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Abstract 

Beginning over 4000 years ago, the Babylonians were discovering how to use 

mathematics to perform functions of daily life and to evolve as a dominant civilization.  

Since the beginning of the 1800s, about half a million Babylonian tablets have been 

discovered, fewer than five hundred of which are mathematical in nature.  Scholars 

translated these texts by the end of the 19
th

 century.  It is from these tablets that we gain 

an appreciation for the Babylonians’ apparent understanding of mathematics and the 

manner in which they used some key mathematical concepts.  Through this thesis, the 

author will provide background information about the Babylonians and then explain the 

manner in which the Babylonians used a number system, the square root of 2, 

“Pythagorean” mathematics, and equations.  
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A Brief Study of Some Aspects of Babylonian Mathematics  

Background 

 Between the years of 3500 B.C. and 539 B.C., various Mesopotamian 

civilizations inhabited this “land between the rivers” (Dellapena, 1996, p. 213) of the 

Euphrates and the Tigris (see Figure 1 below for a map of this region).  Around 3500 

B.C., the Sumerians established the first city-states; one of the best city-states was called 

Ur.  After the Sumerians came the Akkadians, who inhabited the area of the surrounding 

desert.  The Akkadians were conquered in about 1900 B.C. by the First Babylonian 

Empire.  Just over 1000 years later, in 885 B.C., the Assyrians took over the land from 

the Akkadians and maintained control of the land for nearly 300 years until, in 612 B.C., 

the Chaldeans conquered the Assyrians and began the Second Babylonian Empire.  

Unlike the First Babylonian Empire, the Chaldeans’ reign was short-lived, a mere 73 

years, until the Persians invaded the land in 539 B.C. (Teresi, 2002).  For a timeline of 

these events, see Figure 2. 

 

Figure 1. A map of Ancient Babylonia.
1
 

                                                 
1 From “Pythagoras's Theorem in Babylonian Mathematics,” by J.J. O’Connor and E.F. Robertson, 2000, 
MacTutor History of Mathematics, ¶ 2. 
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Figure 2. Chronology of the Mesopotamian civilizations in Ancient Babylonia. 

Mathematical Contributions in Mesopotamia 

In this area of Ancient Babylonia, mathematical contributions were made by these 

Mesopotamian civilizations.  When discussing the mathematical contributions made in 

Mesopotamia, the entire period from 3500 B.C. to 539 B.C. is referred to as the 

Babylonian era; however, when the contributions are determined to have been made 

during the earliest period of the Mesopotamian civilizations, the term “Sumerian” is used 

(Teresi, 2002).   

The information we have regarding Babylonian mathematics comes from clay 

tablets.  Although approximately half a million of these tablets have been discovered 

since the beginning of the 1800s, fewer than five hundred are mathematical in nature 

(Teresi, 2002).  The majority of these five hundred tablets are dated between the years 

1800 and 1600 B.C.  It was not until the end of the 19
th

 century, however, that numerous 

Sumerian and Babylonian measurement texts were translated.  Nevertheless, by the late 

1920s the study of Babylonian mathematics was well-established and scholars attained a 
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thorough understanding of the methods Babylonian mathematicians implemented for 

solving problems (Høyrup 2002).     

Formation of Babylonian Clay Tablets 

The script that was used on the clay tablets is called cuneiform script and the texts 

were written in the Babylonian language, which is a dialect from the Akkadians that is 

Semitic in nature and is closely related to the classical Arabic and Hebrew languages.  

The secret for the great preservation of these Babylonian tablets lies in the manner in 

which the information was written.  The scripts were written on moist clay tablets using a 

stylus, which is a blunt reed.  The clay was then baked, either by the sun or in an actual 

oven.  The impressions that remained were wedge-shaped, which is the reason for the 

name of these scripts—“cuneiform,” which literally translates “wedge shaped.”  Among 

the various Mesopotamian civilizations, the Sumerians were the first to establish a system 

of writing using this cuneiform method, primarily for bureaucratic purposes.  Despite the 

benefit of the great preservation of these scripts due to this method of inscription, many 

tablets contain several errors since the scribes had to write on the moist clay very quickly 

before the clay dried (Teresi, 2002).   

It is from these well-preserved tablets that we gain our understanding of the 

number system the Babylonians had in place, their dealings with “Pythagorean” 

mathematics and equations, possible ways they determined the value of the square root of 

2, and some other mathematical topics.   

To begin our brief review on some of the Babylonian mathematics, we are going 

to look at the Babylonian number system. 
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The Number System 

 In most parts of the world today, a decimal place value system that uses the 

Hindu-Arabic numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 is used.  The position of these numerals 

affects the value of the number.  For example, in the numbers 6, 60, and 600 the numeral 

6 is in three different places—in the first number, the six is in the units place, with the 

value of 6 X 10
0
; in the second number, the six is in the tens place, with the value of 6 X 

10
1
; and in the third number, the six is in the hundreds place, with the value of 6 X 10

2
.  

However, the Babylonians developed a number system that was sexagesimal in nature, 

which means that instead of having a base of ten (decimal), it had a base of 60 (Hodgkin, 

2005).  The modern-day methods for measuring time, geographic coordinates, and angles 

follow such a sexagesimal system.  For example, the angle measure of 4º1’15” is 

equivalent to 4 + (1/60) + (15/60
2
), the sum of which .  However, the 

Babylonians did not have a pure 60-base system, since they did not use 60 individual 

digits; rather, they counted by both 10s and 60s.  Therefore, in reality, the Babylonians’ 

notation system may be considered both a decimal and sexagesimal system (Teresi, 

2002). 

When the Sumerians established this system, it was incomplete in the sense that 

they used positional notation only in base 60.  As Figure 3 shows, the Sumerians only 

had the following symbols: 

 

Figure 3. The symbols the Sumerians used prior to 2000 B.C.
2
 

                                                 
2
 From Lost discoveries, by D. Teresi, 2002, p.48. 
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However, in about 2000 B.C., a simpler number system was devised by the Babylonians.  

In this system, only two symbols were used: a pin shape that represented a value of one, 

and a wing shape that represented a value of 10 (Teresi, 2002).  Table 1 shows how 

numbers under 60 were written. 

Table 1. The numbers from 1 through 59 written in the cuneiform script.
 3

 

 

 From about 2500 B.C. on, the Babylonians’ number system drastically improved 

when they realized that the pin- and wing-shaped symbols could represent various values 

based on their position in relation to each other.  In this place-value system, the manner in 

which values were represented was by placing the signs side by side.  Also, the 

Babylonian number system is read from left to right (Teresi, 2002).  So the number 95, 

for example, would be written as follows: 

                                                 
3
 From “Babylonian Numerals,” by J.J. O’Connor & E.F. Robertson, 2000. 
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This first pin shape represents a value of 60, the three wings are each worth 10 (3 X 10 = 

30), and the final five pins are each worth one (5 X 1 = 5), which results in a total of 95 

(Teresi, 2002).   
 Although this variation of the number system utilized the positioning of symbols 

to alter their values, this method too had its limitations.  For example, instead of using a 

symbol like zero as a placeholder to represent an “empty column” between two numbers, 

the Babylonians’ “placeholder” was simply leaving extra space between their number 

symbols.  To add to the complexity of this system, the value of a symbol differed based 

on its size; so a symbol written slightly smaller than whatever was considered “standard” 

at the time would have a different value than a larger variation.  Consequently, a reader’s 

misinterpretation of the writer’s size of symbols or spacing between symbols could easily 

lead to mistakes regarding the symbols’ value and even whether the symbol represented a 

fraction or a whole number (Teresi, 2002). 

In order to better understand the value of these symbols, editors usually 

transliterate
4
 the value and add commas or semicolons to signify and distinguish between 

whole numbers and decimals, respectively.  This practice began with the pioneer scholar 

Otto Neugebauer
5
 in the 1930s (Teresi, 2002).  From the transliteration in which commas 

are used, the transliterated value can be turned into a decimal value by multiplying the 

                                                 
4 According to the Oxford English Dictionary (1989), to transliterate is “[t]o replace (letters or characters of 

one language) by those of another used to represent the same sounds.” 
5 Neugebauer (1899-1990) was an Austrian-American historian of science and mathematician in the 19

th
 

century. 
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number on the far right by 60
0
, the number immediately to its left by 60

1
, the number 

immediately to the left of the previous number by 60
2
, etc., and then taking the sum of 

these values.  For example, the decimal value equivalent of the transliteration ‘1, 15’ is 

15 X 60
0
 + 1 X 60

1
 = 75.  Similarly, ‘44, 26, 40’ has a value of 40 X 60

0
 + 26 X 60

1 
+ 44 

X 60
2
 = 40 + 1560 + 158,400 = 160,000 (Hodgkin, 2005).   

While commas are used in the transliteration of whole numbers, semicolons are 

used in the transliteration of decimal fractions
6
.  In the transliterated value of the 

Babylonian number, the semicolon signifies a “decimal point,” even though the 

Babylonians had not yet established a symbol for this concept.  The transliteration of a 

number in which semicolons are used can be turned into a decimal value by dividing the 

first number to the right of the semicolon by 60
1
, the number immediately to the right of 

the previous number by 60
2
, the number immediately to the right of the previous number 

by 60
3
, etc., and then taking the sum of these values.  For example, ‘1; 20’ is calculated 

as 1 + (20/60) = 4/3; or 0; 30 would be equivalent to 0 + (30/60) = 0.5 = 1/2.  Another 

example would be ‘1; 24, 51, 10,’ which is equivalent to 1 + (24/60
1
) + (51/60

2
) + 

(10/60
3
).  When these terms are added together, the sum is 1.41421 .  This value will 

prove to be essential later on in this work in the author’s explanation of a key Babylonian 

tablet (Hodgkin, 2005). 

The transliterations of Babylonian symbols by editors have helped readers to 

better understand the values of the symbols written in cuneiform script.  However, not all 

editors come up with the exact same transliterations.  This is due to the way each editor 

                                                 
6
 According to Mathematics Dictionary (James, James, & Alchian, 1976), a decimal fraction is “a number 

that in decimal notation has no digits other than zeros to the left of the decimal point” (p. 98). 
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interprets the spacing between symbols—namely, whether or not there is the indication of 

a “zero”—along with the size of the symbols.  For example, ‘4 12’ may be transliterated 

in a variety of ways—as 4, 12 = 12 X 60
0
 + 4 X 60

1
= 252, as 4; 12 = 4 + (12/60) = (21/5), 

or as 4; 1, 2 = 4 + (1/60
1
) + (2/60

2
) = 4.017 .  Similarly, since the Babylonians did not 

have a decimal point to separate the integer and fractional parts of a number nor a symbol 

for zero, the numbers 160, 7240, 2 , and  were all written in the exact same way 

(Teresi, 2002).  Table 2 below provides examples of the transliterations and the decimal 

value equivalents for some larger cuneiform numbers. 

Table 2. Transliterations and decimal values for some larger cuneiform numbers.
7
 

     

Somewhere between the years of 700 and 300 B.C., the Babylonians made an 

improvement in their number system by implementing a symbol that would mean 

“nothing in this column” (Teresi, 2002, p. 50).  This development was a step toward the 

modern usage of zero as a placeholder.  However, in this particular model the 

Babylonians used a symbol of two little triangles arranged in a column to represent the 

placeholder between two other symbols.  This new symbol helped eliminate some of the 

ambiguity that existed in their previous form of the number system.  For example, the 

number 7,240 could now be written as follows: 

                                                 
7 From A History of Mathematics: From Mesopotamia to Modernity, by L.H. Hodgkin, 2005, p. 23. 
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Without the placeholder symbol, such a number could be calculated as 160—2 pin 

shapes, each of which have a value of 60 (2 X 60 = 120) plus 4 wing shapes, each of 

which have a value of 10 (4 X 10 = 40) for a total of 160 (120 + 40 = 160).  However, 

since the placeholder symbol is in the 60s column, the pin shapes become worth 60
2
 each 

instead of just 60
1
.  The wings still have a value of 10 each, which implies that the value 

is (2 X 60
2
) + (4 X 10), which results in a sum of 7,240 (Teresi, 2002). 

 Since the placeholder symbol was never placed at the end of numbers, but rather 

was used only in the middle of numbers, it appears that the placeholder symbol never 

evolved into an actual symbol for zero.  However, the Babylonians’ use of this 

placeholder symbol has still proven to be helpful for editors in translating symbols 

(Teresi, 2002). 

In addition to the evolution of the Babylonians’ number system, another topic of 

interest is the Babylonians’ apparent understanding of the number . 

The Square Root of 2 

One perplexing tablet that has been discovered is the Yale tablet YBC
8
 7289.  

Although the exact time this tablet was written is unknown, it is generally dated between 

1800 and 1650 B.C.  On this tablet, there is evidence that the Babylonians may have had 

an understanding of irrational numbers—particularly, that of  (O’Connor & Robertson, 

2000). 

                                                 
8
 YBC stands for Yale Babylonian Collection, which is an independent branch of the Yale University 

Library located in New Haven, Connecticut in the United States.  The YBC consists of over 45,000 items, 

which makes it the largest collection in the Western Hemisphere for Near Eastern writing. 
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Engraved in the tablet is the figure of a square, with one side marked with the 

number 30 (see Figure 4 below).  In addition, the diagonal has two sexagesimal numbers 

marked—one of which is  

     

and the other of which is  

    

Regarding the former of these two numbers
9
, scholars agree on transliterating it as 1; 24, 

51, 10, which is approximately  (1; 24, 51, 10 is equal to 1 +  +  + , 

the sum of which is 1.41421 ), accurate to five decimal places (Hodgkin, 2005). 

       

Figure 4(a). YBC 7289 tablet.
10

  Figure 4(b). Drawing.        Figure 4(c). Dimensions.
11

 

However, sources vary regarding the value of the second of these two diagonals.  

This discrepancy is due to the manner in which the numbers are transliterated.  For 

example, when transliterated as 0; 42, 25, 35, the value is  +  +  

                                                 
9
 Both of these sets of symbols were copy and pasted from “Babylonian numbers” (Edkins 2006). 

10
 Figures 4(a),(b) both from A History of Mathematics: From Mesopotamia to Modernity, by L.H. 

Hodgkin, 2005, p. 25. 
11

 From The History of Mathematics Brief Version, by V.J. Katz, 2004, p. 17. 
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, which is  accurate to six decimal places
12

.  However, other sources 

transliterate the number as 42; 25, 35 (as is shown in Figure 4(c)), which is equal to 42 + 

 +  
13

.  This is the equivalent of 30 , accurate to three decimal 

places. Such a calculation implies that this value was determined by multiplying the 

length of the side (30) by the length of the diagonal ( ). 

It seems more logical to this author that the latter transliteration of ‘42 25 35’ to 

42; 25, 35 is the correct one.  The reasoning behind such a conclusion is based on the fact 

that the object appears to be that of a square, with one of the sides being labeled with a 

value of 30.  Based on the geometrical definition of a square,
14

 each of the remaining 

sides must also have a value of 30.  With the diagonal being drawn in such a way as to 

equally divide the square into two right triangles, the two remaining triangles are each of 

type 45°-45°-90°.  This implies that the three sides for each of these two triangles are 

related to each other by the proportion x:x:x , with x representing the measure of the 

two equal legs and x  representing the measure of the hypotenuse.  By definition, since 

the two legs have already been determined to have a measure of 30, the length of the 

hypotenuse must be 30 .  A potential explanation as to why the value of 1; 24, 51, 10 

(namely, ) was inscribed in a position so close to 42; 25, 35 (i.e., 30 ) is that  may 

have served as an indication of how the value of 30  was derived. 

A possible reason for the transliteration of    to 0; 42,  

                                                 
12

 This is the way that Hodgkin (2005, p. 25) and Høyrup (2002, p. 262) present the value of this diagonal. 
13

 This is the way that O’Connor and Robertson (2000) present the value of this diagonal; Katz (2004, p. 

16) is a proponent of this view as well. 
14

 According to Mathematics Dictionary (James et al., 1976), a square is “a quadrilateral with equal sides 

and equal angles” (p. 362).  
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25, 35, which is about 0.7071064815 (  accurate to six decimal places), may be based  

on an alternate transliteration of 30—the value of the side of the square inscribed on the  

tablet.  Some scholars transliterate 30 as 0; 30 =  = 
15

.  Even so, such a  

transliteration still does not line up with right triangle trigonometry because this  

transliteration would indicate that the sides of the triangle are related by the proportion  

: , which does not satisfy the Pythagorean Theorem
16

.  Therefore, this alternate 

transliteration seems incorrect. 

Regardless of the manner in which these numbers are transliterated, one can 

conclude that the sexagesimal numbers  

      and      

are of importance, as they appear again in the work of Islamic mathematicians over 3000 

years after this Babylonian work.  While it appears that Babylonian mathematicians were 

able to use irrational numbers like , scholars have not come to an agreement regarding 

how the Babylonians derived these values (Hodgkin, 2005). 

Theories for the Derivation of .  

In “Pythagoras’s Theorem in Babylonian Mathematics,” Robertson (2000) 

proposes a method for how the Babylonians arrived at their approximation of .  He 

suggests that since the Babylonians used tables of squares and seem to have based 

multiplication around squares, they may have made two guesses, say a and b, where a is 

                                                 
15

 Hodgkin (2005, p. 25) and Høyrup (2002, p. 260) both present this transliteration, although Hodgkin only 

states that it is an alternate value for 30, whereas Høyrup says that it is “probably 30'.” (p. 260) 
16

 Mathematics Dictionary (James et al., 1976) states that, according to the Pythagorean theorem, “[t]he 

sum of the squares of the lengths of the legs of a right triangle is equal to the square of the length of the 

hypotenuse” (p. 312). 
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a low number and b is a high number.  After taking the average of these two numbers and 

squaring that average, which is [(a + b) / 2]
2
, if the result were greater than 2, then b 

could be replaced by this better bound.  However, if the value were less than 2, then a 

could be replaced by (a + b)/2.  The algorithm would then continue to be carried out.  

Such a method takes several steps to get a fair approximation of .  For example, it 

takes 19 steps to get to the sexagesimal value of 1; 24, 51, 10 when a = 1 and b = 2, as is 

evident by Table 3 below: 

Table 3. Nineteen iterations of an algorithm for computing an approximation of .
17
 

 

step        decimal           sexagesimal 

1        1.500000000        1;29,59,59 

 

2        1.250000000        1;14,59,59 

 

3        1.375000000        1;22,29,59 

 

4        1.437500000        1;26,14,59 

 

5        1.406250000        1;24,22,29 

 

6        1.421875000        1;25,18,44 

 

7        1.414062500        1;24,50,37 

 

8        1.417968750        1;25,4,41 

 

9        1.416015625        1;24,57,39 

 

10        1.415039063        1;24,54,8 

 

11        1.414550781        1;24,52,22 

 

12        1.414306641        1;24,51,30 

 

13        1.414184570        1;24,51;3 

 

14        1.414245605        1;24,51;17 

 

15        1.414215088        1;24,51;10 

 

                                                 
17

 From “Pythagoras’s Theorem in Babylonian Mathematics,” by J.J. O’Connor & E.F. Robertson, 2000.  
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16        1.414199829        1;24,51;7 

 

17        1.414207458        1;24,51;8 

 

18        1.414211273        1;24,51;9 

 

19        1.414213181        1;24,51;10 

 

Although this method may seem very tedious, since the Babylonians were excellent at 

making computations, it should not necessarily be ruled out (O’Connor & Robertson, 

2000). 

Differing from Robertson’s suggested method for how the Babylonians came to 

such an accurate approximation of , many authors theorize that the Babylonians used a 

method equivalent to a method Heron used.
18
  The conjecture is that the Babylonians 

began with some guess for the value of , which we will call x.  Then they calculated e, 

the error: e = x
2
 – 2.  Then (x - e/2x)

2
 can be expanded to the equivalent expression x

2
 - e + 

(e/2x)
2
.  By adding the number two to both sides of the equation for e, the error, and 

replacing x
2
 in the previous expression with e + 2, we find that the expression can be 

written as 2 + (e/2x)
2
, which produces a better approximation of , since if e has a small 

value then (e/2x)
2
 will be even smaller.  Equation (1) shows the progression of this 

expression: 

 

(x - e/2x)
2
 = x

2
 - e + (e/2x)

2
 = 2 + (e/2x)

2 
                                     (1) 

 

By continuing this process, the approximation for  gets more and more accurate.  In 

fact, if one starts with the value of x = 1, only two steps of the algorithm are necessary to 

                                                 
18

 Heron of Alexandria (or Hero of Alexandria) was a geometer during the first century who invented 
various machines and whose best known work in mathematics is the formula for finding the area of a 
triangle based on the lengths of its sides. 
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get a value that is equivalent to the approximation 1; 24, 51, 10.  The fact that the 

Babylonians used quadratic equations, which we will look at more thoroughly later on, 

makes this a plausible method for finding the approximation of .  This algorithm, 

however, is not evident in any other cases; so although it may be a plausible method, it is 

not necessarily likely (O’Connor & Robertson, 2000).   

 If, in fact, the previous method for finding the approximation for  is accurate, 

then the Babylonians appear to have been familiar with Pythagorean mathematics.  

Another well-known tablet provides support for this theory. 

 “Pythagorean” Mathematics 

 Of all the tablets that reveal Babylonian mathematics, the most famous is 

arguably one that has been named “Plimpton 322”—a name given to it because it 

possesses the number 322 in G.A. Plimpton’s Collection at Columbia University.  In 

terms of the tablet’s size, it is small enough to fit in the palm of one’s hand (Rudman, 

2007).  This tablet is believed to have been written around 1800-1700 B.C. in Larsa, Iraq 

(present-day Tell as-Senkereh in southern Iraq) and it was first cataloged for the 

Columbia University Library in 1943 (Katz, 2004).  As is evident in Figure 5 below, the 

upper left corner of this tablet is damaged and there is a large chunk missing from around 

the middle of the right side of the tablet (O’Connor & Robertson, 2000). 
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Figure 5(a). The Plimpton 322 tablet.
 19

           Figure 5(b). A drawing of Plimpton 322.
 20

 

This tablet has four columns, which we will refer to as Column I…Column IV, 

and 15 rows that contain numbers in the cuneiform script.  Column IV is the easiest to 

understand, since it simply contains the row number, from 1 through 15.  Column I, 

however, is often considered an enigma due to the missing information caused by the 

damage in the left corner of the tablet.  In Mathematical Cuneiform Texts, Neugebauer 

and Sachs make note of the fact that in every row, when the square of each number x 

from Column II (see Table 4 below) is subtracted from the square of each number d from 

Column III, the result is a perfect square, say y.  In the original tablet, the heading for the 

values that we denote x from Column II can be translated as “square-side of the short 

side” and the heading for the values that we denote d from Column III can be translated 

as “square-side of the diagonal” (Katz, 2004, p. 18).  This can be translated into the 

following equation: 

 

d
2
 – x

2
 = y

2                                                                                             
(2) 

 

Consequently, many scholars argue that the numbers on this particular tablet serve 

as a listing of Pythagorean triples
21

 (O’Connor & Robertson, 2000).  These triples are 

listed in their translated decimal form in Table 4 below. 

Table 4. Pythagorean triples from the Plimpton 322 tablet.
 22

 

                                                 
19

 From “Pythagoras’s Theorem in Babylonian Mathematics,” by J.J. O’Connor & E.F. Robertson, 2000. 
20

 From How Mathematics Happened: The First 50,000 Years, by P.S. Rudman, 2007, p. 216. 
21

 Pythagorean triples are whole numbers that satisfy the equation a
2
 + b

2
 = c

2
—where, in a right triangle, a 

and b represent the lengths of two sides that are perpendicular to each other and where c represents the 

length of the hypotenuse—which is referred to as the Pythagorean theorem. 



 Babylonian Mathematics 20 

 

 

Although there are only four columns in the actual Plimpton 322 tablet, Table 4 

makes use of an additional column—which we will refer to as Column V—that contains 

values equal to the square root of d
2
 – x

2
, namely the middle value for each of the 

Pythagorean triples.  Although the values of Column I cannot be known for certain 

because of the damage in this area of the tablet, most scholars agree that each of these 

values is the quantity of the value from Column III (which is labeled d) over the value 

from Column II (which is labeled x), all of which is squared, as is depicted in Table 4 

above.  In A Contextual History of Mathematics, Calinger (1999) explains that many 

historians have considered Column I to have some kind of connection to the secant 

function (O’Connor & Robertson, 2000).   

While Table 4 seems to make it evident that Plimpton 322 is, in fact, a listing of 

Pythagorean triples, the reader should be aware that not all the decimal values in this 

table are accurate translations of the symbols written in cuneiform script in the original 

tablet.  In order to accept the theory of the tablet being a listing of Pythagorean triples, 

one would have to conclude that the author(s) of the tablet made four inscription errors, 

                                                                                                                                                 
22

 From The History of Mathematics Brief Version, by V.J. Katz, 2003, p. 18. 
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two in each column.  The values in Table 4 are based on what are considered to be the 

corrected values.  For example, in row six of the original tablet the scribe gave d in 

Column III a value of 9, 1 which is equivalent to 1 X 60
0
 + 9 X 60

1
; this value is equal to 

541.  However, this appears to be an inscription error since the Pythagorean triple that 

would correspond with the value of 319 for x in row six would be 319(x), 360(y), 481(d).  

The value shown in Table 4 for d, which is located in Column III, is produced from the 

transliteration of 8, 1 which is equivalent to 1 X 60
0
 + 8 X 60

2
; this value is equal to 481, 

which correctly satisfies the Pythagorean triple for row six.  In addition to the inscription 

errors on this tablet, there does not appear to be a logical ordering of the rows, except that 

the numbers in Column I decrease with each successive row (O’Connor & Robertson, 

2000).   

An advocate of the theory that Plimpton 322 is a listing of Pythagorean triples, 

Erik Christopher Zeeman
23

, made an interesting observation that may confirm that 

Plimpton 322 actually contains Pythagorean triples.  Zeeman observed that if the 

Babylonians had used the formulas h = 2mn, b = m
2
 – n

2
, c = m

2 
+ n

2
 for producing 

Pythagorean triples, then there are 16 triples that satisfy the conditions: 30   t  45 , n  

60, and tan
2
t = h

2
/b

2
.  Of these 16 triples that satisfy the previous conditions, 15 are listed 

in Plimpton 322 (O’Connor & Robertson, 2000).   

While the theory of Pythagorean triples seems to be the most popular explanation 

of the Plimpton 322 tablet among scholars and historians, there are critics who oppose 

this view.  For example, according to O’Connor and Robertson (2000), in “Babylonian 

Mathematics and Pythagorean Triads” Exarchakos states “... we prove that in this tablet 

                                                 
23

 Zeeman (1925 - ) is a British mathematician who was born in 1925 in Japan.  Zeeman is most well-
known for his work in singularity theory and especially in geometric topology. 
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there is no evidence whatsoever that the Babylonians knew the Pythagorean theorem and 

the Pythagorean triads.”  Rather, Exarchakos believes that the tablet is connected to 

solutions for quadratic equations (O’Connor & Robertson, 2000). 

For those who do accept that the tablet contains fifteen Pythagorean triples on it, 

this does not necessarily imply that the Babylonians had an understanding of the 

Pythagorean relationship in right triangles.  In fact, Pythagorean triples may be viewed 

simply as a relationship among three geometric squares, as Figure 6 below shows for the 

most well-known Pythagorean triple 3, 4, 5.  Or, since the Babylonians seem to have 

been more algebraic than geometric in their approach to mathematics, they may have 

looked at Pythagorean triples as a relationship among squared integers.  However, 

Neugebauer translated the heading to Column III as “diagonal,” which implies that the 

Babylonians actually did view Pythagorean triples in relation to right triangles (Rudman 

2007). 

     

Figure 6. Geometric representation of Pythagorean triples.
 24

 

 Another piece of evidence that points to the idea that the Babylonians understood 

the concept of Pythagorean triples and the Pythagorean theorem
25

 is the translation of a 

Babylonian tablet that currently is being held in the British museum, which states: 

                                                 
24

 From How Mathematics Happened: The First 50,000 Years, by P.S. Rudman, 2007, p. 217. 
25

 Note that Pythagoras, the person after whom the theorem is named, was not even born until about 1200 

to 1500 years after the approximated date of the writing of this tablet. 



 Babylonian Mathematics 23 

 

4 is the length and 5 the diagonal. What is the breadth ? 

Its size is not known.  

4 times 4 is 16.  

5 times 5 is 25.  

You take 16 from 25 and there remains 9.  

What times what shall I take in order to get 9 ?  

3 times 3 is 9.  

3 is the breadth. (O’Connor & Robertson, 2000, ¶ 1) 

A modern translation of such a problem may be as follows: 

In a right triangle, the length of one of the sides is 4, the hypotenuse has a 

measure of 5, and the remaining side—which we will denote x—is unknown. 

In order to find the measure of the unknown side, we set up an equation according 

to the Pythagorean Theorem—namely, the sum of the square of the length for 

each of the two legs is equal to the length of the hypotenuse squared.   

Based on the information given on this particular right triangle, the equation 

would be set up as follows:  

 

4
2
 + x

2
 = 5

2
                                                         (3) 

 

Since 4
2
 is 16 and 5

2
 is 25, the equation may now be written in the following 

form: 

 

16 + x
2
 = 25                                                        (4) 



 Babylonian Mathematics 24 

 

 

In order to isolate the variable x, we first subtract 16 from both sides, which 

leaves us with x
2
 = 9. 

Now we take the square root of both sides of the equation and find that x = 3. 

Even if the reader concludes that the Babylonians were aware of Pythagorean 

triples and the Pythagorean theorem, he may ask how the Babylonians were able to 

derive these numbers.  The Babylonians may have gone about their derivation of these 

numbers in a manner comparable to the way Diophantus of Alexandria
26

 did over 1500 

years after Plimpton 322 was written.  According to Diophantus’ method, one begins 

with the definition of a triple—namely, the Pythagorean theorem with strictly integer 

terms: a
2
 + b

2
 = c

2
.  By rearranging the terms so that b

2
 is isolated and then factoring on 

the right-hand side of the equation, we get the following: 

 

b
2
 = c

2
 – a

2
 = (c – a)(c + a)                                               (5) 

 

A scribe may then have divided each of the terms in this factored form of the 

Pythagorean theorem by b
2
 in order to arrive at the following reciprocal relation: 

 (c/b + a/b)(c/b – a/b) = 1, or equivalently, (c/b + a/b) = 1/(c/b – a/b) 

 Since a, b, c must be integers, (c/b + a/b) and (c/b – a/b) must be common  

fractions and thus can be expressed as : (c/b + a/b) = p/q and (c/b – a/b) = q/p,  

where p and q are also integers.  Now by simple addition and subtraction: 

                                                 
26

 Diophantus of Alexandria (between 200 and 214 to between 284 and 298) was a mathematician who 

wrote Arithmetica, a series of books that involve solving algebraic equations, and who is also often called 

the “Father of Algebra.” 
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[(c/b + a/b) + (c/b – a/b)]/2 = c/b = (p/q + q/p)/2                                                  (6) 

 

[(c/b + a/b) – (c/b – a/b)]/2 = a/b = (p/q – q/p)/2                                                  (7) 

 

Using these results in the Pythagorean theorem, we obtain it in triples form: 

 

a
2
 + b

2
 = c

2
                                                                                                            (8) 

 

(p
2
 – q

2
)
2
 + (2pq)

2
 = (p

2
 + q

2
)
2                                                                                                                      

(9) 

 

All that remains is to choose integers for p and q to generate Pythagorean triples. 

(Rudman, 2007, p. 220) 

 As is evident in the manner in which Rudman proposes the Babylonians may have 

come about their derivation of the Pythagorean triples, Rudman assumes that the 

Babylonians had an understanding of second-degree equations.  Such an assumption is 

logical since scholars uncovered Babylonian mathematical tablets with solutions for 

second-degree equations in the early twentieth century.  Such findings showed that 

Babylonian mathematicians not only understood linear equations, which scholars had 

already known about for some time, but also equations of the quadratic type. 

Equations 

 In the retrieved works of the Babylonians, we find the novel idea of representing 

an unknown quantity—for example, an unweighed stone (Hodgkin, 2005).  Today, we 
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use symbols (often letters) that represent some unspecified or unknown quantity.  The 

Babylonians referred to their unknown quantity as sidi, for “side”—like the measure of 

the side of a square.  Our modern equivalent for sidi would simply be “x.”  Similarly, we 

use “x
2
” where the Babylonians would use the word mehr, which means “square” (Teresi, 

2002). 

From these unknown quantities, the Babylonians would then proceed to find the 

values of the unknowns by setting up and solving a linear equation.  However, there are 

limited examples available to us today of the Babylonians’ use of linear equations and 

they generally appear as a system of linear equations.   

Like the Egyptians, the Babylonians primarily solved these equations through the 

method of false position.  According to Mathematics Dictionary (James et al., 1976), the 

method of false position (also referred to as “regula falsi”) is 

A method for approximating the roots of an algebraic equation.  Consists of 

making a fairly close estimate, say r, then substituting (r + h) in the equation, 

dropping the terms in h of higher degree than the first (since they are relatively 

small), and solving the resulting linear equation for h.  This process is then 

repeated, using the new approximation (r + h) in place of r.  E.g., the equation x
3
 

– 2x
2
 – x + 1 = 0 has a root near 2 (between 2 and 3).  Hence we substitute (2 + h) 

for x.  This gives (when the terms in h
2
 and h

3
 have been dropped) the equation 3h 

– 1 = 0; whence h = 1/3.  The next estimate will then be 2 + 1/3 or 7/3. (p. 149) 

An example of a scenario in which the Babylonians would use the method of false 

position for solving equations comes from the Old Babylonian text VAT 8389: 
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One of two fields yields 2/3 sila per sar, the second yields 1/2 sila per sar.  [Sila  

and sar are measures for capacity and area, respectively.]  The yield of the first 

field was 500 sila more than that of the second; the areas of the two fields were 

together 1800 sar.  How large is each field? (Katz, 2004, p. 21) 

Such a problem can easily be translated into a system of two linear equations as follows: 

 

 (2/3)x – (1/2)y = 500                                                          (10) 

 

x + y = 1800                                                               (11) 

 

Using the method of false position, this Babylonian scribe assumed that both x 

and y were equal to 900, which satisfies equation (11).  However, when these values are 

used in equation (10), the result is 150, which is 350 less than the desired result.  At this 

point, Katz (2004) explains that 

[t]o adjust the answer, the scribe presumably realized that every unit increase in 

the value of x and consequent unit decrease in the value of y gave an increase in 

the “function” (2/3)x – (1/2)y of (2/3) + (1/2) = (7/6).  He therefore needed only to 

solve the equation (7/6)s = 350 to get the necessary increase, s = 300.  Adding 

300 to 900 gave him 1200 for x, and subtracting 300 from 900 gave him 600 for 

y—the correct answers. (p. 21)
27

 

A common algebraic equation during the First Babylonian period is as follows: 

“Multiply two-thirds of [your share of barley] by two-thirds [of mine] plus a hundred qa 

                                                 
27

 While the Babylonian scribe used false position to solve this system of linear equations, current 

mathematicians would probably use either the method of substitution or the method of elimination. 
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of barley to get my total share.  What is [my] share?” (Teresi, 2002, p. 50).  Such a 

problem is solved by the same technique we use for solving linear equations today 

(Teresi, 2002).  

The tablet YBC 4652 contains another similar linear equation: “I found a stone, 

but did not weight it; after I added one-seventh and then one-eleventh [of the total], it 

weighed 1 mina [= 60 gin].  What was the original weight of the stone?” (Katz, 2004, p. 

21).  This particular problem can be translated into the modern equation 

 

(x + x/7) + (1/11)(x + x/7) = 60                                            (12) 

 

Although the tablet does not contain the procedure the scribe followed for solving 

the problem, it does contain the correct answer of 48 .  However, based on what we 

know about the Babylonians’ typical method for solving such linear equations, we can 

assume with confidence that the scribe probably used the method of false position (Katz, 

2004). 

Although by the later part of the nineteenth century there had been an established 

understanding among scholars of the Babylonians’ use of a sexagesimal place value 

system and their ability to solve linear equations, it was not until the late 1920s at Otto E. 

Neugebauer’s seminar in Göttingen that Babylonian solutions for second-degree 

equations were discovered.  Prior to that point, second-degree equations were thought to 

have originated in India, which Indian mathematicians probably had borrowed from the 

Arabs.  According to Høyrup (2002), in Neugebauer’s journal, Quellen und Studien zur 

Geschichte der Mathematik, Astronomie und Physik, Neugebauer states: 
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. . . we see that complex linear equation systems were drawn up and solved, and 

that Babylonians drew up systematically problems of quadratic character and 

certainly also knew to solve them – all of it with a computational technique that is 

wholly equivalent to ours.  If this was the situation already in Old Babylonian 

times, hereafter even the later development will have to be looked at with 

different eyes. (p. 2) 

 Although the Babylonians’ use of problems that can be translated into quadratic 

equations was not discovered until the twentieth century, the tablets containing problems 

of quadratic equations actually outnumber those containing linear problems (Katz, 2004).  

In fact, from as early as 2000 B.C., the Babylonians were able to solve systems of 

equations in the form 

 

    x + y = p                                                           (13) 

 

        xy = q                                                           (14) 

 

If we solve the second equation for y (which produces the equation y = q/x), substitute 

this value of (q/x) for y in the first equation (which gives us x + (q/x) = p), and then 

multiply all the terms in this revised equation by x, we get the equivalent quadratic 

equation 

 

x
2
 + q = px                                                         (15) 
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Then this system of equations was solved by the following method: 

“(i.)  Form  

(ii.) Form  

(iii.) Form   

(iv.) Form  =  

(v.) Find x, y by inspection of the values in (i), (iv)” (Stillwell, 1989, p. 51) 

in order to get the two roots—when both roots were positive, since the Babylonians did 

not use negative numbers—of the form 

 

                                                            (16) 

 

When the scribes solved these “quadratic-type problems”
28

 they often utilized, as 

Katz (2004) calls it, “cut-and-paste” (p. 21) geometry that was already developed by 

surveyors.  With this approach, the Babylonians were able to solve many typical 

problems such as determining the length and width of a rectangle when the semiperimeter 

and area are given (Katz, 2004).  One such example from the tablet YBC 4663 contains a 

                                                 
28

 Hodgkin makes a distinction between the terms “quadratic-type problems” and the “quadratic equation,” 
stating that the problems that the Babylonians worked with vary in nature and that “quadratic equations” in 
the modern sense did not truly come about until the Islamic period. 
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problem in which the information given can be translated into the following two 

equations: 

 

x + y = 6                                                          (17) 

 

xy = 7                                                         (18) 

 

In order to solve this problem, 

The scribe first halves 6  to get 3 .  Next, he squares 3 , getting 10 .  

From this is subtracted 7 , leaving 3 , and then the square root is extracted to 

get 1 .  The length is thus 3  + 1  = 5, while the width is given as 3  – 

1  = 1 . (Katz, 2004, p. 21) 

This particular problem can be solved using a geometric procedure that the Babylonians 

may have utilized (see Figure 7
29

 below).   

 

Figure 7. Geometric depiction for solving the system x + y = b, xy = c.
30 

                                                 
29

 In this particular depiction of the geometric figure, the sides of the figure are labeled based on the genetic 

system x + y = b, xy = c. 
29

 From The History of Mathematics Brief Version, by V.J. Katz, 2003, p. 22. 
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The scribe began by halving the sum b and then constructing the square on it.  

Since b/2 = x – (x – y)/2 = y + (x – y)/2, the square on b/2 exceeds the original 

rectangle of area c by the square on (x – y)/2, that is,  

 

                                                 (19) 

 

The figure then shows that adding the side of this square, namely, , to 

b/2 gives the length x, and subtracting it from b/2 gives the width y.  The 

algorithm is therefore expressible in the form 

 

               . (Katz, 2004, p. 21-22) (20) 

 

 Another practical example of the Babylonians’ use of quadratic-type problems is 

the following: 

“I have added up seven times the side of my square and eleven times the area: 6; 15” 

(Hodgkin, 2005, p. 25). 

What this translates to is a square in which seven times the unknown side x (which is 7x) 

is added to eleven times the area (which is 11x
2
), which yields a result of 6; 15.  This is 

equivalent to 6 + , which is equal to  6 .  Such a problem can be written as the 

basic quadratic equation 7x + 11x
2
 = 6 .  An equation like this was then solved by a 

methodical process as follows: 
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You write down 7 and 11.  You multiply 6,15 by 11: 1,8,45. (Multiply the 

constant term by the coefficient of x
2
.) 

You break off half of 7. You multiply 3,30 and 3,30. (Square half the x-

coefficient.) 

You add 12,15 to 1,8,45. Result 1,21. (12,15 is the result of the squaring, so the 

1,21 is what we would call (b/2)
2
 + ac, if the equation is ax

2
 + bx = c.) 

This is the square of 9.  You subtract 3,30, which you multiplied, from 9. Result 

5,30. (This is –(b/2) + ; in the usual formula, we now have to 

divide this by a = 11, which we proceed to do.) 

The reciprocal of 11 cannot be found. By what must I multiply 11 to obtain 5,30? 

The side of the square is 30. (‘Simple’ division was multiplying by the reciprocal, 

for example, dividing by 4 is multiplying by 15, as we have seen.  If there is no 

reciprocal, you have to work it out by intelligence or guesswork, as is being done 

here.) (Hodkin, 2005, p. 30) 

While today we have the convenience of using a calculator for large calculations, 

such technology was not available to the Babylonians.  Instead, they had tables with the 

values of squares, cubes, reciprocals, and square and cube roots.  In addition, they had 

tables for the values of x
3
 + x

2
 for integer values from 1 to 20 as well as for the integers 

30, 40, and 50 (Teresi, 2002).  Considering the Babylonians’ limitations in their method 

of computing, their ability to take linear and quadratic-type problems alike and come up 

with accurate solutions is an impressive accomplishment. 

Conclusion 
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Through the approximately five hundred mathematical Babylonian tablets that 

have been discovered since the 1800s, we have been able to gain a better understanding 

and a deeper appreciation of the vast contributions that the Babylonian mathematicians 

made to the mathematics that exists today.  Some of these areas in particular are their 

number system, their use of “Pythagorean” mathematics, their calculation of the square 

root of 2, and their use of equations.  Present-day students and scholars alike are indebted 

to the Babylonian mathematicians and others who have laid a foundation of mathematics. 
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