
NEXUS: The Liberty Journal of NEXUS: The Liberty Journal of

Interdisciplinary Studies Interdisciplinary Studies

Volume 1
Issue 2 Spring 2024 Article 2

June 2024

Circling the Square: Computing Radical Two Circling the Square: Computing Radical Two

Isaiah Mellace
Liberty University

Joshua Kroeker
Liberty University

Follow this and additional works at: https://digitalcommons.liberty.edu/nexus

 Part of the Applied Mathematics Commons, and the Geometry and Topology Commons

Recommended Citation Recommended Citation
Mellace, Isaiah and Kroeker, Joshua (2024) "Circling the Square: Computing Radical Two," NEXUS: The
Liberty Journal of Interdisciplinary Studies: Vol. 1: Iss. 2, Article 2.
Available at: https://digitalcommons.liberty.edu/nexus/vol1/iss2/2

This Article is brought to you for free and open access by Scholars Crossing. It has been accepted for inclusion in
NEXUS: The Liberty Journal of Interdisciplinary Studies by an authorized editor of Scholars Crossing. For more
information, please contact scholarlycommunications@liberty.edu.

http://digitalcommons.liberty.edu/
http://digitalcommons.liberty.edu/
https://digitalcommons.liberty.edu/nexus
https://digitalcommons.liberty.edu/nexus
https://digitalcommons.liberty.edu/nexus/vol1
https://digitalcommons.liberty.edu/nexus/vol1/iss2
https://digitalcommons.liberty.edu/nexus/vol1/iss2/2
https://digitalcommons.liberty.edu/nexus?utm_source=digitalcommons.liberty.edu%2Fnexus%2Fvol1%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.liberty.edu%2Fnexus%2Fvol1%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.liberty.edu%2Fnexus%2Fvol1%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.liberty.edu/nexus/vol1/iss2/2?utm_source=digitalcommons.liberty.edu%2Fnexus%2Fvol1%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarlycommunications@liberty.edu

Circling the Square: Computing Radical Two

Isaiah Mellace, Joshua Kroeker

Abstract

Discoveries of equations for irrational numbers are not new. From Newton’s Method to Taylor Series,
there are many ways to calculate the square root of two to arbitrary precision. The following method
is similar in this way, but it is also a fascinating derivation from geometry that has applications
to other irrationals. Additionally, the equation derived has some properties that may lead to fast
computation. The first part of this paper is dedicated to deriving the equation, and the second is
focused on computer science implementations and optimizations.

Derivation

Figure 1

1

Mellace and Kroeker: Circling the Square: Computing Radical Two

Published by Scholars Crossing, 2024

Beginnings

Upon investigating interesting geometric structures, we discovered Figure 1. This produced the
following result:

√
2 = lim

n→∞

−3 + 6
∑n

j=0

∑2n+1
i=2j

(
i
2j

)
8j3i−2j

3 + 4
∑n

j=0

∑2n+1
i=2j+1

(
i

2j+1

)
8j3i−2j

We began by observing that a square with sides of length 2 has a diagonal of 2
√
2, thus one corner’s

distance is
√
2. We noted the original circle’s radius as 1 and then added adjacent circles to approach

the corner, thereby creating a sequence of radii. This led us to the equation

√
2 ≈ r0 + 2(r1 + r2 + ...+ rn) (1)

representing the sum of the original circle’s radius and twice the sum of radii of subsequent circles.

Calculating the Radii

To calculate the individual radii, we observed that we could add up the compenents of the unkown
circle with those of the known circle to equal the original circle’s radius:(Note: u = 1√

2
)

Thus, for r1,
r0 = u · r0 + u · r1 + r1

r1 = r0

(
1− u

1 + u

)
By using the same method, we find

r2 =
r0 − u · r0 − 2u · r1

1 + u

r2 =
r1(1 + u)− 2u · r1

1 + u

r2 =
r1(1− u)

1 + u

2

NEXUS: The Liberty Journal of Interdisciplinary Studies, Vol. 1, Iss. 2 [2024], Art. 2

https://digitalcommons.liberty.edu/nexus/vol1/iss2/2

Which in general is

rn = rn−1

(
1− u

1 + u

)
Or more usefully is

rn = r0

(
1− u

1 + u

)n

Solving for the Square Root

Now that we have the values of the radii, we use equation (1)

√
2 ≈ r0 + 2r1 + 2r2 + . . . + 2rn

Which is now

√
2 ≈ r0 + 2r0

(
1− u

1 + u

)
+ 2r0

(
1− u

1 + u

)2

+ . . . + 2r0

(
1− u

1 + u

)n

√
2 ≈ r0(1 + 2

n∑
k=1

(
1− u

1 + u

)k

)

√
2 = lim

n→∞
1 + 2

n∑
k=1

(3− 2
√
2)k (2)

Pascal’s Triangle and Factoring

At this point, we have an equation for
√
2. However, this is a circular definition. To remedy this,

we note that the only issues come when −2
√
2 has an odd power, so we expand the equation and

represent 3 with a, −2
√
2 with b, and we bold the troublesome terms. Thus,

(a+ b) ⇒ a+ b

(a+ b)2 ⇒ a2 + 2ab+ b2

(a+ b)3 ⇒ a3 + 3a2b+ 3ab2 + b3

...

3

Mellace and Kroeker: Circling the Square: Computing Radical Two

Published by Scholars Crossing, 2024

We generalize this through Pascal’s Triangle

We then group these diagonals with functions f(n) and g(n) in which the latter represents the
times that b has an odd power:

f(n) =

n∑
j=0

2n+1∑
i=2j

(
i

2j

)
b2jai−2j (3)

g(n) =

n∑
j=0

2n+1∑
i=2j+1

(
i

2j + 1

)
b2j+1ai−(2j+1) (4)

The utility of this is that if we split the summation from (1) into f(n) and g(n), we can say:
√
2 = lim

n→∞
1 + 2f(n) + 2g(n)

lim
n→∞

√
2(1− 2g(n)√

2
) = lim

n→∞
1 + 2f(n)

√
2 = lim

n→∞

1 + 2f(n)

1− 2g(n)√
2

(5)

Final Result

Putting it altogether, we use (3), (4), and (5) and substitute a = 3 and b = −2
√
2 to arrive at the

following: (Note: 1 will be subtracted from f(n) because we are not counting the case where (a+ b)0)

√
2 = lim

n→∞

1 + 2(
∑n

j=0

∑2n+1
i=2j

(
i
2j

)
(−2

√
2)2j(3)i−2j)

1− 2(
∑n

j=0

∑2n+1
i=2j+1 (

i
2j+1)(−2

√
2)2j+1(3)i−(2j+1))

√
2

√
2 = lim

n→∞

1 + 2(
∑n

j=0

∑2n+1
i=2j

(
i
2j

)
8j(3)i−2j)

1 + 4
∑n

j=0

∑2n+1
i=2j+1

(
i

2j+1

)
8j(3)i−2j−1)

√
2 = lim

n→∞

−3 + 6
∑n

j=0

∑2n+1
i=2j

(
i
2j

)
8j3i−2j

3 + 4
∑n

j=0

∑2n+1
i=2j+1

(
i

2j+1

)
8j3i−2j

4

NEXUS: The Liberty Journal of Interdisciplinary Studies, Vol. 1, Iss. 2 [2024], Art. 2

https://digitalcommons.liberty.edu/nexus/vol1/iss2/2

Implementation

While the equation derived from the previous result is correct, computing it in such a form is
ineffecient. As such, the following will be a description of how this derivation can be better adapted
to a computer program. (Note: While C++ is the obvious choice when it comes to computation, we have

chosen to build the program in python for proof of concept.)

Intializing

To start, we base the program on equation (5) where we divide Pascal’s Triangle into its diago-
nals. The difference here is that we will go through the terms horizontally and build the triangle
recursively.

1 level =[1 ,1]

2 amount=int(input("how many circles (after the unit circle)? "))

3 while amount >0:

4 leng=len(level)

5 newlevel =[1 ,1]

6 for i in range(leng):

7 newlevel.insert(-1,level[i]+level[i+1])

8 level=newlevel

9 amount -=1

As we iterate through the first array to create the triangle, we add each term to either the numerator
or denominator depending on the 8’s exponent parity.

1 level = [1, 1]

2 upper = 1

3 lower = 1

4 amount = int(input("how many circles (after the unit circle)? "))

5 while amount > 0:

6 leng = len(level)

7 newlevel = [1, 1]

8 for i in range(leng):

9 if i < leng - 1:

10 newlevel.insert(-1, level[i] + level[i + 1])

11 if (i % 2 == 0 and leng % 2 == 1) or (i % 2 == 1 and leng % 2 == 0):

12 upper+= 2 * level[i]*8**((leng -i)/2) *3**i

13 # if it is an instance of an even power

14 else:

15 lower += 4 * level[i] * 8 ** ((leng - 1 - i)/2) * 3 ** i

16 # if it is an instance of an odd power

17 level = newlevel

18 amount -= 1

5

Mellace and Kroeker: Circling the Square: Computing Radical Two

Published by Scholars Crossing, 2024

From here we do minor optimizations and let the function have an output.

1 level =[2 ,2]

2 upper=1

3 lower=1

4 amount=int(input("how many circles (after the unit circle)? "))

5 for i in range(amount):

6 leng=len(level)-1

7 newlevel =[2 ,2]

8 for i in range(leng +1):

9 if i<leng:

10 newlevel.insert(-1,level[i]+level[i+1])

11 if (i%2==0 and leng %2==0) or (i%2==1 and leng %2==1):

12 upper+= level[i]*8** int((leng -i)/2) *3**i

13 #if it is an instance of an even power

14 else:

15 lower += 2 * level[i] * 8 ** int((leng - 1 - i)/2) * 3 ** i

16 #if it is an instance of an odd power

17 level=newlevel

18 newval=upper/lower

19 print(’Estimated value of Square root of two: ’+str(newval))

Now, we can find the average amount of decimal places gained from each iteration by dividing the
error of two iterations and comparing them.

D(E0, E1) = log10
E0

E1

This seems to approach 1.531.

The significance of this result is that if the error is compared with the amount of time it takes
to compute (which was measured around 1.66 seconds for 1000 iterations) we find that (assuming
constant speed of computation) it would take less than two weeks to compute a fraction that is one
billion digits precise.

As the function is iterated through, we find that it is wrong to assume constant speed. The
size of the array looped through increases, thereby increasing the necessary calculations. This is
evidenced by 2000 iterations taking around 15.07 seconds.

Optimizations

One of the main issues with this algorithm is that it repeates calculations. For example, 82 and (5)3182

both use the same power of 8. This could be resloved by computing all the powers of 3 and 8, storing
them, and then calling them.

1 level =[2 ,2]

2 upper=1

3 lower=1

4 amount=int(input("how many circles (after the unit circle)? "))

5 powofeight =[8**i for i in range(amount +1)]

6 powofthree =[3**i for i in range(amount +1)]

7 for i in range(amount):

8 leng=len(level)-1

9 newlevel =[2 ,2]

10 for j in range(leng +1):

6

NEXUS: The Liberty Journal of Interdisciplinary Studies, Vol. 1, Iss. 2 [2024], Art. 2

https://digitalcommons.liberty.edu/nexus/vol1/iss2/2

11 if j<leng:

12 newlevel.insert(-1,level[j]+level[j+1])

13 if (j%2==0 and leng %2==0) or (j%2==1 and leng %2==1):

14 upper+=level[j]* powofeight[int((leng -j)/2)]* powofthree[j]

15 #if it is an instance of an even power

16 else:

17 lower += 2* level[j] * powofeight[int((leng - 1 - j)/2)] * powofthree[

j]

18 #if it is an instance of an odd power

19 level=newlevel

20 newval=upper/lower

21 print(’Estimated value of Square root of two: ’+str(newval))

This does increase the speed of the program- 2000 iterations now take about 10.86 seconds. How-
ever, this also massively increases how much data must be stored. Now, in addition to the triangle
itself and the very large numerator and denominator, two giant arrays must be remembered.

There is a possibility to reduce this to a single giant array through bit manipulation. Bit ma-
nipulation uses the fact that numbers are stored in binary formats to multiply numbers by two,
thereby getting rid of the need for the 8x calculation.

1 level = [2, 2]

2 upper = 1

3 lower = 1

4 amount = int(input("how many circles (after the unit circle)? "))

5 powofthree = [3 ** i for i in range(amount + 1)]

6 for i in range(amount):

7 leng = len(level) - 1

8 newlevel = [2, 2]

9 for j in range(leng + 1):

10 if j < leng:

11 newlevel.insert(-1, level[j] + level[j + 1])

12 if (j % 2 == 0 and leng % 2 == 0) or (j % 2 == 1 and leng % 2 == 1):

13 upper += (level[j] * powofthree[j]) << int(3 * (leng - j) / 2)

14 #if it is an instance of an even power

15 else:

16 lower += (level[j] * powofthree[j]) << int((3 * (leng - j) - 1) / 2)

17 #if it is an instance of an odd power

18 level = newlevel

19 print(’Numerator: ’ + str(upper))

20 print(’Denominator: ’ + str(lower)))

This version turns out to be significantly better; on top of not needing to store an entire array, the
function only took around 5.76 seconds to run 2000 iterations. In addition to this though, there
are other optimizations that are possible, such as leveraging the symmetry of Pascal’s Triangle to
only iterate through half of the array.

Conclusion

In summary, the square root of two can be determined by leveraging concepts from circle geometry
and by integrating principles from computer science. Through the combination of these two fields,
we efficiently find accurate values of this irrational. In doing so, we not only uncover mathematical
interconnections but also demonstrate the power of interdisciplinary approaches in solving complex
problems.

7

Mellace and Kroeker: Circling the Square: Computing Radical Two

Published by Scholars Crossing, 2024

	Circling the Square: Computing Radical Two
	Recommended Citation

	tmp.1717426420.pdf.AoNh2

