Publication Date

8-2008

Degree Granted

Ph.D.

Institution Granting Degree

University of North Texas

Abstract

Educators and instructional designers are seeking ways to increase levels of learning. One of the ways this is being done is through cognitive load theory which attempts to reduce cognitive load through a better understanding of working memory and the factors that impact its function. Past studies have found that working memory processes visual and auditory information using separate and non-sharable resources (dual coding theory) and that by properly utilizing multimedia elements, information processing in working memory is more efficient (multimedia learning). What is not known is the effect that instructor-led video, which uses the visual channel but delivers no information, has on the cognitive load of the learner. Further, will the introduction of multimedia elements make the information processing of the learner more efficient? This study examined three ways in which instructional designers may create a more efficient learning environment through a better understanding of multimedia learning. First, by using the theories of multimedia learning, I examined a more efficient use of sensory memory. By minimizing extraneous load, which communication theory calls noise, on working memory through increased utilization of the visual and auditory channels, the effectiveness of instruction was increased. Secondly, the multimedia effect, defined as using visual helps and guides with spoken and written text, was shown to assist working memory in processing new information into existing schema. Last, by using the personalization principle set forth by Clark and Mayer (2008), I used both the video feed and multimedia together to foster a more social or conversational presentation to the learner.

Share

COinS