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Abstract 

Cryptography is a critical technology in the modern computing industry, but the security 

of many cryptosystems relies on the difficulty of mathematical problems such as integer 

factorization and discrete logarithms. Large quantum computers can solve these problems 

efficiently, enabling the effective cryptanalysis of many common cryptosystems using 

such algorithms as Shor’s and Grover’s. If data integrity and security are to be preserved 

in the future, the algorithms that are vulnerable to quantum cryptanalytic techniques must 

be phased out in favor of quantum-proof cryptosystems. While quantum computer 

technology is still developing and is not yet capable of breaking commercial encryption, 

these steps can be taken immediately to ensure that the impending development of large 

quantum computers does not compromise sensitive data.  
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Quantum Attacks on Modern Cryptography  

and Post-Quantum Cryptosystems 

Encryption is a vital technology to our modern world. In an economy and society 

that thrives from and depends on the proliferation of free and secure access to 

information by means of the Internet, encryption is a fundamental part of the stack of 

computer technologies that enables private information to be exchanged securely over 

public channels. Additionally, encryption safeguards national security by protecting 

sensitive information and enables private citizens to maintain the integrity and privacy of 

their own data. Acknowledged or not, encryption is fundamental to modern life. 

However, encryption is only as useful as it is secure, and many previously secure 

encryption technologies may soon become vulnerable to attack by new, advanced 

quantum computing systems. Quantum computers manipulate and store data in a manner 

that leverages the quantum-mechanical structure of the small-scale Universe – this 

property allows quantum computers to perform calculations that have never been possible 

with any other type of computer system. While these abilities will certainly lead to 

massive breakthroughs in the data processing and data analytics industries, the 

development of quantum computers has an unfortunate side effect. Many of the 

underlying cryptographic primitives that make modern encryption possible will be 

rendered insecure in view of the massive calculation power of a quantum computer of 

appropriate size and design. 

However, quantum computers do not spell the doom of cryptography as a whole. 

Many existing cryptosystems are known to be resistant to the threat posed by quantum 
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computing technology. While they are not commonly used in practice, quantum 

computers are becoming increasingly well-studied and thus these algorithms will be vital 

to the survival of cryptography in the post-quantum-computer age. A full understanding 

of the vulnerabilities of modern encryption technology, as well as the necessary solutions, 

is critical in order for our information-based civilization and economy to continue to 

grow and thrive in spite of the threats posed by this new technology. 

Basics of Modern Cryptography 

 Although cryptography applications are endless and their effects on the 

computing industry are profound, cryptography's foundation is nothing more than simple 

mathematics. Although the theoretical background behind some specialized forms of 

cryptography and the various attack classes that exist for various cryptosystems may 

require a more thorough education in mathematics, the basics of the most commonly used 

forms of cryptography are more substantially accessible. 

 Most cryptosystems can be broadly categorized into one of two groups – 

symmetric-key cryptosystems and asymmetric-key cryptosystems (Schneier, 1996). These 

categories differ in construction and in application, and as a result they present different 

attack surfaces. Commonly-used asymmetric-key cryptosystems such as RSA (Rivest, 

Shamir, & Adleman, 1978) and Diffie-Hellman (1976) tend to have mathematical 

structures that are prone to attack by quantum computers (Shor, 1996). Symmetric-key 

cryptosystems are generally able to compensate for the potential of quantum attacks by 

utilizing higher key sizes – in most cases, this achieves an equivalent level of security to 

that which would be available with a lower key size if the threat of a quantum attack was 
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not considered (Augot et al., 2015). However, the quantum-specific vulnerabilities found 

in the most commonly used asymmetric-key cryptosystems are typically fundamental in 

the design of the cryptosystem (Shor, 1997), and thus cannot be offset by an increase in 

key size or by a change in some parameter of the cryptosystem. 

Symmetric-Key Cryptosystems 

Symmetric-key cryptosystems are named for the fact that the same encryption key 

is used to perform the encryption and decryption operations of the cryptosystem – in 

other words, the operations are symmetric with respect to the key used (Schneier, 1996). 

To formalize this, let 𝑀 be the set of all possible “encryptable” messages, let 𝐶 be the set 

of all possible ciphertexts, and let 𝐾 be the keyspace. A symmetric-key cryptosystem 

defines the functions 𝐸: 𝑀 × 𝐾 → 𝐶 and 𝐷: 𝐶 × 𝐾 → 𝑀 such that for any 𝑚 ∈ 𝑀 and 𝑘 ∈

𝐾, there exists 𝑐 ∈ 𝐶 such that 𝐸, 𝐷 satisfy: 

𝐸(𝑚, 𝑘) = 𝑐                𝐷(𝑐, 𝑘) = 𝑚 

Symmetric-key cryptography is highly suitable for applications involving a single party, 

such as encryption of files on a disk (Schneier, 1996). Since the key is known to the 

owner of the encrypted files, the files can be encrypted and decrypted by their owner 

whenever necessary. However, they cannot be read by other parties while they are 

encrypted. Symmetric-key cryptography is highly useful for communicating large 

amounts of data securely between two or more parties, as symmetric-key algorithms tend 

to be relatively efficient and support the fast encryption and decryption of large quantities 

of data. Some symmetric-key cryptosystems that are common in modern usage include 
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AES (Advanced Encryption Standard), 3DES (Triple Data Encryption Standard), 

Blowfish, and Serpent. 

However, this form of communication requires that all parties pre-establish the 

symmetric key to be used, and this presents a challenge when the parties are forced to 

communicate over an insecure channel. The key cannot simply be transmitted 

unprotected over the channel, as an eavesdropper could obtain the key in transit and 

passively decrypt all further communications between the two parties. Fortunately, 

asymmetric-key cryptography enables the secure exchange of data over an insecure 

channel without any kind of pre-established shared secret, albeit at a performance cost (as 

asymmetric-key algorithms tend to be dramatically slower than symmetric-key 

algorithms) (Schneier, 1996). Thus, a common strategy is to use an asymmetric-key 

encryption to agree on a symmetric key, which is then used for further communications. 

Asymmetric-Key Cryptosystems 

 Asymmetric-key (or public-key) cryptosystems are named for the fact that 

different encryption and decryption keys are used for the encryption and decryption 

operations of the cryptosystem (Schneier, 1996). The encryption key is commonly 

referred to as the public key and the decryption key is commonly referred to as the private 

key. This terminology comes from asymmetric-key cryptography’s key use case – the 

ability to publish the encryption key, allowing third parties to encrypt data that will 

henceforth only be readable by the owner of the private decryption key (Schneier, 1996). 

Formally, if 𝐾𝑒 is the public-key keyspace and 𝐾𝑑 is the private-key keyspace, an 
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asymmetric-key cryptosystem defines the functions 𝐸: 𝑀 × 𝐾𝑒 → 𝐶 and 𝐷: 𝐶 × 𝐾𝑑 → 𝑀 

such that for any 𝑚 ∈ 𝑀 and keypair (𝑘𝑒 , 𝑘𝑑) ∈ 𝐾𝑒 × 𝐾𝑑, there exists 𝑐 ∈ 𝐶 such that: 

𝐸(𝑚, 𝑘𝑒) = 𝑐                𝐷(𝑐, 𝑘𝑑) = 𝑚 

As mentioned previously, asymmetric-key algorithms tend to be substantially slower than 

their symmetric-key counterparts. This is due to the computationally expensive 

mathematical operations that are involved in running 𝐸, 𝐷 for an asymmetric-key 

cryptosystem (Schneier, 1996). However, as public keys in such a scheme can be 

disseminated publicly without threatening the integrity of the encryption, asymmetric-key 

cryptography is very useful for solving the problem of an initial secure data exchange 

over an insecure connection (Schneier, 1996). 

If a possibly insecure but reliable connection exists between two parties in a 

communications network, an asymmetric encryption scheme can be used to negotiate and 

agree on a shared secret key that can then be used for high-speed symmetric-key 

encryption between the two parties. The connection is allowed to be insecure because the 

only data that needs to pass over the connection is one of the parties' public key and the 

corresponding response consisting of the encrypted shared secret. Neither of these allow 

an eavesdropper to read the content of the encrypted message, but the initial sender of the 

public key retains the private key needed to decipher the transmission and read the 

response, obtaining the shared secret (Schneier, 1996). 

However, reliability is critical – if an attacker can intercept and replace 

communications on the network between the two parties, the attacker can relay his own 

public key to the second party. When the second party responds, the attacker may then 
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decipher the shared secret with his own key, re-encrypting and passing along the message 

under the initial sender's public key. The attacker will then have the ability to read all 

further symmetric communications passed between the two parties. This form of attack is 

known as a man-in-the-middle (MITM) attack and, other than a minor amount of added 

latency, may be undetectable by either legitimate party (Schneier, 1996). The endpoint 

parties believe that they are communicating directly while their messages are, in fact, 

being intercepted and altered by the attacker. Thus, to ensure that each party receives the 

genuine public key owned by their counterpart, it is critical that the connection be reliable 

or that the parties have some additional external method for authenticating the public 

keys as genuine (Schneier, 1996). 

As long as its weaknesses are properly understood and mitigated, asymmetric-key 

cryptography fills a crucial gap in the capabilities provided by symmetric-key 

cryptography alone. This technology enables the initialization of secure communication 

over insecure channels – this can be used to bootstrap ad-hoc symmetric-key encryption 

such as that provided by SSL/TLS (Dierks & Rescorla, 2008). However, many common 

asymmetric-key cryptosystems are also highly vulnerable to quantum-computer-specific 

attacks due to their unique mathematical construction (Shor, 1997), and thus it is critical 

that the vulnerabilities that exist in commonly-used asymmetric-key cryptosystems are 

discovered, understood, and mitigated before the theoretical attacks made possible by a 

quantum computer become a reality. 

Quantum-Vulnerable Cryptography 

Many of the most commonly used cryptographic standards and protocols are 
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vulnerable to quantum-computer-based attacks. As described previously, symmetric and 

asymmetric cryptosystems alike must define an encryption function 𝐸(𝑚, 𝑘𝑒) = 𝑐 and a 

decryption function 𝐷(𝑐, 𝑘𝑑) = 𝑚. In this notation, 𝑚 refers to the (unencrypted) 

message to be encrypted, 𝑐 refers to the corresponding ciphertext, and 𝑘𝑒, 𝑘𝑑 refer to the 

encryption and decryption keys respectively. An asymmetric cryptosystem has 𝑘𝑒 ≠ 𝑘𝑑, 

while symmetric cryptosystems have 𝑘𝑒 = 𝑘𝑑. 

The foundation of a secure cryptosystem is the assumption that one cannot obtain 

𝑐 solely from 𝑚 (without knowledge of 𝑘𝑒) or obtain 𝑚 solely from 𝑐 (without 

knowledge of 𝑘𝑑.) Focusing on asymmetric cryptosystems, we find that many of these 

systems apply problems that are (or are believed to be) outside of the 𝑃 algorithmic 

complexity class – as solutions to these problems are not known to be deterministically 

computable in polynomial time (but can generally be verified in polynomial time,) they 

are ideal for use in an effective encryption scheme. If a cryptosystem is constructed such 

that the computation of 𝑐 from 𝑚 is a non-𝑃 problem, we can clearly not reverse the 

encryption efficiently (i.e. in polynomial time) without additional information. However, 

the encryption can easily be constructed or “verified” in polynomial time. The result is an 

encryption that is efficient to form but cannot be easily broken – a highly desirable trait in 

asymmetric cryptosystems. 

Quantum computers adversely affect these security assumptions – many of the 

underlying mathematical problems leveraged in asymmetric cryptography are known to 

be in the 𝐵𝑄𝑃 complexity class, which is the class of problems that can be solved by a 

quantum computer in polynomial time under a bounded error threshold (Shor, 1997). 
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𝐵𝑄𝑃 problems can generally be solved efficiently given a quantum computer of 

sufficient size, and this is an obvious problem as 𝐵𝑄𝑃 problems are frequently used in 

modern cryptography (Shor, 1997). Cryptosystems that are vulnerable to efficient 

quantum cryptanalysis are, in general, reducible to a 𝐵𝑄𝑃 problem that can then be 

efficiently solved using an appropriate quantum computing system. 

RSA 

 The RSA cryptosystem was developed by MIT cryptographers Ronald Rivest, 

Adi Shamir, and Leonard Adleman (for whom the cryptosystem was named) in the late 

1970s (Rivest, Shamir, & Adleman, 1978). RSA was one of the first examples of a 

practical asymmetric encryption scheme, and its relative simplicity and (to the best extent 

known) high level of security caused it to quickly become the “gold standard” for 

asymmetric encryption. As the fields of computing, cryptography, and eventually internet 

communications continued to grow throughout the latter decades of the 20th century, 

RSA enjoyed continued use. Today, RSA is very widely used across the entire computing 

industry and is one of the default algorithms used in SSL/TLS to secure internet 

communications (Dierks & Rescorla, 2008). 

 Since RSA is an asymmetric encryption system, each party in an RSA encryption 

transaction must possess a private decryption key and a public encryption key. To 

generate the public RSA encryption key, each party must select two large, random prime 

numbers 𝑝 and 𝑞. These numbers are kept secret, but their product 𝑛 = 𝑝𝑞 is computed 

and is referred to as the public modulus (Rivest, Shamir, & Adleman, 1978). Then, an 

encryption exponent 𝑒 is selected that satisfies 𝑔𝑐𝑑(𝑒, 𝜙(𝑛)) = 1 (𝜙 denoting the Euler 
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totient.) In practice, 𝑒 may be selected as a small prime for simplicity of the calculation, 

as 𝑔𝑐𝑑(𝑝, 𝑘) = 1 for any prime 𝑝 and any 𝑘 ∈ ℤ. The RSA public key is the pair (𝑛, 𝑒). 

Once these calculations have been performed, the calculation of the RSA private key is a 

1-step process – the decryption exponent 𝑑 is given by: 

𝑑 = 𝑒−1 (mod 𝜙(𝑛)) 

In other words, the decryption exponent is the inverse of the encryption exponent modulo 

ϕ(n). The RSA private key is the pair (𝑛, 𝑑). 

 Encryption and decryption. The RSA encryption function is defined by: 

𝐸(𝑚, 𝑛, 𝑒) = 𝑚𝑒 (mod 𝑛) 

We then denote 𝑐 = 𝐸(𝑚, 𝑛, 𝑒). The RSA decryption function is defined by: 

𝐷(𝑐, 𝑛, 𝑑) = 𝑐𝑑  (mod 𝑛) 

Note that as 𝑒𝑑 ≡ 1(mod 𝜙(𝑛)), a corollary to Euler’s totient theorem provides that 

𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑛). Then, observe: 

𝐷(𝑐, 𝑛, 𝑑) = 𝑐𝑑  (mod 𝑛) 

= (𝑚𝑒)𝑑 (mod 𝑛) 

= 𝑚𝑒𝑑 (mod 𝑛) 

= 𝑚 (mod 𝑛) 

(Definition) 

(𝑐 = 𝑚^𝑒 (mod 𝑛)) 

(Properties of exponents) 

(𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑛)) 

We therefore see that 𝐷(𝑐, 𝑛, 𝑑) = 𝑚 (mod 𝑛), so if 𝑚 < 𝑛, we fully recover 𝑚 and find 

that 𝐷(𝑐, 𝑛, 𝑑) = 𝑚. Thus, in general we must have 𝑚 < 𝑛, but best practices for usage 

of the RSA cryptosystem (and most commercial implementations) generally recommend 

that 𝑛 be at least a 2048-bit or a 4096-bit number (Barker, 2016). Thus, dependent on key 

size, several hundred bytes can be exchanged in a single RSA transaction, and this is 
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often sufficient for many of RSA's applications (such as symmetric encryption key 

exchange.) Larger messages can be accommodated by dividing the message into smaller 

chunks and performing multiple RSA calculations. 

 Vulnerability to quantum computers. The vulnerability of the RSA 

cryptosystem to quantum computer-based attacks lies in the RSA algorithm's reliance on 

the difficulty of the integer factorization problem as the basis for the cryptosystem's 

security. The integer factorization problem, which refers to the decomposition of an 

arbitrary positive integer into its unique prime factorization, has no known solution in 

polynomial time (Shor, 1997). However, the nonexistence of such a solution has never 

been proven and is an open problem in computer science. 

 Furthermore, the reversal of an RSA encryption without the knowledge of the 

private key (informally referred to as the RSA problem) is at most as difficult as the 

integer factorization problem, and this can be seen by the brief description of the RSA 

algorithm given above. Suppose that an attacker is in possession of an encrypted RSA 

ciphertext 𝑐 and would like to discover 𝑚, the original message. The attacker is also 

presumed to be in possession of the associated RSA public key (𝑛, 𝑒). 

 Traditionally, the RSA private key (𝑛, 𝑑) is used to decrypt the payload – by 

raising the ciphertext to the 𝑑-th power and taking the residue modulo 𝑛, 𝑚 will be 

recovered (as outlined in the proof sketch above). However, the attacker does not know 

𝑑. As noted above, 𝑑 is the modular inverse of 𝑒 (which is known to the attacker) with 

respect to 𝜙(𝑛), but 𝜙(𝑛) is also unknown to the attacker and cannot (classically) be 

efficiently computed directly from 𝑛. As 𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1), this computation 
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requires knowledge of 𝑛's prime factors 𝑝 and 𝑞 (Shor, 1997). If 𝜙(𝑛) is known, 𝑑 can be 

efficiently computed via the extended Euclidean algorithm – this is in fact the exact 

calculation used in the initial derivation of an RSA private key. Thus, as soon as 𝑝 and 𝑞 

are known to the attacker, the attacker can easily compute 𝜙(𝑛), which allows easy 

computation of 𝑑. This provides the attacker with the corresponding RSA private key and 

the ability to decrypt the encrypted payload. We must therefore conclude that an efficient 

solution to the integer factorization problem is an efficient solution to the RSA problem. 

However, integer factorization is known to be a 𝐵𝑄𝑃 problem (Shor, 1997) and thus has 

an efficient solution for a quantum computer of sufficient size and capability. Shor's 

algorithm is the best known such solution and was the first to prove that integer 

factorization is a 𝐵𝑄𝑃 problem. 

 We have shown that solving the RSA problem is at least as easy as solving the 

integer factorization problem and have indicated that the integer factorization problem is 

solved efficiently (in polynomial time) using Shor's algorithm on a quantum computer of 

appropriate size. Thus, we are forced to conclude that RSA encryption of arbitrary key-

length is directly vulnerable to efficient cryptanalysis by quantum-computer-based 

methods. Thus, the continued use of RSA is unsafe in an environment where a quantum 

computer capable of running Shor's algorithm for RSA-sized (2048 or 4096-bit) numbers 

exists. Fortunately, no such quantum computer is known to exist at the present. However, 

ongoing research and development in quantum computing may yield a quantum 

computing system in the near future that is capable of accomplishing this calculation. 
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Diffie-Hellman 

 The Diffie-Hellman key exchange protocol was developed by Stanford University 

researchers Whitfield Diffie and Martin Hellman during the 1970s (Diffie & Hellman, 

1976). Diffie-Hellman is a simple protocol to establish a shared secret key between two 

parties over an insecure channel and was one of the first examples of a cryptographic 

public-key protocol. The construction of Diffie-Hellman is similar in many ways to the 

RSA algorithm, but Diffie-Hellman's narrower scope (supporting only the establishment 

of a shared secret, not general-purpose communications) and simpler algorithm makes it 

a common choice for this application. The original Diffie-Hellman algorithm (as well as 

variants of the algorithm that substitute groups such as an elliptic curve group in place of 

the multiplicative group ℤ𝑝 in the algorithm) is still widely in use today, including as a 

part of the default cryptography suites for SSL/TLS (Dierks & Rescorla, 2008). Diffie-

Hellman derives its cryptographic difficulty from the discrete logarithm problem, which 

is believed to have no efficient classical solution over groups such as ℤ𝑝 (though this is 

unproven and is an open problem in number theory and computer science.) 

 The protocol. Conventionally, the two parties involved in an encrypted 

communication are informally referred to as Alice and Bob – this terminology was 

devised by Rivest, Shamir, and Adleman (1978) in their original RSA paper and its use 

has since become common. Thus, let Alice and Bob refer to the two parties that wish to 

establish a shared secret using Diffie-Hellman. First, Alice and Bob must agree on a finite 

cyclic group of large order and a generator 𝑔 of the cyclic group. In the most common 

applications, a large prime 𝑝 is selected and the cyclic group used in the Diffie-Hellman 
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calculation is ℤ𝑝 (Diffie & Hellman, 1976). The generator 𝑔 is thus a primitive root 

modulo 𝑝. Both 𝑝 and 𝑔 are communicated between Alice and Bob and are not private. 

Alice and Bob then select secret exponents 𝑎, 𝑏 respectively – Alice computes the value 

𝑥 = 𝑔𝑎 (mod 𝑝) and Bob computes the value 𝑦 = 𝑔𝑏(mod 𝑝) (Diffie & Hellman, 1976). 

Alice then sends 𝑥 to Bob and Bob sends 𝑦 to Alice. Alice computes 𝑦𝑎 (mod 𝑝) and 

Bob computes 𝑥𝑏 (mod 𝑝). However, observe that: 

𝑦𝑎  (mod 𝑝) = (𝑔𝑏)
𝑎

(mod 𝑝) = 𝑔𝑏𝑎  (mod 𝑝) = 𝑔𝑎𝑏 (mod 𝑝) = (𝑔𝑎)𝑏 (mod 𝑝) = 𝑥𝑏 (mod 𝑝) 

Thus, Alice and Bob have computed the same value, as we see that 𝑦𝑎 ≡ 𝑥𝑏 (mod 𝑝). 

This value is the shared secret (Diffie & Hellman, 1976). 

 The Diffie-Hellman protocol allows Alice and Bob to arrive at a single shared 

value securely because of the limited nature of the information communicated between 

the two parties (Diffie & Hellman, 1976). An eavesdropper to the execution of the Diffie-

Hellman protocol can determine 𝑝 and 𝑔 from the initial calculation and can further 

obtain 𝑥 = 𝑔𝑎 (mod 𝑝) and 𝑦 = 𝑔𝑏 (mod 𝑝) as these values are exchanged between the 

two parties. However, the secret value is 𝑔𝑎𝑏 (mod 𝑝) and thus the attacker must learn 

either 𝑎 or 𝑏 in order to exponentiate 𝑥 or 𝑦 and determine the secret. Assume without 

loss of generality that the attacker will attempt to obtain 𝑎 – the attacker knows 𝑔, 𝑝, and 

𝑥 = 𝑔𝑎 (mod 𝑝). Retrieving 𝑎 from these values alone is known as the discrete 

logarithm problem, as the operation is analogous to taking the traditional logarithm base 

𝑔 in ℝ. Classically, the discrete logarithm problem is believed to be computationally 

infeasible for a large modulus 𝑝 (Diffie & Hellman, 1976). 
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 Vulnerability to quantum computers. The discrete logarithm problem, much 

like the integer factorization problem, is not known to have an efficient classical solution 

for many cyclic groups, including certain cyclic groups of large prime order (Diffie & 

Hellman, 1976). Thus, the discrete logarithm problem for these groups is largely assumed 

to not be in the 𝑃 complexity class, although this is an open problem in computer science 

as no proof has ever been given of the nonexistence of a polynomial-time algorithm. 

Thus, the discrete logarithm problem is generally regarded as computationally intractable 

on classical computers, rendering it a secure foundation for algorithms such as Diffie-

Hellman. 

 An efficient solution to the discrete logarithm problem provides an efficient 

solution to Diffie-Hellman, as illustrated above – such a solution could compute 𝑎 given 

only 𝑔, 𝑝, and 𝑥 (all of which are visible to an attacker eavesdropping on a Diffie-

Hellman negotiation), and the attacker can then compute 𝑥𝑎, the shared secret. Thus, 

breaking Diffie-Hellman is at least as easy as the discrete logarithm problem. However, 

Shor's quantum algorithm for integer factorization describes a modified version of the 

algorithm that solves the discrete logarithm problem as well (Shor, 1997). Thus, an 

attacker with a quantum computer of sufficient size could use Shor’s algorithm to solve 

the discrete logarithm problem and compute 𝑎 from these values alone, breaking the 

security of the Diffie-Hellman protocol. 

Symmetric-Key Algorithms 

 Symmetric-key cryptosystems have vastly different mathematical structures in 

comparison to asymmetric-key cryptosystems (Schneier, 1996). As a result, they do not 
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present the same vulnerabilities to quantum-computer-based attacks. However, these 

cryptosystems are not invulnerable to quantum computer effects and considerations must 

be made in order to ensure that they remain secure even after the introduction of large 

quantum computers to the cryptanalysis industry. 

 A quantum algorithm known as Grover's algorithm provides the (currently 

known) most substantial enhancement to cryptanalysis for symmetric-key systems such 

as AES (Grover, 1996). Specifically, given a function 𝑓 with a domain of cardinality 𝑛, 

Grover's algorithm allows for the preimage under 𝑓 of an arbitrary value to be calculated 

with 𝑂(√𝑛) trial evaluations of the function on average, whereas a normal “brute-force” 

procedure would require 𝑂(𝑛) trial evaluations of the function on average (Grover, 

1996). This represents a quadratic speedup of any brute-force procedure for an attacker 

with the capability of running Grover's algorithm, and since the algorithm is broadly 

applicable to any black-box function, it can be used to produce a quadratic speedup in 

brute-forcing symmetric ciphers such as AES. 

 An attacker in possession of a corresponding plaintext and ciphertext for a 

symmetric encryption scheme can use Grover's algorithm to more efficiently discover the 

key used in the encryption over brute-forcing. This is reasonable to consider, as many 

forms of encrypted communication and data storage use attacker-influenceable, repeated, 

or predictable data (such as HTTP headers, for example.) The attacker will then conduct a 

brute-force attack over the keyspace to discover the key. For the sake of example, assume 

that the encryption being used is AES with a 128-bit key size. There are therefore 2128 

keys that could be used, and a brute-force attacker must (on average) try half of these 
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keys (2127) in a classical computing scenario to discover the correct key. In the worst 

case, every key must be tried. Grover's algorithm, however, allows this brute-force 

operation to be accomplished with 𝑂(√𝑛) trials of AES, where 𝑛 = 2128 is the size of the 

keyspace. Thus, only 264 AES operations will be required (on average) to discover the 

key with a high degree of probability – a quadratic speedup over classical brute-forcing. 

 The efficiency difference made by Grover's algorithm can make previously 

infeasible (or borderline infeasible) AES brute-forcing operations practical for a well-

equipped attacker. The brute-force computation of a 128-bit AES key is far beyond the 

capability of even the most well-equipped state-level attackers and would require 

millions of years of continuous calculation even with a vast amount of computational 

resources (Schneier, 1996). However, the brute-forcing of a 64-bit AES key is a much 

less computationally expensive operation – attacks on symmetric keys of this size have 

been demonstrated to be practical (Güneysu, Kasper, Novotný, Paar, & Rupp, 2008). 

Thus, Grover's algorithm would potentially enable the brute-forcing of lower-end AES 

keys given the appropriate quantum computing resources. However, the quadratic 

speedup can be effectively nullified by doubling the key size used in the symmetric 

cipher – for instance, a 256-bit AES key will then require 𝑂(2128) operations to brute-

force. Thus, by using key sizes that are at a minimum twice the bit length of the 

minimum recommended bit length for symmetric encryption keys under a classical 

computing paradigm, the security of symmetric-key algorithms can be preserved. With 

appropriate modifications, these algorithms can continue to be used even after the 

development of large, general-purpose quantum computers. 
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Quantum Algorithms 

 A quantum algorithm is an algorithm designed for use on a quantum computer, 

leveraging quantum-mechanical data structures and quantum-mechanical physical 

phenomena to perform calculations that would otherwise not be possible or feasible using 

a traditional computer. While classical binary computers use bits to represent data and 

perform operation on those bits, quantum computers use qubits to represent data. While a 

classical bit can only take one of two states (written 0 and 1) at any given time, a qubit is 

a superposition of two states (written |0⟩ and |1⟩) that collapses to one of the two states 

upon observation (Rieffel & Polak, 2000). A qubit can be thought of as a complex 

number with unit length: a qubit 𝑎 could be written 𝑎 = 𝑎0|0⟩ + 𝑎1|1⟩, where |𝑎0|2 is the 

probability that |0⟩ will be observed, and |𝑎1|2 is the probability that |1⟩ will be 

observed. Equivalently, we can think of 𝑎 as a unit-length vector in a 2-dimensional 

Hilbert space. 

 Qubits can be strung together in quantum registers to represent larger quantities of 

data, just as bits can be strung together to represent large amounts of data in classical 

computing systems. The values in these registers are also superpositions (comprised of 

the individual superpositions in their qubits) and can also be viewed as unit-length 

vectors in Hilbert spaces of 2𝑘-dimension for a register of 𝑘 qubits (Shor, 1997). 

Observation of the quantum register collapses the superposition, and one of the 2𝑘 basis 

vectors of the 2𝑘-dimensional space is observed. This is analogous to how 𝑘 bits in a 

classical computer can represent 2𝑘 unique states. However, the ability of a quantum 

computer to represent data in superpositions and perform operations upon superpositions 
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allows for computational shortcuts (Rieffel & Polak, 2000). Appropriately designed 

algorithms can use constructive and destructive interference to make the observation of 

states corresponding to solutions to a problem occur with high frequency (Shor, 1997). 

This has the perceived effect of performing a calculation for multiple possible inputs 

simultaneously – while the outputs corresponding to each input are not individually 

accessible as part of the superposition, such an algorithm can produce a “correct” value in 

response to observation with much better success over random choice. This principle is 

what allows algorithms such as Shor's to perform a seemingly impossible amount of 

computational work in a relatively small number of quantum computer operations. 

Shor’s Algorithm 

In 1994, mathematician Peter Shor developed and published a theoretical 

algorithm for the computation of an integer's prime factorization with polynomial time 

complexity (Shor, 1997). The algorithm was theoretical in the sense that it was an 

algorithm to be run on a quantum computer, which was a concept (at the time of the 1994 

publication of Shor's paper) that had been well-studied but had never been implemented. 

Shor's algorithm was highly significant because no previous algorithm for the prime 

factorization of arbitrary integers in polynomial time had yet been described (Shor, 

1997). Prior to the discovery of Shor's algorithm, the general number field sieve (GNFS) 

was one of the most efficient algorithms known for the prime factorization of arbitrary 

integers on a classical computer. However, the GNFS has the following sub-exponential 

time complexity for the factorization of an integer 𝑛 (Pomerance, 1996): 
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O(exp ( (√
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3 )) 

While this indicates that the GNFS is more efficient than any algorithm of exponential 

time complexity, the amount of computational effort required to factor very large, 

randomly generated compound integers (such as 2048-bit RSA keys) using the GNFS 

makes the algorithm essentially useless for these applications. Shor's algorithm 

accomplishes the factorization of these large integers in polynomial time. This effectively 

places the efficient factorization of RSA-sized numbers within the realm of possibility for 

a sufficiently large and appropriately designed quantum computer. An efficient method 

for large integer factorization fundamentally negates the security assumptions of the 

integer factorization problem. Therefore, a working implementation of Shor's algorithm 

for large integers poses an existential threat to RSA and other cryptosystems that rely on 

the computational intractability of the integer factorization problem and other related, 

foundational “hard” problems in number theory (Shor, 1997). 

 The algorithm. In the formulation of his algorithm, Shor (1997) assumed that 

quantum computers would be substantially more difficult to build and operate than 

classical computers. Thus, operation-for-operation, quantum computation would be more 

expensive than classical computation. As a result, it is advantageous for as many of the 

calculations in the algorithm as possible to be performed by a classical computer, leaving 

only the calculations that strictly require quantum-mechanical properties for the quantum 

computer to perform. While this increases the complexity of a Shor's-algorithm-based 

system for integer factorization (via the integration of non-quantum computing systems 
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with quantum computing systems,) the performance benefits of utilizing the least possible 

amount of quantum computing resources far outweigh this complexity penalty, as 

quantum computing systems are (as of yet) extremely difficult to design and build, 

particularly at scale. 

 To this end, Shor reduces the question of finding the prime factorization of an 

integer 𝑛 to the calculation of the order of an arbitrary element 𝑥 in the multiplicative 

group ℤ𝑛
∗ . To simplify this analysis and to most closely emulate the cryptographic 

application of Shor's algorithm, we will assume that 𝑛 is a semiprime – that is, that 𝑛 is 

the product of exactly two prime numbers 𝑝 and 𝑞: 

𝑛 = 𝑝𝑞 

As the RSA algorithm constructs its public modulus as a semiprime in this way, this 

structure for 𝑛 is the situation of greatest importance for the use of Shor's algorithm in the 

cryptanalysis of RSA. A black-box function that can perform the aforementioned order-

finding operation can be shown to lead to a prime factorization of 𝑛 with a high degree of 

probability in the following manner: given an arbitrary 𝑥 ∈ ℤ𝑛
∗ , use the black-box 

function to find 𝑟, the order of 𝑥 in ℤ𝑛
∗ . Then, observe that: 

(𝑥
𝑟
2 + 1) (𝑥

𝑟
2 − 1) = 𝑥𝑟 − 1 

However, as 𝑥𝑟 = 1 (since 𝑟 is the order of 𝑥,) 𝑥𝑟 − 1 ≡ 0 ≡ 𝑛 (mod 𝑛). Thus, (𝑥
𝑟

2 + 1) 

and (𝑥
𝑟

2 − 1) are factors of 𝑛. This procedure has two failure modes – if 𝑟 is odd, 
𝑟

2
 is 

clearly not an integer and thus the calcuation is meaningless in ℤ𝑛
∗ . Furthermore, if 

𝑥𝑟/2 ≡ −1 (mod 𝑛), we easily see that the factorization obtained is trivial. Thus, if either 
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of these situations is encountered, we will need to repick a random 𝑥 and repeat the 

procedure until a nontrivial factorization is found. Shor (1997) calculates that for the case 

of a semiprime, there is at least a 50% probability that the period of a random 𝑥 ∈ ℤ𝑛
∗  will 

yield a factorization in this way. Thus, there is a more than 99% probability that a 

nontrivial factorization will be found after the completion of at least seven trials. 

 We have thus found that a black-box function capable of calculating the order of 

arbitrary elements in ℤ𝑛
∗  provides a simple (and classically computable) route to the 

factorization with high probability. This black-box is the core of Shor's algorithm and is 

the component of the algorithm that requires quantum computation (Shor, 1997). 

 The quantum algorithm manipulates two registers of log 𝑞 qubits each – 𝑞 is the 

unique power of 2 such that 𝑛2 < 𝑞 < 2𝑛2 (Shor, 1997). Assuming that both registers are 

initially set to |0⟩ (the basis vector chosen to represent 0 in the Hilbert space in which one 

may visualize the quantum registers,) Shor (1997) sets the first register to the uniform 

distribution superposition of all values in ℤ𝑛, so we have: 

1

√𝑞
∑|𝑎⟩|0⟩

𝑞−1

𝑎=0

 

The second register is set to the superposition of all modular exponentiations of our random 

𝑥 to elements of ℤ𝑛, so we have the fully initialized state: 

1

√𝑞
∑|𝑎⟩|𝑥𝑎 (mod 𝑛)⟩

𝑞−1

𝑎=0

 

Shor (1997) notes that the calculation of the modular exponentiation superposition is the 

most expensive part of the algorithm and carries the largest time and space costs. 
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 Once the quantum computer is initialized to the aforementioned state, the 

quantum Fourier transform is applied to the first register and the state of the system is 

then observed – let 𝑐 be the observed value from the first register. As observation has 

collapsed the superposition, 𝑐 is a basis vector in the Hilbert space represented by the 

quantum registers and thus represents a 𝑞-bit integer. Shor (1997) indicates that 𝑐 

approximates the desired period and shows that as a result of the calculation, there exists 

at most one integer 𝑑 satisfying the inequality |
𝑐

𝑞
−

𝑑

𝑟
| <

1

2𝑞
. Furthermore, certain values 

of 𝑐 allow 
𝑑

𝑟
 (which is not known) to be computed from 

𝑐

𝑞
 (which is known) in polynomial 

time. If 𝑑 and 𝑟 are coprime, the calculation yields 𝑟, the desired order. Shor (1997) notes 

that not all values of 𝑐 will permit this calculation, but due to interference properties of 

the quantum calculation, the observed value 𝑐 can be used to find 𝑟 with a high degree of 

probability. Specifically, Shor (1997) calculates that the algorithm can find 𝑟 with a 

probability of  
𝛿

log log 𝑟
 for some constant 𝛿, so if this procedure is repeated until 𝑟 is 

found, we find that this portion of the procedure has a complexity of 𝑂(log log 𝑟) and 

finds 𝑟 with a high degree of probability. 𝑟 is then used to compute the prime 

factorization of 𝑛 efficiently by the procedure described previously (Shor, 1997). 

Grover’s Algorithm 

 Mathematician Lov Grover (1996) of Bell Labs published a paper describing a 

quantum algorithm for a fast database search. Classically, the best way to locate an item 

in an unsorted list or database of 𝑛 items (about which no other information is known) is 

to sequentially traverse the list until the item is found. In the worst case, the item is 
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located at the “end” of the database and thus 𝑛 items must be examined (Grover, 1996). 

However, assuming that the item is expected to be anywhere in the list with equal 

probability, the item will be in the first half of the list 50% of the time and in the last half 

of the list 50% of the time. Thus, on average, 
𝑛

2
 items will be examined before the desired 

item is found. It is clear that the difficulty of the search scales linearly with the length of 

the list, as 𝑂(𝑛) operations are required on average to find the required item. This 

technique is called a brute-force search and is guaranteed to eventually locate the item. 

 For many strong symmetric encryption algorithms (such as AES), brute-force 

search of the keyspace is the best-known method for determining the key that maps a 

known plaintext to a known ciphertext. However, AES with 128-bit keys has 2128 unique 

keys that can be used, and thus we can interpret the AES keyspace as a “database” with 

2128 entries, exactly one of which is the correct key. A brute-force search of this database 

will require 2127 operations on average – an extraordinary amount of computation that 

appears to be (for the meantime) well out of the realm of possibility, even with the 

combined computing resources of the human race (Schneier, 1996). Grover (1996) 

describes a quantum algorithm for locating a desired item within this type of database 

using only 𝑂(√𝑛) operations on average – a massive speedup that has the potential to 

endanger the security of smaller symmetric encryption keys. 

 The algorithm. Grover's algorithm primarily operates on a single quantum 

register – to search a database with 𝑛 entries, Grover's algorithm requires log 𝑛 qubits so 

that each of the indices of the database items can be represented (Grover, 1996). As in 

Shor's algorithm, the register is initialized to a superposition where every value has a 
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probability amplitude of 
1

√𝑛
 corresponding to a 

1

𝑛
 probability of observing this particular 

value. The intial machine state is thus: 

1

√𝑛
∑ |𝑥⟩

𝑛−1

𝑥=0

 

Next, a black-box oracle operator is applied to the register. This operator inverts the 

probability amplitude of a state only if it matches the search value – all other states 

remain unchanged by the operator (Grover, 1996). This oracle operator may vary 

depending on the type of search that is being performed or the type of problem that is 

being solved – for the application of cracking an AES key, this oracle would likely 

evaluate a key to determine if it is the correct one. 

 Finally, a diffusion operator is applied to the register. This has the effect of 

inverting and amplifying the inverted-amplitude states of the superposition (Grover, 

1996). The net effect of the two operators is that the target state is returned to a positive 

probability amplitude of a value greater than its original amplitude of 
1

√𝑛
, causing the 

remaining states to decrease evenly in amplitude to compensate (as the diffusion 

transformation is unitary and preserves the property that the sum of the squares of the 

amplitudes is 1.) 

 To complete the algorithm, these two operators are repeatedly applied to boost the 

probability amplitude of the desired state (Grover, 1996). This has the effect of making 

observation of the desired target state much more likely in comparison to non-target 

states following multiple iterations. Grover (1996) shows that the answer can be 

determined in this way using 𝑂(√𝑛) applications of the operators. Thus, for a 128-bit 
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AES key, only 𝑂(264) operations are required on average for the search, in comparison 

to 𝑂(2128) operations for a pure brute-force search on a classical computer. The bit-

length security of the key is effectively halved by this attack, placing the computation of 

cryptographic objects such as 128-bit AES keys within the realm of possibility for a well-

equipped attacker with a quantum computer of appropriate size. However, the attack 

presented by Grover's algorithm is essentially nullified by doubling the key size, and thus 

as an (effective) security of at least 128 bits is currently recommended for AES keys 

(Barker, 2016), an effective strategy for securing AES encryption against possible 

quantum attacks is to use a minimum of 256 bits for AES keys. It is important to note that 

increased key length alone does not make Grover’s algorithm any less effective, and 

smaller keys will still be potentially open to cryptanalysis. However, the effective 

security contributed by the increased key length can raise the computational effort 

required to perform Grover’s algorithm to the point of infeasibility, even for a quantum 

computer. Thus, the same principle of key-doubling can resolve the corresponding threat 

for other symmetric-key systems as well. 

Quantum Computers: The State of the Art 

Quantum computers are inherently difficult to design, build, and operate. In a 

twist of irony, the quantum-mechanical physical properties that lend quantum computers 

their power also introduce fundamental instabilities that are difficult to overcome at small 

scales, let alone the larger scales required for useful, powerful quantum computation. 

Classical digital computers are able to store their fundamental unit of information, the bit, 

in forms such as the level of voltage present in an electronic circuit, the state of a 
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specially designed memory-cell circuit (such as that used in random-access memory), the 

magnetic polarity of a region on a magnetic disk (such as those used in traditional 

magnetic disk drives), or even in the form of physical high and low points engraved on 

the tracks of an optical media disk. Classical binary data can be easily read and 

manipulated in each of these formats because each format is merely a representation of 

the corresponding abstract binary data (consisting of 1's and 0's.) In order to perform the 

translation, the appropriate I/O device needs only to be able to reliably differentiate 

between the encoding of a 0 and the encoding of a 1 in the appropriate format. 

Quantum computers, on the other hand, use the qubit as their fundamental unit of 

information. A qubit represents the superposition of two basis quantum states, termed |0⟩ 

and |1⟩ respectively (Rieffel & Polak, 2000). To realize a qubit as a physical object in a 

physical quantum computing system, it is therefore necessary to use some form of 

physical system that is capable of taking on a superposition of two quantum states, as 

described. Examples of such a system include the polarization of a photon (which is a 

superposition of the horizontal and vertical polarization states,) as well as the spin of an 

electron (which is a superposition of the spin-up and spin-down quantum states.) 

However, just as one of these superpositions will collapse and yield one of the basis 

states upon planned observation, interaction between the qubit and the environment will 

result in spontaneous decay of the qubit's superposition and a potential premature loss of 

information (Rieffel & Polak, 2000). This phenomenon is known as quantum 

decoherence, and in order to combat it, quantum computer systems are often stabilized at 

extremely low temperatures (often a few fractions of a degree above 0° 𝐾) to minimize 
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decoherence effects. Even then, quantum computer systems require an intense amount of 

engineering effort to produce a stable system where qubits can maintain their state long 

enough for a calculation to be performed. Even in the most well-isolated systems, 

individual qubits spontaneously decay in timeframes on the order of nanoseconds to 

microseconds (Rieffel & Polak, 2000). Thus, there are extreme challenges to building 

quantum computers that can perform calculations that are both usefully large and also 

usefully long-lived. However, there are a growing number of instances where quantum 

computers have been successfully developed, built, and operated, steadily increasing the 

number and lifespan of system qubits that are available for computation. 

IBM Q 

 IBM's quantum computer research division (IBM Q) announced in November 

2017 that they had successfully developed and tested a prototype of a general-purpose 

50-qubit prototype processor and that they would be immediately making a 20-qubit 

version of the architecture available to clients through a quantum-computing-as-a-service 

model (Gil, 2017). The original iterations of the IBM Q program (which debuted in May 

2016) allowed the public to interact with a basic quantum computer system, and later 

versions of the service allowed users to access 5-qubit and 16-qubit quantum computers. 

The new 20-qubit system and prototype 50-qubit system have an average decoherence 

threshold of approximately 90 microseconds (Gil, 2017). 

D-Wave 

 The Canadian quantum computing company D-Wave currently produces a 

specific type of quantum computer for commercial applications – the current D-Wave 
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flagship model is the D-Wave 2000Q, a quantum annealing quantum computer with a 

2048 qubit processor (D-Wave Systems, 2017). However, D-Wave's quantum annealing 

system is far less general-purpose than competing implementations and is suited only to a 

certain class of problem involving minimization and optimization of functions. 

Furthermore, D-Wave's qubits are more unstable and more error-prone than competing 

implementations, contributing additional overhead for error detection and correction 

(Lee, 2017). 

 As a result of these effects, there has been significant controversy surrounding the 

ability of D-Wave's quantum computing systems to actually perform computation (as 

marketed) in a manner that is materially more efficient than the ability of a classical 

computer. Studies and investigations into these claims have yielded inconclusive results 

(Amin, 2015). 

Post-Quantum Cryptosystems 

It is clear that in light of the abilities of impending quantum computer research, 

new cryptographic algorithms will be required to replace those that can be compromised 

by quantum-computer-based attacks. These algorithms are commonly referred to as post-

quantum cryptosystems to reflect their usage following the general availability of large 

quantum computers. While AES and other symmetric-key cryptosystems can generally 

compensate for the effects of algorithms such as Grover's algorithm by simply doubling 

the key size, RSA, Diffie-Hellman, and many other systems and protocols for asymmetric 

encryption and key exchange will not be effectively usable. This is due to the existence of 

algorithms (such as Shor's algorithm) that can solve the integer factorization and discrete 
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logarithm problems in polynomial time. Fortunately, cryptosystems have been devised 

that can serve as secure replacements for many of these applications (Augot et al., 2015). 

While they are not widespread in common use today, these algorithms and algorithms 

like these will undoubtedly grow in usage as the threat posed by quantum computing 

continues to grow. 

Supersingular Isogeny Diffie-Hellman 

 Supersingular isogeny Diffie-Hellman (SIDH) is a modification of the Diffie-

Hellman key-exchange protocol that operates on supersingular elliptic curves (De Feo, 

Jao, & Plût, 2011). Rather than operating on elements of a finite cyclic group or an 

elliptic curve group as is the case in the traditional DH and ECDH algorithms 

respectively, SIDH uses isogenies of elliptic curves to allow two parties to derive a 

shared secret key over an insecure channel in a manner that preserves the security of the 

key even when an eavesdropper has access to quantum computing resources (De Feo, 

Jao, & Plût, 2011). 

 The algorithm. In order to begin the supersingular isogeny Diffie-Hellman 

protocol between two parties wishing to calculate a shared secret (hereafter referred to as 

Alice and Bob), a number of parameters must be initially mutually agreed upon. First, 

Alice and Bob must agree on a prime 𝑝 that is of the following form for some small 

primes ℓ𝐴, ℓ𝐵: 

𝑝 = ℓ𝐴
𝑒𝐴ℓ𝐵

𝑒𝐵 ⋅ 𝑓 ± 1 

𝑓 is chosen so that 𝑝 is prime. Alice and Bob then select a field 𝔽𝑝2 of order 𝑝2 and agree 

on a supersingular elliptic curve 𝐸 over 𝔽𝑝2. Furthermore, Alice and Bob agree on base 



QUANTUM ATTACKS ON MODERN CRYPTO 33 

 

points 𝑃𝐴, 𝑄𝐴, 𝑃𝐵 , 𝑄𝐵 on the elliptic curve – 𝑃𝐴, 𝑄𝐴 have order ℓ𝐴
𝑒𝐴 and 𝑃𝐵 , 𝑄𝐵 have order 

ℓ𝐵
𝑒𝐵. 

 Alice now computes a random ℤ
ℓ𝐴

𝑒𝐴 -linear combination of 𝑃𝐴, 𝑄𝐴. Alice uses this 

point as the generator of the kernel of a secret elliptic curve isogeny 𝜙𝐴 and completes 

her step of the algorithm by sending Bob 𝜙𝐴(𝐸), 𝜙𝐴(𝑃𝐵), and 𝜙𝐴(𝑄𝐵). Bob performs the 

analogous calculation of a secret isogeny 𝜙𝐵 using a random ℤ
ℓ𝐵

𝑒𝐵 -linear combination of 

𝑃𝐵, 𝑄𝐵 and completes the process by sending 𝜙𝐵(𝐸), 𝜙𝐵(𝑃𝐴), and 𝜙𝐵(𝑄𝐴) to Alice (De 

Feo, Jao, & Plût, 2011). 

 In the final step of the algorithm, Alice computes the ℤ
ℓ𝐴

𝑒𝐴 -linear combination of 

𝜙𝐵(𝑃𝐴) and 𝜙𝐵(𝑄𝐴) using the coefficients chosen in her initial step of computing 𝜙𝐴. 

Alice then uses this elliptic point as the generator of the kernel of a second isogeny 𝜙𝐴
′  

while Bob uses the same procedure to calculate 𝜙𝐵
′  based on the points sent to him by 

Alice (De Feo, Jao, & Plût, 2011). The properties of isogeny graphs of supersingular 

elliptic curves cause Alice and Bob to obtain the same elliptic curve 𝐸𝐴𝐵 through the 

following calculation: 

𝐸𝐴𝐵 = 𝜙𝐴
′ (𝜙𝐵(𝐸)) = 𝜙𝐵

′ (𝜙𝐴(𝐸)) 

Alice and Bob may then take the 𝑗-invariant of 𝐸𝐴𝐵 as a shared secret key (De Feo, Jao, 

& Plût, 2011). 

 Security properties of the algorithm. The supersingular isogeny Diffie-Hellman 

key exchange protocol is structured very similarly to the standard Diffie-Hellman 

protocol but is considered to be secure even against an attacker in possession of a 
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quantum computer. In the course of the protocol, Alice and Bob must first agree on a 

common choice of initial elliptic curve and basis points, but the only information 

exchanged between Alice and Bob following the initialization of the protocol is the 

images of the elliptic curve 𝐸 under the secret isogenies 𝜙𝐴, 𝜙𝐵, along with the images of 

the basis points under the opposing isogenies. In order to discover 𝐸𝐴𝐵 and thus the 

shared secret, the attacker must determine one of the secret isogenies given only 𝐸 and its 

image. De Feo, Jao, and Plût (2011) note that this operation is difficult even on a 

quantum computer – specifically, that there is no known sub-exponential algorithm for 

this procedure for classical or quantum computers. Thus, with elliptic curves of sufficient 

size, the SIDH key exchange is believed to be suitable for use even in environments 

where quantum computing attacks are possible (De Feo, Jao, & Plût, 2011). 

NTRU 

 NTRU (short for 𝑁-th degree TRUncated polynomial ring) is a formerly 

proprietary lattice-based asymmetric-key encryption scheme developed by researchers at 

Brown University in the late 1990s (Hoffstein, Pipher, & Silverman, 1998). NTRU is a 

fast alternative to cryptosystems such as RSA and operates on elements of polynomial 

quotient rings – the algorithm is strongly related to the shortest vector problem for 

lattices, which is not known to admit an efficient classical or quantum solution 

(Hoffstein, Pipher, & Silverman, 1998). 

 The algorithm. NTRU is formally a family of cryptosystems with variable 

parameters specifying aspects of the encryption and decryption process. Four subsets ( 

ℒ𝑓 , ℒ𝑔, ℒ𝑚, ℒ𝑟) of the polynomial quotient ring ℤ[𝑥]/(𝑥𝑛 − 1) for some large prime 𝑛 ∈
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ℕ must be specified. Additional parameters to the cryptosystem include relatively prime 

integers 𝑝, 𝑞 with 𝑞 ≫ 𝑝 (Hoffstein, Pipher, & Silverman, 1998). 

 An NTRU private key is a random polynomial 𝑓 ∈ ℒ𝑓, but it must meet the 

condition that 𝑓𝑝 = 𝑓−1 (mod 𝑝) and 𝑓𝑞 = 𝑓−1 (mod 𝑞) exist. 𝑓𝑝 is typically stored 

alongside 𝑓, although it is easily computable from 𝑓 using the extended Euclidean 

algorithm. The corresponding NTRU public key is computed from 𝑓 by randomly 

selecting 𝑔 ∈ ℒ𝑔 and calculating ℎ = 𝑔 ⋅ 𝑓𝑞 (mod 𝑞). ℎ is the public key and may be 

published (Hoffstein, Pipher, & Silverman, 1998). 

 Plaintext messages in NTRU are represented as elements 𝑚 ∈ ℒ𝑚. The encoding 

of a message from binary data or another format to the polynomial 𝑚 will be dependent 

on ℒ𝑚. To encrypt 𝑚 by the public key ℎ, a random secret hiding polynomial 𝑟 ∈ ℒ𝑟 is 

chosen and the ciphertext 𝑒 is computed by (Hoffstein, Pipher, & Silverman, 1998): 

𝑒 = 𝑝𝑟ℎ + 𝑚 (mod 𝑞) 

To decrypt the message using the private key, a few intermediate operations are required. 

Observe that: 

𝑓𝑒 (mod 𝑞) = 𝑓 ⋅ (𝑝𝑟ℎ + 𝑚) (mod 𝑞) 

= 𝑓 ⋅ (𝑝𝑟𝑔𝑓𝑞 + 𝑚) (mod 𝑞) 

= 𝑓𝑓𝑞𝑝𝑟𝑔 + 𝑓𝑚 (mod 𝑞) 

= 𝑝𝑟𝑔 + 𝑓𝑚 (mod 𝑞) 

(𝑒 = 𝑝𝑟ℎ + 𝑚 (mod 𝑞)) 

(ℎ = 𝑔𝑓𝑞 (mod 𝑞)) 

 

(𝑓𝑓𝑞 = 1 (mod 𝑞)) 

Thus, let 𝑎 = 𝑓𝑒 (mod 𝑞). We therefore see that 𝑎 = 𝑝𝑟𝑔 + 𝑓𝑚 (mod 𝑞). Then, by 

computing 𝑏 = 𝑎 (mod 𝑝), we have 𝑏 = 𝑓𝑚 (mod 𝑝) as 𝑝𝑟𝑔 ≡ 0 (mod 𝑝). Then, 

simply observe that: 
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𝑏𝑓𝑝 = 𝑓𝑓𝑝𝑚 (mod 𝑝) = 𝑚 (mod 𝑝) 

as 𝑓𝑓𝑝 ≡ 1 (mod 𝑝). Thus, by taking the ciphertext and multiplying by 𝑓 modulo 𝑞, then 

multiplying by 𝑓𝑝 modulo 𝑝, the plaintext will be recovered (Hoffstein, Pipher, & 

Silverman, 1998). For some choices of parameters to the NTRU cryptosystem, there is 

the possibility that certain combinations of public keys and plaintexts will yield 

ciphertexts that cannot be decrypted correctly due to information loss via the taking of 

residues modulo 𝑝 and 𝑞. By correctly choosing 𝑞 ≫ 𝑝 and using coefficients of 𝑎 in the 

interval [
−𝑞

2
,

𝑞

2
] (rather than [0, 𝑞 − 1]) during the calculation, the original message is 

guaranteed to be recovered correctly (Hoffstein, Pipher, & Silverman, 1998). 

 Security properties of the algorithm. While NTRU has not been the subject of 

as intense cryptographic analysis as many other cryptosystems, many combinations of 

NTRU parameters are currently believed to be secure and are not known to admit any 

substantial cryptanalytic attacks. In terms of security against quantum computer attacks, 

reversing the NTRU encryption without possession of one of the private key polynomials 

is closely related to the lattice shortest vector problem. Variants of this problem are 

considered to be NP-hard and therefore the lattice shortest vector problem is generally 

considered to be computationally infeasible to solve directly even with the aid of 

quantum computing resources (Hoffstein, Pipher, & Silverman, 1998). Thus, with 

appropriate choices of parameters, NTRU is a reasonable replacement for asymmetric-

key algorithms such as RSA even under the widespread adoption of quantum computer-

aided cryptanalytic techniques (Augot et al., 2015). 
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Conclusion 

The landscape of cryptography is changing quickly in response to the formidable 

threat posed by the advent of strong quantum computing technology. Because 

cryptography is only as useful as it is secure, it is critical that the encryption technologies 

currently in use across the information security and broader computing industries are 

evaluated so that their weaknesses against quantum-computer-related attacks can be well 

understood and thus mitigated. 

While quantum computers had long been a purely theoretical concept, new leaps 

in engineering technology and ability have enabled the construction of small quantum 

computers. The majority of these machines are far too small and limited to pose any 

reasonable threat to any form of cryptography that is actually in modern practice. 

However, newer, larger, and more powerful quantum computing systems are continually 

in development and the day will undoubtedly come soon that this technology possesses 

the ability to mount a real attack against real cryptography. At that time, it will be crucial 

that algorithms capable of replacing older, vulnerable cryptographic techniques be well-

studied and well-tested. This will allow the transition into the world of post-quantum 

cryptography to take place seamlessly and with minimal disruption to the computing 

industry. In a world where the global economy has become increasingly and inextricably 

linked with computing, information security, and ultimately cryptography, it is critical to 

pursue these avenues of research so that the principles of strong information security, 

data integrity, and human privacy can be protected in the midst of a rapidly changing 

future. 
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