of two pheromones 

in this ACO-based algorithm is the best of the four approaches for handling solution sizes 

of at least 90 stops. 

However, the use of two pheromones works well up to a point. For most trials, the 

algorithm converged quickly, finding the best solution in early iterations of the run. In 

most cases, adding extra time did not result in significant improvement per unit of time 

added. Towards the beginning of the algorithm, the intensity of the pheromone on the 

path is significantly lower compared to the amount of pheromone accumulated by the last 

iteration. Figure 3 shows a typical convergence plot output by the program. The solution 

converges quickly for the first 27 iterations, but then the solution does not improve until 

iteration 159. The long horizontal line before the improvement at iteration 159 may 

indicate that the current parameter settings at that point were ineffective. That is, the 

algorithm may have performed better at this point had the parameters been optimized. 

Recall that 𝛼𝑝, 𝛽 𝜌 and the number of ants were held constant in these experiments. 
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Figure 3. Convergence Plot for Instance of DTSP Algorithm. 

One general pattern that was observed was that the pheromone intensity on 

underutilized paths approached zero as iterations increased. In general, better overall 

solutions were found if found in early iterations. This could discourage ants from 

following paths that may have led to a better solution and instead redundantly choose 

paths with the most pheromone. The influence of the pheromone could have been 

decreased or the number of ants constructing paths could have been decreased to prevent 

pheromone from becoming too great.  

Figure 4 shows the best routing found in a 20-stop instance (including the depot), 

and Figure 5 is the corresponding convergence plot. In Figure 6, red and green lines show 

the relative amount of truck and pheromone on each path, respectively. The order in 

which the truck completed its route is as follows: 1, 14, 19, 9, 13, 17, 6, 20, 18, 3, 12, 15, 

1. The path with the most truck pheromone, from stop 9 to stop 13, was part of the best 

solution found. However, the path from stop 1 to stop 12, which has the second greatest 

amount of pheromone, was not part of the best solution found. Part of the reason why this 

occurred is related to acceptance criteria, which leads into the next research question: Are 
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the rules that govern the truck ant’s and drone ant’s movements (i.e., the acceptance 

criteria) effective? 

 

Figure 4. Plot showing the best truck and drone routing found for 20-stop instance 

(including depot) of the DTSP algorithm. 

 

Figure 5. Convergence plot for 20-stop (including depot) instance of DTSP algorithm. 
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Figure 6. Plot showing the relative levels of truck and drone pheromone on the paths 

between all cities in 20-stop (including depot) instance of the DTSP algorithm. 

 

 The acceptance criteria for the truck in this ACO-based approach was the same as 

that for the truck in the classical TSP: amount of pheromone on a path (𝑖, 𝑗) and 

proximity 
1

𝑑𝑖𝑗
 to city j increased the probability of selecting a city. The drone acceptance 

criteria probability 𝑝𝑖𝑙𝑗
𝑘 most likely affected the quality of results more than the truck’s 

probability 𝑝𝑖𝑗
𝑘 . Equation 7 was designed to maximize the utilization of the drone by 

increasing the probability for selecting a middle sortie node that would cause the sortie to 

be longer. This could have negatively affected the way pheromone was laid down by the 

drone. For example, in Figure 6, there is more drone pheromone laid down on the sortie 

created by edges (14, 10) and (10, 19) than on the sortie created by (14, 7) and (7, 19), 
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even though the latter edges form the sortie (i.e., <14, 7, 19>) that is part of the best 

solution found. The drone may lay down too much pheromone on inferior edges.  

Another case where the acceptance criteria may have suffered was due to the 

interaction between the choice of the truck’s next city and the drone’s next city. The truck 

was designed to visit the closest city and the drone was designed to lengthen the sortie as 

much as possible. The next city for the truck was always chosen first. This may have led 

to the drone traveling inefficiently: moving in one direction for a great distance only to 

rendezvous at a node that was in an opposite direction (greater than 90° from its initial 

direction). The acceptance criteria would likely have been more effective if the 

probabilities for choosing the next cities for the truck and drone were designed to 

minimize wait time of the truck and drone rather than maximize drone utilization.  

Future Work 

 The ACO-based algorithm presented has contributed a new perspective to truck 

and drone routing problems in the literature, as no other drone-related problems have 

used ACO. The results show that ACO techniques have promise, especially for 

addressing data sets with a greater number of cities, since it had superior performance at 

higher levels to the EA presented by Rich & Ham (2018). 

Modifying the acceptance criteria is one direction in which this could be explored 

further. Currently, the probability 𝑝𝑖𝑙𝑗
𝑘  of a drone taking sortie < 𝑖, 𝑙, 𝑗> is designed to 

maximize the utilization of the drone. It would be worthwhile to modify 𝑝𝑖𝑙𝑗
𝑘  to be set up 

to minimize the waiting time of the truck and the waiting time of the drone. In fact, Ha et 

al. (2018) consider the cost of waiting in their variant of the TSP-D. In this case, the 
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probability minimizes the gap between (1) the distance traveled by the truck in an 

operation and (2) the distance traveled by the drone divided by its speed factor in that 

operation. Results may improve if this policy is adopted. 

 Tuning the parameters such as 𝛼𝑝 𝛽 and 𝜌 is another important area of 

research The recommended settings for Ant System in the context of the TSP were 

adopted for the DTSP, but it would be beneficial to optimize the parameters specifically 

for the DTSP. Another consideration related to tuning is that the drone probability 

equation for 𝑝𝑖𝑙𝑗
𝑘  may have different values for 𝛼𝑝  and 𝛽 than the acceptance equation for 

the truck 𝑝𝑖𝑗
𝑘 . These could be optimized using a full factorial or fractional factorial 

experimental design approach. Doing this should help address the issues that arise when 

the solution converges too quickly and levels out for the remaining iterations. 

Another area of exploration is performing the ant algorithm in a broader 

neighborhood than the 10 closest unvisited, feasible cities. This may increase the quality 

of results since the neighborhood is expanded. Another way that a greater solution space 

can be achieved is by changing the problem: it would be worthwhile to consider the 

possibility of having the truck visit more than one city while separated as Murray & Chu 

(2015) assume. 

Anti-pheromone, which has been used in three Ant Colony System variants, 

might also be useful in solving this problem (Montgomery & Randall, 2002). Once the 

solution has converged and the convergence graph has leveled out for several iterations 

with pheromone built up to a high degree on several paths, anti-pheromone can be 
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applied to the worst paths in the iterations to discourage taking paths that contribute to 

suboptimal solutions. 

 Another area of research would be to perform a comparative analysis between the 

author’s approach and other heuristic approaches. A paired t-test could be conducted on 

larger test instances (of at least 80 stops) to provide statistical evidence as to whether the 

approach performs better on larger data sets than the EA of Rich & Ham (2018).  

 Finally, the basic framework could be extended by exploring other ant colony 

optimization techniques used to solve the DTSP. Other techniques applied to solve the 

classical TSP such as Elite Ant System, Ant Colony System, and MAX-MIN Ant System 

could potentially be used to solve the DTSP. They may perform better since they are 

superior to AS in the TSP. Since the literature has shown that local search techniques 

coupled with ACO have improved the performance of ACO techniques such as MAX-

MIN Ant System in the TSP, local search techniques may also be applied to this problem 

to see whether they improve the quality of the solution. 
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Appendix A 

 
function [ bestMinCost ] = DTSP_ACOTop10(nStops, nAntPairs, numIter, ALPHA, 
BETA, RHO, dMat, DRONE_DIST_LIMIT, DRONE_SPEED) 
    % Notes about inputs:  
    % -- nStops INCLUDES the depot. 
    % -- dMat should be formatted as a symmetrical matrix. The matrix may 
    % have 0s in spots NOT along the diagonal as well as on the 
    % diagonal of the matrix. 
     
    % This algorithm forces the drone and truck to be together by the last 
    % city visited. It allows for the truck to wait for the drone AND 
    % vice-versa.      
    tic % Start timing the algorithm 
     
    
%***************************************************************************** 
    %    Title: dtsp_ga_basic(nStop?s, popSize, numIter, xy, range, speed ) 
    %    Author: Robert Rich 
    %    Date: October 12, 2017 
    %    Code version: 1.4.0.0 
    %    Availability: 
https://www.mathworks.com/matlabcentral/fileexchange/60640-dtsp_ga_basic-
nstops-popsize-numiter-xy-range-speed?s_tid=prof_contriblnk 
    % 
    
%*****************************************************************************    
    if nargin < 9  % If the user provided less than 9 input variables, use  
      defaults. 
      nStops=20;  nAntPairs=150; numIter=160; ALPHA = 1; BETA = 3; RHO = 0.5;  
          DRONE_DIST_LIMIT = 14; DRONE_SPEED = 2; 
      xy = 25*rand([nStops, 2]);  
      numColors = 100; 
        nPoints = size(xy,1);  
        meshg = meshgrid(1:nPoints); 
        dMat = reshape(sqrt(sum((xy(meshg,:)-
xy(meshg',:)).^2,2)),nPoints,nPoints); 
         
        % Preparations for making the pheromone graph 
        scale = [1 1 1]; 
        scale2 = scale; 
        factor = 1 / numColors; 
        controller = 1; 
        for i = 2:numColors 
            scale = cat(1, scale,[1 controller controller]); 
            scale2 = cat(1, scale2,[controller 1 controller]); 
            controller = controller - factor; 
        end 
    end 
     
    % The algorithm 
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    NU = zeros(nStops,nStops);  % This contains the inverses of the distance 
matrix values.  
     
    for i = 1:nStops 
        for j = 1:nStops 
            if dMat(i,j) ~= 0 
                NU(i,j) = 1 / dMat(i,j); 
            elseif i == j % If it is along the diagonal 
                NU(i,j) = inf; 
                dMat(i,j) = inf; 
             % The only way neither of these if statements are executed is 
             % if a non-diagonal cell value == 0. 
             % The non-diagonal 0s should not be changed to inf. 
            end 
        end 
    end 
     
    % Find the top 10 closest stops to each of the nStops. 
    % Output from for loop: in every row (i) in the closestCities array, there  
      will be the 
    % top 10 closest cities for each respective city i 
    tempdMat = dMat; 
  
    if nStops > 10 
        closestCities = zeros(nStops, 9); 
        for j=1:9 
          [~, cityIdx] = min(tempdMat,[],2); 
          closestCities(:,j) = cityIdx; 
          % Remove for the next iteration the last smallest value: 
          for i = 1:nStops 
            tempdMat(i,cityIdx(i)) = inf; 
          end 
        end 
    end 
     
    % Find length of the greedy heuristic path so we know how to initialize  
      pheromone  
    % level on paths in the network (must start at value > 0). 
    Cnn = NearestNeighbor(dMat, nStops); 
     
    % Initialize pheromone along paths 
    TauT = zeros(nStops,nStops); 
    TauD = zeros(nStops,nStops); 
    for i = 1:nStops 
        for j = 1:nStops 
            if i ~= j 
                TauT(i,j) = nAntPairs ./ Cnn; % Contains truck pheromone on  
    path from city i to city j 
                TauD(i,j) = nAntPairs ./ Cnn; % Contains drone pheromone on  

path from city i to city j 
            end 
        end 
    end 
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    % Initialize Best Solution Variables 
    bestMinCost = inf; % This contains the global minimum cost. 
    bestTruckRoute = 0; % Vector containing order truck visits cities 
    bestDroneRoute = 0; % Vector containing order drone visits cities 
    distHistory = zeros(numIter,1); % Contains best solutions so far (found  
        during or before the current iteration) 
    droneMoveDist = 0; 
     
    % Construct tours for k ant pairs, numIter times 
    for iter = 1:numIter 
        % Initialize start stops for each ant pair (random) 
        startStops = zeros(nAntPairs,1); 
        RouteT = zeros(nAntPairs,1); 
        RouteD = zeros(nAntPairs,1); 
        for k = 1:nAntPairs 
            startStops(k) = randi(nStops); 
            RouteT(k, 1) = startStops(k); 
        end 
         
        % These variables are necessary for determining by how much the 
        % pheromone on the paths change at the end of an iteration. 
        sumOfChangeInTauT = zeros(nStops, nStops); 
        sumOfChangeInTauD = zeros(nStops, nStops); 
         
        % The route costs for antPairs 
        cost = zeros(nAntPairs,1);   
         
        % Initialize moves for all ants 
        moveT = zeros(nAntPairs); 
        moveD = zeros(nAntPairs); 
         
        % Find feasible route for ant pair k 
        for k = 1:nAntPairs 
            % ------------------------------------------------------------- 
            % Preliminary Initialization for ant pair k 
            % ------------------------------------------------------------- 
             
            % Initialize the remainingStops to all stops except for the 
            % first (ant pair is already at the first) 
            remainingStops = 1:nStops;  
            remainingStops(startStops(k)) = []; 
             
            % Initialize the current move the truck and drone are on 
            moveT(k) = 2; 
            moveD(k) = 0; % no sorties until we start building them 
  
            % Set the current stop equal to the starting stop 
            currentStop = startStops(k); 
            currentTop10 = zeros(1,9); 
             
            % Determine (based on the number of cities) whether there is 
            % need to keep track of any cities that have not yet been added 
            % to the top 10 (this would only happen if nStops > 10) 
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            % Any cities that will not be in the top 10 initially need to be  
              rotated in  
            % (and will be tracked using the dMatLookUp variable) 
            if nStops > 10 
                dMatLookUp = dMat; % This helps us keep track of the cities  
                    that are not already part of our top 10 (which ones that  
                    we will need to eventually add to our currentTop10 to be  
                    visited)                 
                % Copy over the 10 closest cities we calculated earlier 
                for t = 1:length(closestCities(currentStop,:)) 
                    currentTop10(t) = closestCities(currentStop,t); 
                end 
            else % There are no more than 10 cities so there is no need to  
                   rotate in unvisited stops (all of the stops will be in the  
                   currentTop10 immediately) 
                currentTop10 = remainingStops; 
            end 
             
            % Exclude the cities that are already in the top 10, to prevent  
              possibility of them being added again             
            if nStops > 10 
               dMatLookUp(1:nStops, currentStop) = inf; 
               for i = 1:nStops 
                    for c = 1:length(currentTop10) 
                        dMatLookUp(i, currentTop10(c)) = inf; 
                    end 
                end 
            end 
             
            % ------------------------------------------------------------- 
            % Body of algorithm 
            % ------------------------------------------------------------- 
             
            while ~isempty(remainingStops) % While not all cities have been  
                visited 
                % Build the route                                      
                if length(remainingStops) >= 10 && nStops > 10 % This helps us  
                    ensure there are at least 10 cities under consideration in  
                    Pijk 
                     
                    while length(currentTop10) < 10 
                        [~, cityIdx] = min(dMatLookUp(currentStop,:)); 
                        currentTop10(length(currentTop10) + 1) = cityIdx; 
                        % keep the value from being rotated in again 
                        dMatLookUp(1:nStops,cityIdx) = inf; 
                    end                  
  
                elseif nStops > 10 
                                      
                    while length(currentTop10) ~= length(remainingStops) 
                        [~, cityIdx] = min(dMatLookUp(currentStop,:)); 
                        currentTop10(length(currentTop10) + 1) = cityIdx; 
                        % keep the value from being rotated in again 
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                        dMatLookUp(currentStop,cityIdx) = inf; 
                    end                       
                     
                end 
         
                % If there is a stop 0 units away from the current stop, move 
                % to it next 
                if min(dMat(currentStop,currentTop10)) == 0 
                    [~, cityIdx] = min(dMat(currentStop,currentTop10)); 
                    RouteT(k,moveT(k)) = currentTop10(cityIdx); 
                    remainingStops(remainingStops==currentTop10(cityIdx)) =  
                        []; 
                    currentTop10(cityIdx) = []; 
                    % move on to choose next city 
                    currentStop = RouteT(k,moveT(k)); 
                    moveT(k) = moveT(k) + 1; 
                else     
                                                        
                    % Generate all possible probabilities   
                    % First, calculate the denominator of the probabilities 
                    sumOfTauNu = 0.0;             
                    for j = 1:length(currentTop10) 
                        sumOfTauNu = sumOfTauNu +  
                           (TauT(currentStop,currentTop10(j)) ^ ALPHA *  
                           NU(currentStop,currentTop10(j)) ^ BETA);                
                    end 
  
                    % Calculate the individual probability for ant k to move  
                    % from city i to city j 
                    Pijk = zeros(1,length(currentTop10)); % Vector containing  
                        probabilities 
  
                        for j = 1:length(currentTop10) 
                            Pijk(j) = ((TauT(currentStop, currentTop10(j))) ^  
                                ALPHA * (NU(currentStop, currentTop10(j))) ^  
                                BETA) / sumOfTauNu; 
                        end 
  
                    % Determine the most likely city 
                    maxProb = max(Pijk); 
                    maxStopIndex = find(Pijk==maxProb); % Get the index where  
                        the max probability was found 
                    while length(maxStopIndex) > 1 % In the chance that two  
                        cities had equal probability, choose 1 
                        maxStopIndex(randi([1 length(maxStopIndex)])) = []; 
                    end 
  
                    % Accept one of the cities as the next city 
                    consideration = currentTop10; % These are the city numbers  
                        under consideration. 
                    probAcceptance = rand(); % Probability that the city  
                       corresponding to the cumulative probability will be  
                       accepted 
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                    probCumulative = maxProb; % Initialized to the most likely  
                        city; this probCumulative is added on to when the most  
                        likely city is not accepted 
                    probReached = false; % Indicates whether probCumulative is  
                        high enough to accept the last considered city. 
  
                    % Assume the first city is not accepted until shown  
                        otherwise. 
                    while probReached == false 
  
                        if (probCumulative >= 1 - probAcceptance) % If the  
                            probability of acceptance is high enough 
                            RouteT(k, moveT(k)) = consideration(maxStopIndex);  

  % Add the max stop to the route. 
  
                            % Remove the stop just added from the 
                            % remainingStops and the currentTop10, and exit  
                              the 
                            % loop. 
                            
remainingStops(remainingStops==consideration(maxStopIndex)) = [];  
                            
currentTop10(currentTop10==consideration(maxStopIndex)) = []; 
                            probReached = true; 
                        else 
                            % Remove this stop from consideration this move 
                            Pijk(maxStopIndex) = []; 
                            consideration(maxStopIndex) = []; 
                            maxProb = max(Pijk); 
                            maxStopIndex = find(Pijk==maxProb); 
                            while length(maxStopIndex) > 1 
                                maxStopIndex(randi([1 length(maxStopIndex)])) 

    = []; 
                            end 
                            probCumulative = probCumulative + maxProb; 
                        end 
  
                    end 
  
                    % Calculate move distance for the truck 
                    destStop = RouteT(k, moveT(k)); 
                    truckMoveDist = dMat(currentStop, RouteT(k,moveT(k)));               
                    % Move the drone if possible  
                        % If after the truck is moved to the destStop (i.e.,  
                          potential "rendezvous node"), there is at 
                        % least one location unvisited, then see if it can 
                        % be serviced by the drone. 
                    if length(currentTop10) >= 1 
                        sumOfTauD = 0.0; % Calculate the denominator we will  
                            use to determine the probabilities of choosing  
                            different 
                                         % cities as the middle node in a 
                                         % sortie. 



AN ACO-INSPIRED, PROBABILISTIC, GREEDY APPROACH 
 

47 

                         
                        % See if it is possible to move the drone in a 
                        % sortie configuration. 
                        for l = 1:length(currentTop10) 
                            if dMat(currentStop, currentTop10(l)) +  
                                dMat(currentTop10(l), destStop) <=  

      DRONE_DIST_LIMIT 
                                sumOfTauD = sumOfTauD + ((TauD(currentStop,  

          currentTop10(l)) + TauD(currentTop10(l),  
          destStop)) ^ ALPHA * (dMat(currentStop,  
          currentTop10(l)) + dMat(currentTop10(l),  
          destStop)) ^ BETA); 

                            end 
                        end 
  
                        if sumOfTauD > 0 % If there are any cities that were  
                            feasible for the drone to visit 
                            % Find max drone probability 
                            consideration = currentTop10; 
                            Piljk = zeros(1,length(currentTop10)); 
  
                            % Calculate individual drone probabilities 
                            for l = 1:length(currentTop10) % l is the  
                                intermediate node between the node of  
                                departure and rendezvous node with the truck 
                                if dMat(currentStop, currentTop10(l)) +  

dMat(currentTop10(l), destStop) <=  
DRONE_DIST_LIMIT 

Piljk(l) = ((TauD(currentStop,  
 currentTop10(l)) +  
 TauD(currentTop10(l), destStop)) ^  
 ALPHA * (dMat(currentStop,   
 currentTop10(l)) +   
 dMat(currentTop10(l), destStop)) ^  
 BETA) / (sumOfTauD); 

                                end 
                            end 
  
                            % Find the most likely event 
                            maxDroneProb = max(Piljk); 
                            maxInterStopIndex = find(Piljk==maxDroneProb); 
                            while length(maxInterStopIndex) > 1 
                                maxInterStopIndex(randi([1  
                                    length(maxInterStopIndex)])) = []; 
                            end 
  
                            probReached = false; 
                            probAcceptance = rand(); 
                            probCumulative = maxDroneProb; 
  
                            while probReached == false 
  
                                if (probCumulative >= 1 - probAcceptance) 
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                                    RouteD(k,moveD(k)+1) = currentStop; 
                                    RouteD(k,moveD(k)+2) =  
                                        consideration(maxInterStopIndex); 
                                    
remainingStops(remainingStops==consideration(maxInterStopIndex)) = []; 
                                    
currentTop10(currentTop10==consideration(maxInterStopIndex)) = []; 
                                    RouteD(k,moveD(k)+3) = destStop; 
                                    probReached = true; 
                                    droneMoveDist = dMat(currentStop,  
                                        RouteD(k, moveD(k) + 2)) +  
                                        dMat(RouteD(k, moveD(k) + 2),   
                                        destStop); 
                                    moveD(k) = moveD(k) + 3; 
                                else 
                                    % remove this stop from consideration this  
                                      move 
                                    Piljk(maxInterStopIndex) = []; 
                                    consideration(maxInterStopIndex) = []; 
                                    maxDroneProb = max(Piljk); 
                                    maxInterStopIndex =  

       find(Piljk==maxDroneProb);  
                                    while length(maxInterStopIndex) > 1 %  

       maxInterStopIndex might return a  
       vector but take only one instance 

                                        maxInterStopIndex(randi([1   
                                            length(maxInterStopIndex)])) = []; 
                                    end 
                                    probCumulative = probCumulative +  
                                        maxDroneProb; 
  
                                end 
  
                            end 
  
                            cs = 2; 
  
                        else % There is not a feasible sortie for the drone,  
                               so  
                             % just move the drone straight to where the truck 
                             % went (move the drone with the truck in this 
                             % move). 
  
                            cs = 1; 
  
                        end                
                        moveT(k) = moveT(k) + 1; 
                        currentStop = destStop; % Reset the currentStop to the  
                            stop where the truck and drone just arrived. 
  
                    elseif isempty(currentTop10) % The truck has visited the  
                        last stop, so the drone should join it there. 
                        moveT(k) = moveT(k) + 1; 
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                        cs = 1; 
                    end 
  
                    switch cs 
                        case 1 % The truck and drone moved together 
                            cost(k) = cost(k) + truckMoveDist; 
                        case 2 % The drone took a sortie, so take the max of  
                                 the individual distances 
                            cost(k) = cost(k) + max(truckMoveDist,  

      droneMoveDist / DRONE_SPEED); 
                    end 
                     
                end 
            end  
             
            % Complete the circuit from the last city to the first 
            RouteT(k, moveT(k)) = RouteT(k, 1);  % Return the truck home             
            cost(k) = cost(k) + dMat(RouteT(k, moveT(k) - 1), RouteT(k,  
                moveT(k))); 
  
            % Calculate the amount of change in truck pheromone along the  
              paths taken by truck k (but don't apply pheromone yet) 
            for i = 1:moveT(k) - 1 
                currentCity = RouteT(k, i); 
                nextCity = RouteT(k, i + 1); 
                sumOfChangeInTauT(currentCity, nextCity) =  

       sumOfChangeInTauT(currentCity, nextCity) + 1 / cost(k); 
                sumOfChangeInTauT(nextCity, currentCity) =  

       sumOfChangeInTauT(currentCity, nextCity); % Do the same in  
       other direction 

            end 
                                     
            % Calculate the amount of change in drone pheromone along the  

 paths taken by drone k (but don't apply pheromone yet) 
            for sortie = 1:moveD(k)/4 
                s1 = 3*sortie - 2; 
                s2 = s1 + 1; 
                s3 = s2 + 1; 
                sumOfChangeInTauD(RouteD(k,s1), RouteD(k,s2)) =  

       sumOfChangeInTauD(RouteD(k,s1), RouteD(k,s2)) + 1 /  
       cost(k); 

                sumOfChangeInTauD(RouteD(k,s2), RouteD(k,s1)) =  
       sumOfChangeInTauD(RouteD(k,s1), RouteD(k,s2)); % Do the  
       same in other direction     

                sumOfChangeInTauD(RouteD(k,s2), RouteD(k,s3)) =  
       sumOfChangeInTauD(RouteD(k,s2), RouteD(k,s3)) + 1 /  
       cost(k); 

                sumOfChangeInTauD(RouteD(k,s3), RouteD(k,s2)) =  
       sumOfChangeInTauD(RouteD(k,s2), RouteD(k,s3)); % Do the  
       same in other direction     

            end 
             
            % Ant pair k is done constructing its tour this iteration        
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        end 
         
        % All ant pairs have constructed their tours   
  
        % Check to see if the best truck and drone route found this iteration  
        % is better than the bestMinCost so far. 
        [minIterCost, bestIdx] = min(cost); 
        if minIterCost < bestMinCost 
            toc % Output the elapsed time to find this solution 
            bestMinCost = minIterCost; 
            bestTruckRoute = nonzeros(RouteT(bestIdx,:)); 
            bestDroneRoute = nonzeros(RouteD(bestIdx,:)); 
        end 
  
        % Keep Track of Best Cost Each Iteration for the Convergence Plot  
        
%***************************************************************************** 
        %    Title: tsp_ga_basic(nStops?, popSize, numIter, xy ) 
        %    Author: Robert Rich 
        %    Date: October 6, 2017 
        %    Code version: 1.0.1.0 
        %    Availability: 
https://www.mathworks.com/matlabcentral/fileexchange/60640-dtsp_ga_basic-
nstops-popsize-numiter-xy-range-speed?s_tid=prof_contriblnk 
        % 
        
%*****************************************************************************    
          distHistory(iter) = bestMinCost; 
           
        % Update the pheromone levels in the network 
            for i = 1:nStops 
                for j = 1:nStops 
                    if (i ~= j) 
                        %Pheromone evaporation 
                        TauT(i, j) = (1 - RHO) * TauT(i, j); 
                        TauD(i, j) = (1 - RHO) * TauD(i, j); 
                         
                        % Pheromone deposit 
                        TauT(i, j) = TauT(i, j) + sumOfChangeInTauT(i, j); 
                        TauD(i, j) = TauD(i, j) + sumOfChangeInTauD(i, j); 
                    end 
                end 
            end 
             
          iter        
  
    end   % Do another iteration of pheromone updating 
   toc % Output the elapsed time to complete the algorithm 
    
    % The algorithm has finished all of its iterations. 
     
    % Make the Convergence Plot 
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%***************************************************************************** 
    %    Title: tsp_ga_basic(nStops?, popSize, numIter, xy ) 
    %    Author: Robert Rich 
    %    Date: October 6, 2017 
    %    Code version: 1.0.1.0 
    %    Availability: 
https://www.mathworks.com/matlabcentral/fileexchange/64653-tsp_ga_basic-
nstops-popsize-numiter-xy 
    % 
    
%*****************************************************************************   
    iterHist = 1:iter; 
    subplot(2,2,1) 
    plot(iterHist, distHistory(iterHist),'k-+');  
    title(sprintf('Convergence: Min Cost = %1.4f',bestMinCost)); 
    xlabel('Iteration'); ylabel('Cost'); 
     
    % If the program generated its own coordinates and distance matrix     
    if exist('xy','var') 
       % Update graph with new pheromone levels 
        % This gives us the rgb values.         
        % Color the pheromone paths for the truck -- these paths are black. 
        colormap(scale) 
        v = TauT; % my matrix 
        map = colormap; 
        minv = min(v(:)); 
        maxv = max(v(:)); 
        ncol = size(map,1); 
        s = round(1+(ncol-1)*(v-minv)/(maxv-minv)); 
        rgb_image = ind2rgb(s,map); 
  
        % Color the pheromone paths for the drone -- these paths are blue. 
        colormap(scale2) 
        v2 = TauD; % my matrix 
        map = colormap; 
        minv = min(v2(:)); 
        maxv = max(v2(:)); 
        ncol = size(map,1); 
        s = round(1+(ncol-1)*(v2-minv)/(maxv-minv)); 
        rgb_image2 = ind2rgb(s,map); 
              
        % Plot the graphs showing the relative pheromone levels (brighter 
        % colors indicate more intense pheromone levels). 
        subplot(2,2,3); 
        gMinimum1 = min(min(rgb_image(:,:,2))); 
        bMinimum1 = min(min(rgb_image(:,:,3))); 
        rMinimum2 = min(min(rgb_image2(:,:,1))); 
        bMinimum2 = min(min(rgb_image2(:,:,3))); 
        for num = 1:nStops 
            for j = 1:nStops - num 
                i=num:j:num+j; 
                if (rgb_image(num, num+j, 2) == gMinimum1) &&   
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                       (rgb_image(num, num+j, 3) == bMinimum1) 
                    p1 = plot(xy(i,1), xy(i,2),'ks-', 'Color', [rgb_image(num,  

num+j, 1) rgb_image(num, num+j, 2) rgb_image(num,  
num+j,3)], 'LineWidth',8); hold on; 

                elseif (rgb_image2(num, num+j, 1) == rMinimum2) &&   
                       (rgb_image2(num, num+j, 3) == bMinimum2) 
                    p2 = plot(xy(i,1), xy(i,2), 'k--', 'Color',  
                        [rgb_image2(num, num+j, 1) rgb_image2(num, num+j, 2)  
                        rgb_image2(num, num+j,3)], 'LineWidth',2); hold on;                 
                else 
                    plot(xy(i,1), xy(i,2),'ks-', 'Color', [rgb_image(num,  
                        num+j, 1) rgb_image(num, num+j, 2) rgb_image(num,  
                        num+j,3)], 'LineWidth',8); 
                    plot(xy(i,1), xy(i,2), 'k--', 'Color', [rgb_image2(num,  
                        num+j, 1) rgb_image2(num, num+j, 2) rgb_image2(num,  
                        num+j,3)], 'LineWidth',2); hold on;                  
                end        
            end 
        end 
  
       p3 = plot(xy(:,1), xy(:,2),'k.','MarkerSize',20); hold on; % Show the  
           cities          
        
       for i = 1:nStops 

           
text(xy(i,1),xy(i,2),num2str(i),'VerticalAlignment','bottom','Horizontal 
    Alignment','center') 

       end 
        
       title('Relative Pheromone Values on Graph') 
       xlabel('x-coordinate (km)')  
       ylabel('y-coordinate (km)') 
       legend([p1 p2 p3],{'Truck', 'Drone', 'Stop'},  

    'Location','bestoutside','Orientation','horizontal') 
        
       % Plot the best cost drone and truck routes found 
       
%***************************************************************************** 
       %    Title: dtsp_ga_basic(nStop?s, popSize, numIter, xy, range, speed ) 
       %    Author: Robert Rich 
       %    Date: October 12, 2017 
       %    Code version: 1.4.0.0 
       %    Availability: 
https://www.mathworks.com/matlabcentral/fileexchange/60640-dtsp_ga_basic-
nstops-popsize-numiter-xy-range-speed?s_tid=prof_contriblnk 
       % 
       
%*****************************************************************************               
       subplot(2,2,2); 
        
       % Plot the truck route 
       p1 = plot(xy(bestTruckRoute,1),  xy(bestTruckRoute,2),'ks-', 'Color',  

    'k'); hold on; 
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       % Plot the drone route 
       for startNode = 1:3:length(bestDroneRoute) % number of sorties 
           vectorToPlot = bestDroneRoute(startNode:startNode+1);  
           plot(xy(vectorToPlot,1),  xy(vectorToPlot,2), 'k--', 'Color', [0 0  
               1]); hold on;    
           vectorToPlot = bestDroneRoute(startNode+1:startNode+2);  
           p2 = plot(xy(vectorToPlot,1),  xy(vectorToPlot,2), 'k--', 'Color',  

        [0 0 1]); hold on; 
       end 
       
       % Plot the cities 
       p3 = plot(xy(:,1), xy(:,2),'k.');  
       
       title('Best Routing Found for Truck and Drone');  
       xlabel('x-coordinate (km)'); 
       ylabel('y-coordinate (km)'); 
       legend([p1 p2 p3],{'Truck', 'Drone', 'Stop'},  
           'Location','bestoutside','Orientation','horizontal') 
    end 
     
end % end of function 
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Appendix B 

 
function [Cnn] = NearestNeighbor(dMat, nStops) 
% This greedy algorithm constructs a route starting at stop 1. The function  
  returns  
% the total distance of the route, which is constructed by consecutively  
  choosing the next  
% closest stop ("nearest neighbor") to the currentStop until all nStops have  
  been visited. 
    Cnn = 0.0; % Length of the tour formed by NearestNeighbor Heuristic 
    firstStop = 1; 
    currentStop = firstStop; 
    remainingStops = 2:nStops; 
     
    while ~isempty(remainingStops) 
        minValue = inf; 
        for destCity = 1:length(remainingStops) 
            if dMat(currentStop,remainingStops(destCity)) < minValue 
                minCityIndex = destCity; 
                minValue = dMat(currentStop,remainingStops(destCity)); 
            end 
        end 
        Cnn = Cnn + minValue; 
        currentStop = remainingStops(minCityIndex); 
        remainingStops(minCityIndex) = []; 
    end    
    Cnn = Cnn + dMat(currentStop,firstStop); 
end 
 


