THE EFFECT OF CLASSROOM WALKTHROUGHS ON MIDDLE SCHOOL TEACHER

MOTIVATION

by

Karen Nadean Dickenson

Liberty University

A Dissertation Presented in Partial Fulfillment

Of the Requirements for the Degree

Doctor of Education

Liberty University

2016
THE EFFECT OF CLASSROOM WALKTHROUGHS ON MIDDLE SCHOOL TEACHER MOTIVATION

by Karen Nadean Dickenson

A Dissertation Presented in Partial Fulfillment
Of the Requirements for the Degree
Doctor of Education

Liberty University, Lynchburg, VA
2016

APPROVED BY:

Casey Reason Ph.D., Committee Chair

Jerry Woodbridge Ed. D., Committee Member

Jeff Cantrell Ed. D., Committee Member

Scott B. Watson, Ph.D., Associate Dean, Advanced Programs
ABSTRACT

The purpose of this pretest-posttest control group experimental study was to see the effect of classroom walkthroughs on middle school teacher motivation. The independent variable was classroom walkthroughs and the four dependent variables were teachers’ self-concept of the ability to affect student achievement, teachers’ attitude toward the principal, teachers’ beliefs of the principal’s value and expectations for achievement, and teachers’ belief about future utility of efforts. The instrument used in this study was the Teacher Motivation Diagnostic Questionnaire. Sixty-eight language arts and reading participants from the grades 5-8 at 6 middle schools in Southwest Virginia were used. Six diverse public schools were randomly assigned into two groups. Group A, the treatment group, received walkthrough treatment with conferences while Group B, the control group, did not receive any treatment. The participants were given a posttest to determine existing levels motivation the teachers had on the four factors of the Teacher Motivation Diagnostic Questionnaire while controlling for teacher motivation pre-test scores. An ANCOVA was used to evaluate the adjusted means between each of the groups. No significant difference was found on any of the dependent variables. The researcher recommends that this study be repeated for a longer period of time with a more diverse population and provide more training about the purpose of walkthroughs for teachers and administrators.

Keywords: motivation, teacher motivation, teacher attitudes, Teacher Motivational Diagnostic Questionnaire, expectancy theory, walkthrough, attitudes, teacher morale, teacher attitude, principal teacher relationship
Dedication

I would like to dedicate this dissertation to my husband, Junior, beautiful daughter, Stephanie, granddaughter, Callie, and son-in-law, Eric. The Lord has blessed me with a wonderful supportive family. Without their support, I would not have been able to accomplish this task. I want to thank each one of you, especially my husband, for giving me the time needed to complete my research and to write this manuscript. I would also like to think a friend, John Schoolcraft, for recommending quality leadership literature. There were times when I thought I could not continue. When the workload was more than I could take, I would leave my work area and pray. During my time of prayer, God would renew my strength, remind me that He was with me, and that He would never leave me. I knew that I had to rely on Him because I could not accomplish this task on my own. I have been so blessed to have this opportunity, but God stretch me further than I thought I could have been stretched. I firmly believe that when God is part of the plan everything else will fall into place. I know ALL things are possible with God. I have learned that, “I can do all things through Christ which strengtheneth me” Philippians 4:13.

I also would like to thank the principals, J. Evans, S. Keith, G. Jessee, R. Bolling, M. Dysart, P. Clendenon, and their assistant principals. They have gone beyond the call of duty to help me get the data that I needed. I want to thank the central office staff, Dr. J. Perry, M. Shortt, G. Mullins, and Dr. M. Hurt for supporting me from the beginning of this study and giving me permission to do the study in the school system. Last but not least, I want to thank the 5-8 English and math teachers for taking time out of their busy schedule and agreeing to participate in my study. Without their support and participation, my study would not have been possible. I am truly blessed to work with a group of talented people.
Table of Contents

ABSTRACT..3
Dedication..4
List of Tables ..8
List of Figures..9
List of Abbreviations ..10

CHAPTER ONE: INTRODUCTION ...11
 Background...11
 Problem Statement..23
 Purpose Statement..25
 Significance of the Study ...25
 Research Questions..27
 Null Hypotheses...28
 Definitions...29

CHAPTER TWO: LITERATURE REVIEW ..31
 Introduction...31
 Motivation...32
 Job Satisfaction...35
 Improving Academic Performance...36
 Self-Efficacy..40
 Evaluations...42
 Teacher’s Attitude Toward Evaluation..46
 Teacher’s Attitude Toward Principal...47
Principal’s Leadership ... 49
Teacher Accountability .. 51
Professional Development .. 52
Self-Concept of Ability ... 54
Expectancy Theory .. 55
Walkthroughs .. 57
Reflective Conversations .. 63
Conclusion .. 64

CHAPTER THREE: METHODS ... 67

- Design ... 67
- Research Questions .. 68
- Null Hypotheses .. 69
- Participants and Setting ... 70
- Instrumentation .. 72
- Procedures .. 74
- Data Analysis .. 75

CHAPTER FOUR: FINDINGS .. 77

- Research Questions .. 77
- Hypotheses .. 78
- Descriptive Statistics ... 79
- Data Screening .. 80
- Assumptions ... 87
- Results ... 92
CHAPTER FIVE: DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS96

Discussion ... 96
Conclusion .. 105
Implications .. 111
Limitations ... 113
Recommendations for Future Research ... 114

REFERENCES .. 116

APPENDIX OR APPENDICES ... 142
LIST OF TABLES

Table 1 Frequency Distribution of Participants .. 71
Table 2 Frequency Distribution of Participants Treatment Group 71
Table 3 Frequency Distribution of Participants Control Group 71
Table 4 Means and Standard Deviations, Study Variables 79
Table 5 Adjusted Means and Standard Errors Study Variables, Time 2 80
Table 6 Kolmogorov-Smirnov Test Results ... 87
Table 7 Levene’s Test for All Dependent Variables .. 91
Table 8 Assumption of Homogeneity of Slopes ... 91
List of Figures

1. Figure 1 Box and Whisper Plot, TMDQ Overall Scale, Time 1............................... 82
2. Figure 2 Box and Whisper Plot, TMDQ Overall Scale, Time 2............................... 82
3. Figure 3 Box and Whisper Plot, TMDQ AT Scale, Time 1 83
4. Figure 4 Box and Whisper Plot, TMDQ AT Scale, Time 2 83
5. Figure 5 Box and Whisper Plot, TMDQ PE Scale, Time 1 84
6. Figure 6 Box and Whisper Plot, TMDQ PE Scale, Time 2 84
7. Figure 7 Box and Whisper Plot, TMDQ FU Scale, Time 1 85
8. Figure 8 Box and Whisper Plot, TMDQ FU Scale, Time 2 85
9. Figure 9 Box and Whisper Plot, TMDQ SC Scale, Time 1 86
10. Figure 10 Box and Whisper Plot, TMDQ PE Scale, Time 2................................. 86
11. Figure 11 Scatter Plot, TMDS Overall Time 1 and Time 2................................. 88
12. Figure 12 Scatter Plot, TMDS AP Scale Time 1 and Time 2 88
13. Figure 13 Scatter Plot, TMDS PE Scale Time 1 and Time 2 89
14. Figure 14 Scatter Plot, TMDS FU Scale Time 1 and Time 2 89
15. Figure 15 Scatter Plot, TMDS SC Scale Time 1 and Time 2............................. 90
List of Abbreviations

Attitude toward principal (AP)
Future utility (FU)
National Assessment of Educational Progress (NEAP)
No Child Left Behind (NCLB)
Plan Do Study Act (PDSA)
Principal expectations (PE)
Self-concept of ability (SC)
Standards of Learning (SOL)
Teacher Motivation Diagnostic Questionnaire (TMDQ)
Value-added model (VAD)
CHAPTER ONE: INTRODUCTION

Background

A high-quality education can open many doors that will provide children with excellent opportunities. Research has shown that children who start school with a disadvantage have a difficult time catching up unless they have an intervention plan in place. Most educational research has shown that effective teachers play a big role in decreasing the achievement gap for students (Konstantopoulos, 2009). When students do not have effective teachers, they become stuck at the bottom, and as a result are often unable or unwilling to improve within the classroom (Ushomirsky & Hall, 2010). According to the National Assessment of Educational Progress (NAEP), children who fail to achieve proficient literacy by fourth grade are more likely to enter into the criminal justice system and to be underemployed (Guo, Connor, Yang, Roehrig, & Morrison, 2012). Juel (1988) found that children who are identified as poor readers in first grade are 88% more likely to be poor readers at the end of the fourth grade. Juel stated it was important for children to have early reading success, because if they do not, their reading ability usually will not improve over time. The 2012 Program for International Student Assessment found that American teens were lagging behind other countries in reading and math. Although teachers have a major impact on student achievement, some teachers reported feeling inadequately prepared by their colleges (Guo et al. 2012). In addition to teachers, principals who are instructional leaders and who support both classroom teaching and student learning have a positive impact on student performance (Grissom, Loeb, & Master, 2013).

The role of the principal has changed from managerial to instructional, with this change comes a high level of accountability to the nation, state, district, school, and classroom (Goldhorn, Kearney, & Webb, 2013). Effective principals need to be able to identify critical
practices while focusing on communication and collaboration with personnel, as well as trying to find out what is best for the students (Ash, Hodges, & Connell, 2013). Principals need to be able to enlist, mobilize, and motivate faculty and staff to want to improve (Eyal & Roth, 2011).

Several studies (Hallinger & Heck, 1998; Leithwood & Jantzi, 2005; Leithwood & Mascall, 2008; Supovitz, Sirinides, & May, 2010) found that leaders can affect students’ performance indirectly when they create conditions that support a teacher’s ability to teach. Principals are expected to set high standards and develop rigorous curricula, quality instruction, a culture of learning and professional behavior, connections to external communities, and performance accountability standards that teachers can follow (Ash et al., 2013; Eyal & Roth, 2011).

In the last 20 years, education reform has considered teachers as both the problem and the solution for the education system (Pitler & Goodwin, 2008). The demands on the teaching profession have increased because of changes in curriculum and high-stakes testing. The leaders are responsible for everything that takes place, including teacher and student performance. These demands have affected teacher motivation and stress levels. Mhlambo (1993) suggested that there was a link between effective leaders and improved teacher motivation (Mhlambo, 1993). The principal needs to be able to create relationships and trust, as well as motivate the group to join forces in order to become a vibrant body (Mhlambo, 1993). However, motivating people can be a challenging task that can be accomplished only when combining certain efforts and tasks with those of other individuals (“Motivating Teachers”, 2009).

According to Butler (1999), achievement motivation is considered one of the most important subjects in motivational psychology. Achievement motivation is a criterion related to societal progress (Butler, 1999). Researchers have found that school leaders have had challenges in trying to motivate teachers to perform at a higher level (Bulter, 1999; Mhlambo, 1993; Ugah
& Arua, 2011). According to sociologists, this problem could stem from the lack of rewarding environments and the lack of opportunities for teachers to grow professionally and improve their knowledge of professional development. Professional development encourages teachers to try new things and provides an opportunity for personal growth. Monahan (1996) described a new concept, *comprehensive professional development*, that focused on strategies to facilitate teacher growth through professional dialogue, collaborative curriculum development, peer coaching, and action research (“Motivating Teachers, 2009).

One way to achieve comprehensive professional development may be through classroom walkthroughs. The Effect of Classroom Walkthroughs on Middle School Teacher Motivation, followed the comprehensive professional development model. As accountability increases for leaders, so does their responsibility to teacher and student performance. Teacher recognition and feedback are important motivators for teachers, but the most common practices in evaluation are limited and are mainly used to monitor what teachers are doing (“Motivating Teachers,” 2009). Vroom (1964) suggested that behavior can be motivated by expectations (Ugah & Arua, 2011), which are based on the individual’s perceptions, attitudes, and desire to improve pleasure and avoid pain (Isaac, Zerbe, & Pitt, 2001).

Marzano (2009) stated that the current teacher evaluation system is faulty. DuFour and Marzano (2009) specified that this might be because evaluations are too rare, not focused on quality instruction, and not helpful in nature. Marzano suggested that teachers’ attitudes toward evaluations could influence their capability to profit in a positive or negative way. Evaluations should help teachers to become more aware of their strengths and weaknesses, which in turn, should help teachers to improve their work (Wagoner & O’Hanlon, 1968). A problem is that most school systems are using value-added models that evaluate students’ growth from year to
year in order to measure a teacher’s effectiveness. Research has found that teacher effectiveness ratings differ substantially from class to class, from year to year, and from one statistical model to the next (Darling-Hammond, Amrein-Beardsley, Haertel, & Rothstein, 2012). This discrepancy is because the statistical models do not actually factor in certain measures, such as class size, curriculum materials, instructional time, availability of specialists and tutors, home and community support, individual student needs, peer culture, prior teachers and schooling, differential summer learning loss, and specific tests used. Further, the statistical models rarely measure achievement that is well above or below grade level.

Researchers have suggested that classroom walkthroughs, short learning walks and quick visits in which data are collected, can help teachers improve their instruction and can play a constructive role in providing useful information to refine teaching practices (David, 2008). Walkthroughs can help the educational leader to become familiar with a teacher’s approach to developing curriculum and making instructional decisions (Milanowski, 2011). Walkthroughs can be used to coach teachers to reach higher levels of performance. Walkthroughs also provide opportunities for improvement and support best practices (Pitler & Goodwin, 2008). Finally, walkthroughs can be used to determine the extent to which professional development is being used in the classroom (Grissom et al., 2013; Pitler & Goodwin, 2008).

One of the problems principals face in providing professional development is time. Principals can eliminate the dog and pony show whereby teacher evaluations are scheduled and teachers “put on a performance” for the principal. The principal must then take time to write a lengthy evaluation without ever knowing day-by-day instruction. Classroom walkthroughs can eliminate this problem; frequent five-to-ten minute observations, with meaningful feedback, at least five times a year can promote professional growth (Goldhorn et al., 2013). Peterson (2000)
suggested that walkthroughs can provide more valuable data in a shorter period of time than formal evaluations. He suggested that walkthroughs are more reliable and are less intrusive.

Instructional leadership has evolved over several decades. Federal and state mandates have played a big role in the developing these changes. Instructional leaders have more responsibility today than ever before. Supervision in the United States has advanced since the 1700s. During that time, there was no need for educational leaders because town leaders controlled the education system (Bogotch, 2011). There were only a small number of administrators until after the Civil War (Murphy, 1998); after the War of 1812, the United States did not have the energy or finances to create a democratic system for public schools. Between 1820 and 1899, administrators were required to have little, if any, formal education. Administration was very simple and consisted of supervision only (Murphy, 1998).

The first principals were the school’s head teachers who had teaching responsibilities as well as administrative responsibilities, including opening and closing schools, scheduling, getting supplies and equipment, and conducting community communication. However, principals had no real authority over the entire school. As schools grew, problems became more complex, and the role of the principal began to change. Principals began spending less time in the classroom and more time performing administrative duties. Their role shifted from presiding teacher to directing manager (Pellicer, 1981).

Dramatic growth and change took place in school leadership between 1837 and 1942. Principals were then required to have university training, and the practice of moving people through local ranks was over; this was the first generation of educational leaders. During that time, teacher evaluations were based on personal characteristics, such as grooming, enthusiasm, and integrity. Between 1900 and 1915, administrators were chastised for their lack of foundation
in management principles by individuals in the corporate world. School leadership was vulnerable to powerful business and governmental forces (Bogotch, 2011). The shift from scientific to post-scientific leadership was influenced by industry (Murphy, 1998), and 75% of teacher evaluations came from other industries based on production and not on meeting individual needs (Good & Mulryan, 1990). Between 1947 and 1957, school leaders were attacked for their unscientific, non-theoretical approach to administration. Scientists came to the center stage and there was a search for scientific administrators (Murphy, 1998). Schools then began to move towards scientific management, with the child-centered and experience-based curriculum theories of Friedrich Froebel, Johann Pestalozzi, John Dewey, and Johann Herbart (Bogotch, 2011).

Researchers began trying to identify the traits of effective teachers (Millman & Darling-Hammond, 1990). Principals started evaluating teachers using a clinical model to improve teacher instruction through professional development (Millman & Darling-Hammond, 1990; Robinson, 1998). In the 1950s, educational standards increased (Burkman, 2010) due to the harsh attacks and critical analyses of school leaders’ performance (Murphy, 1998). The release of the publication, A Nation at Risk (Gardner et al., 1983), increased the pressure on educational leaders to increase academic expectation. Standardized test scores became the sole means of showing success or failure of schools, and teacher rivalry became a political concern (Murphy, 1998). The focus was to create standards-based training for administrators in order to help prepare them to face the challenges listed in the publication. In education, leaders evolved into managerial leaders (Burkman, 2010; Murphy, 1998), with teacher evaluation aligning with student performance (Danielson & McGreal, 2000; DuFour, 2002). Principals of the early 21st century were managers rather than instructional leaders. During that time, business had a
considerable influence over educational leadership preparation programs. The objective was to
train future leaders to understand the role of administration in order to perform successfully as
agents of change (Bogotch, 2011).

Today, more than any other time, instructional leaders are responsible for teacher and
student performance. They have to deal with the increasing demands from state and federal
guidelines of No Child Left Behind and Race to the Top, and are accountable to their nation,
state, district, and school. They have to make sure all children, regardless of their background or
disability, receives the appropriate high-quality education that will prepare them for college and
the work force (Shannon, 2012).

Instructional leaders are currently using teacher evaluations that are focused on standards
and value-added models. The No Child Left Behind Act is allowing instructional leaders to
change from using the value added model to the standards based-model, which allows the
instructional leader to engage in improving instruction (Papay, 2012). President Obama’s Race
to the Top program has changed the teacher evaluation system to include performance and
growth, multiple observations with feedback, and opportunity to focus on instruction and prepare
for professional development, all of which are aimed at ensuring every classroom has effective
teachers (Reform Support Network, 2012). The standards model complies with the expectations
from state and federal mandates. The standards model allows for professional growth through
conservations about teaching and learning instead of using the standard check list (Papay, 2012).

Principals are encouraged to be instructional leaders, who can help teachers improve their
skills (Fullan, 2009). Marazano (2010) stated that classroom walkthroughs can help principals
gain data that can help teachers improve their performance and student achievement. In the
United States, walkthroughs have been used since the 1950s; however, they were used mainly as
clinical evaluation methods for monitoring teachers’ daily performance instead of focusing on instructional improvement (Downey, Steffy, English, Frase, & Poston, 2004). Today, walkthroughs are being used to help instructional leaders better understand staff concerns; they help in the collect of data to focus on instructional improvement and staff development training (Pitler & Goodwin, 2008).

The role of instructional leaders helping teachers improve is not something new. In the 1980s, state governments put incentives in place to motivate, recruit, reward, and retain teachers. Today, leaders are looking at motivation to improve performance (“Motivating Teachers,” 2009). Gretzinger (1992) stated that a teacher’s motivation is critical for student success. He suggested that student growth should be one of the main goals for educators. According to Gretzinger, instructional leadership, professional development, and teacher motivation can improve student growth. The problem is teaching is very a challenging profession that plays a critical role in student growth. Teachers have to know what to teach, as well as how to teach and use correct methods and learning activities to reach individuals. Teachers are accountable for preparing students for the next generation and need to use effective differentiated strategies and techniques in order to reach all students (Butt & Sausar, 2010).

Research has shown that teacher quality is a major factor in improving student outcomes (Padgham & Chatto, 2013). Because of this, instructional leaders are searching for ways to motivate teachers to learn new and different techniques to improve student performance (Matthews, 1982). This is important because nearly all children can learn to read when given appropriate instruction at their level. Education reform is focusing on higher standards for all students, with the main purpose of closing the gap between subgroups (Allington, 2013). It is
important that educational leaders promote a productive school culture that has high expectations for teachers and student learning (Padgham & Chatto, 2013).

Guajardo (2011) suggested a link exists between higher teacher motivation and improved student learning. The problem is improving teacher motivation can be challenging, especially when teachers experience challenging classrooms and have increased demands from the instructional leaders (Guajardo, 2011). Today teachers have greater workloads than before, more accountability, and higher expectations while dealing with immigration, diversity, and poverty.

As the world becomes more diverse, the typical classrooms in the United States are becoming more atypical (Greenwood et al., 2011). One in 10 children in the United States is not fluent in English (Aldridge & Goldman, 2007). Children in poverty experience poor physical health; lower intellectual attainment; poor school performance; and increased social, emotional, and behavioral problems, all of which impact their learning and can make teaching challenging (Cartledge & Kourea, 2008). States are seeing struggling students drop out of school because they do not see school as being useful (Easton & Soguero, 2011). Ala-Adeyemi and Afolabi (1990) suggested that higher teacher motivation could bring about change in student and school performance. Therefore, schools are facing a critical demand for quality teachers and instruction (McKinney et al., 2008). According to Fullan (2009) and Ala-Adeyemi and Afolabi (1990) instructional leaders play a role in helping teachers improve teacher motivation and teaching ability.

According to Hammonds, Kunders, and Galow (2013) motivation can be hampered when autonomy is limited. Instructional leaders try to provide teachers with as much freedom as possible in the classroom, but the government has implemented Race to the Top, which has increased expectation and demands of preparing children for college and for the workforce
(Shannon, 2012). Students are expected to apply critical thinking and problem-solving skills of the 21st century, which are rigorous in academics and technical knowledge (Fala, Strouse, Tully, & Viviano, 2012). In order for students to learn these necessary skills, it is imperative that instructional leaders align their understanding of teachers’ behaviors and actions. Teachers and instructional leaders need to make data-driven decisions to foster student growth, so that they can help students develop the necessary skills to be productive in the 21st century (Goldhorn et al., 2013). These increased demands can make teachers wonder if they are attainable and can decrease motivation (Hammonds, Kunders, & Galow, 2013).

Most instructional leaders feel like they have to increase expectation, while many teachers feel that their freedom in the classroom has been stifled, which can create a negative attitude and low teacher motivation. Hammonds, Kunders, & Galow, (2013) suggested that most successful instructional leaders remedied this problem by creating a culture of collaboration and professional learning communities. In order to be effective, instructional leaders needed to motivate teachers to work in collaborative groups.

Fullan (2009) stated that as society gets more complex, leadership becomes more sophisticated. Lewis, Goodman, and Fandt (1998) stated that for administrators to be successful in this rapidly changing world, they must be team-oriented, strong communicators, team players, problem solvers, and change makers. Stout, Kachur, and Edwards (2013) suggested that walkthroughs can help instructional leaders to engage their staff in effective conservations, which can help teachers improve their teaching skills and learn best practices (Stout, Kachur, & Edwards, 2013). Walkthroughs have been used in other industries as teaching tools. United Airlines used walkthroughs practices called “visible management” or “management by walking about”. Hewlett-Packard renamed the “management by walking about” to “management by
wandering around.” The purpose of this management practice is to allow managers to be out of the office in order to spend more time with staff, to collect data to make informed decisions, and to know what is going on in the building on a day-to-day basis. When leaders are involved with what is going on, they are able to teach and reinforce the values of the organization while building collaborative teams. Classroom walkthroughs can provide the instructional leader a view of what curriculum and instruction look like in the classroom and identify issues and concerns (Stout et al., 2013).

There is little theoretical literature on teacher motivation and walkthroughs. However, there are several theories that provide important insight on teacher motivation (Guajardo, 2011). Kenneth Matthews (1979) developed a tool, Teacher Motivational Diagnostic Questionnaire, to measure teacher motivation based on Vroom’s expectancy theory. The sixteen questions on the survey align with Vroom’s (1964) expectancy motivation theory. Vroom indicated that perceived probability of success had a strong effect on the efforts an individual would exert to perform a task. Vroom suggested that effort, performance, and motivation are lined to a person’s motivation when using the variables expectancy, instrumentality and valence (Matthews & Holmes, 1982).

The expectancy theory suggests that the human behavior is motivated by conscious choices more than by responses to stimuli (Ugah & Arua, 2011); behavior is based on individuals’ perceptions, attitudes, and their desire to increase pleasure and avoid pain (Isaac et al., 2001). Adair (1996) suggested three areas of overlapping needs visible in any workplace: (a) the need to accomplish a common task, (b) the need for group unity, and (c) the needs that individuals bring with them by virtue of being human beings (Ugah & Arua, 2011). Porter and Lawler (1968) added to Vroom’s expectancy motivation theory and created a theoretical model.
According to the model, the outflow of the individual’s effort will be determined by the expectation that an outcome may be reached as well as by the degree of value the person places on the result (Pinder, 1984). This model can be used to show that a teacher’s motivation is a function of the expectancy, instrumentality, and desirability of outcomes. Porter and Lawler (1968) suggested that the level of individuals’ efforts will determine their performance. Vroom and Porter and Lawler suggested that when individuals’ saw their actions as minimizing the probability of desired outcomes for themselves, motivation would increases. Vroom and Porter and Lawler suggested that if instructional leaders could increase self-interest, they would have the opportunity to meet the follower and organizational needs. Isaac et al., (2001) suggested that when leaders applied the expectancy theory and interacted with followers, a motivational environment would be created. In this type of environment, leadership is a part of every employee’s job.

Motivation is an important factor in making progress towards improvement. According to Vroom (1964), a clear link exists between leadership expectancy and leadership concepts, which results in highly motivated staff and effective working environments. Leaders have no general formula they can use to make blanket assumptions about all workers. Motivation is an individual matter, and leaders need to know and understand what motivates each individual (Ugah & Arua, 2011). Motivation is an important construct in teacher quality (So, Sharpe, Klockow, & Martin, 2002). Frase and Sorenson (1992) cautioned that not every teacher will respond positively to being approached with education reform. One teacher may welcome feedback while another may see it as an infringement on his or her professionalism, preferring collaboration instead. The key here is to differentiate between opportunities for particular teachers or groups of teachers in order to improve motivation (“Motivating Teachers,” 2009).
Problem Statement

Studies have shown that effective principals have tremendous influence on school performance, and that their influence can increase student achievement (Grissom et al., 2013). Literature has shown that the United States faces many problems in the education system (Cartledge & Kourea, 2008; Guo et al., 2012; U.S. Department of Education, 2013). For example the, U.S. Department of Education (2013) found that 68% of fourth graders were not reading at grade level.

Since the 1990s, teacher supervision and evaluations have changed. There are several evaluation models, to choose from, and most require four to six hours to produce. That said, these models that have limited classroom observations and written feedback to help teachers improve their instructional practices (Marshall, 2010). According to Boyd (1989), effective evaluation systems provide teachers with useful feedback on classroom instruction. DuFour and Marzano (2009) specified that evaluations are too rare, not focused on quality instruction, and typically not helpful (Grissom et al., 2013). Most principals are using value-added models to evaluate teachers. Researchers have found that value-added models are inadequate measures for evaluating individual teachers; further, these models can be problematic when only compared with test scores at test scores (Darling-Hammond et al., 2012). Scholars have found that instructional leaders are only spending 12.7% of their time on instructional-related activities, 0.5% of their time informally coaching teachers to improve their instruction, and 2.1% of their time developing education programs or curriculum at their schools (Grissom et al., 2013).

The two major purposes of teacher evaluations are to improve instruction and to make personnel decisions. Formative evaluations provide feedback to the teacher and encourage improvement, while summative evaluations are used for the selection of teachers and for holding
teachers accountable for meeting basic standards. Teachers have a more positive attitude toward formative evaluations and a more negative attitude toward summative evaluations (Airasian, 1993). The purpose of teacher evaluation should not be to prove, but rather, to improve (Nevo, 1994).

According to Marshall (2010), walkthroughs have been a common practice for leaders to monitor teachers since the 1950s, but have not been used as instructional tools. A review of the literature has shown that walkthroughs can be used to assist leaders in gathering data and monitoring. Marshall (2009) suggested that an alternative model of *mini observations* be used throughout the year. These observations should be unannounced and used to gather more in-depth knowledge about what is going on in the classroom, as well as to better comprehend teachers’ strengths and weaknesses (Marshall, 2009). Several educational journals have published articles about walkthroughs, but given little direction on the use of them. Findings suggest that teacher observations and walkthroughs seem to be used primarily to monitor instructional practices; however, limited research has investigated the effects of walkthroughs on teacher motivation. Research has shown that teacher motivation is an important facet of teaching and should be investigated more (Müller & Hanfstingl, 2011).

The problem is that there is a gap in the literature on the utility of walkthroughs emphasizing school improvement (Horng & Loeb, 2010). There is also a shortage in literature examining the impact of walkthroughs on teacher motivation (DuFour & Marzano, 2009). DuFour and Marzano (2009) stated that the current teacher evaluation system is flawed. A growing consensus supports the connection between teacher evaluations and student performance; however, current research suggests that value-added model ratings are not sufficiently reliable or valid enough to support high-stakes, individual-level evaluations about
teacher performance (Darling-Hammond et al., 2012). This study examined walkthroughs as an evaluation tool and their effect on teacher motivation and student outcomes.

Purpose Statement

The purpose of this pretest-posttest control group experimental study was to examine the effect of classroom walkthroughs on middle school teacher motivation. The independent variable was classroom walkthroughs and the four dependent variables were (a) teachers’ self-concept regarding the ability to impact student achievement, (b) teachers’ attitudes toward the principal, (c) teachers’ beliefs about the principal’s value and expectations for achievement, and (d) teachers’ beliefs about the future utility of their efforts. The instrument used in this study was the *Teacher Motivation Diagnostic Questionnaire*. Sixty-eight language arts and math teachers from the fifth through eighth grade at six middle schools in Southwest Virginia were included in the study. Six diverse public schools were randomly assigned into two groups. Group A, the treatment group, received walkthrough treatment with conferences while Group B, the control group, did not receive any treatment. The participants were given a posttest to examine teachers’ existing levels of motivation across four factors of the *Teacher Motivation Diagnostic Questionnaire*, while controlling for teacher motivation pre-test scores. ANCOVAs were used to evaluate the means differences between each of the groups on each dependent variable.

Significance of the Study

This study is closely aligned with McNeely’s (1996) study on teacher evaluations. There are several reasons teacher evaluations are important, with student and teacher improvement being the most important. There is no clear approach for how principals can help teachers improve performance. This study is important because there is a need for better training for
school leaders in order to improve teacher and student outcomes (Ash et al., 2013). Principals can have an impact on student learning, but there is a lack of empirical studies or data on the impact of principal leadership on school results (Rice, 2010).

School principals spend less than 10% of their time on instructional-related activities such as classroom observations, walkthroughs, or professional development (Rice, 2010). It is known that students who have effective teachers from grade to grade can significantly improve their achievement (Sykes & Winchell, 2010). Race to the Top has significantly changed teacher evaluations by including student growth and timely and constructive feedback. This type of evaluation system can give principals needed data to help teachers improve instruction, as well as remove ineffective teachers from the classroom (U.S. Department of Education, 2009).

Walkthroughs can be used to gather data for school improvement. They can help to identify staff professional development needs, build collaboration among staff members, and improve teacher practices (Downey et al., 2004). However, walkthroughs are implemented throughout the nation with minimal research-based information. Horng and Loeb (2010) found that most information on walkthroughs has been unreliable with regards to school improvement. Few studies have explored the effectiveness of walkthroughs, despite numerous claims about their utility. Professional journals publish articles about commercial walkthrough products containing enumerated steps, but most do not provide detailed information to aid administrators in successfully implementing the practice. What is not available is a detailed examination of schools that implement walkthroughs (Downey et al., 2004).

This study is important for leadership training, for professional development, and for school supervisors to help principals become more effective leaders. A high-quality education can open many doors and provide children with excellent opportunities (Hefling, 2013). This
study will add to the body of literature to extend the knowledge on the effects of classroom walkthroughs on teacher motivation.

Research Questions

RQ1: Is there a statistically significant difference in (overall) teacher motivation scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control group), while controlling for pre-test (overall) teacher motivation scores?

RQ2: Is there a statistically significant difference in attitude toward principal’s (AP) scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (AP) pre-test scores?

RQ3: Is there a statistically significant difference in self-concept (SC) of ability scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (SC) pre-test scores?

RQ4: Is there a statistically significant difference in beliefs about the principal’s value and expectations (PE) between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (PE) pre-test scores?

RQ5: Is there a statistically significant difference in the teacher’s beliefs about the future utility (FU) of their efforts between those who receive the walkthrough with conferences (treatment) and those who do not receive the walkthrough with conferences (control), while controlling for (FU) pre-test scores?
Null Hypotheses

The null hypotheses for this study are listed below.

H\(_0\)1: There is no statistically significant difference in (overall) teacher motivation scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control group), while controlling for pre-test (overall) teacher motivation scores.

H\(_0\)2: There is no statistically significant difference in attitude toward principal’s (AP) scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (AP) pre-test scores.

H\(_0\)3: There is no statistically significant difference in self-concept (SC) ability scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (SC) pre-test scores.

H\(_0\)4: There is no statistically significant difference in beliefs of principal’s value and expectations (PE) between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (PE) pre-test scores.

H\(_0\)5: There is no statistically significant difference in the teacher’s beliefs about the future utility (FU) of their efforts between those who receive the walkthrough with conferences (treatment) and those who do not receive the walkthrough with conferences (control), while controlling for (FU) pre-test scores.
Definitions

1. **Teacher Motivation Diagnostic Questionnaire (TMDQ):** A survey-type instrument developed by Dr. Ken Matthews at University of Georgia that uses an Osgood semantic differential format, with a seven-point scale. This instrument was designed to assess four specific aspects of teacher motivation. The TMDQ has four questions for each of four aspects of teacher motivation (Lester & Bishop, 2000).

2. **Attitude toward principal (AP):** AP is the belief teachers hold about how much their principal likes them or how much they like their principal. The quantitative definition of AP is the sum of responses to Questions 2, 6, 11, and 15 on the TMDQ (Lester & Bishop, 2000).

3. **Future utility (FU):** FU is the belief teachers hold about the benefits of student achievement. Quantitatively, FU is the sum of the responses to Questions 3, 7, 10, and 14 on the TMDQ (Lester & Bishop, 2000).

4. **Principal expectations (PE):** PE is the aspect of teacher motivation dealing with teachers’ beliefs about what the principal expects of them and how much the principal values student achievement. Quantitatively, PE is the sum of responses to Questions 1, 5, 12, and 16 on the TMDQ (Lester & Bishop, 2000).

5. **Self-concept of ability (SC):** SC is the teachers’ belief of their ability to improve student achievement. The quantitative definition of SC is the sum of responses to Questions 4, 8, 9, and 13 on the TMDQ (Lester & Bishop, 2000).

6. **General teacher motivational level:** The total means score on the TMDQ (Lester & Bishop, 2000).
7. *Expectancy theory*: The theory that people use effort when they believe that certain levels of performance are attainable (Isaac et al., 2001).

8. *Expectancy theory valence*: The extent to which the person values the reward he or she receives. Because of individual differences, people often assign different valences to rewards (Ugah & Arua, 2011).

9. *Expectancy theory instrumentality*: A perception that performance levels are related to rewards, symbolized as performance and outcomes (P-O) linkage (Isaac et al., 2001).

10. *Motivation*: The process of initiating, sustaining, and directing psychological activities. In this study, motivation referred to teachers’ performance investment level beyond the minimum required participation at the school (Goldenson, 1978).

12. *Intrinsic motivators*: Behaviors that arise as a consequence of internal forces, such as enjoyment of the work itself (Isaac et al., 2001).

13. *Osgood Semantic Differential Scale*: A scale composed of polar opposite adjectives separated by a five-to-seven point rating scale (Heise, 1970).

14. *Walkthrough*: An observation technique that allows the observer to record a “snapshot” of information on the effective elements of a classroom, including instructional strategies; standards-based objectives; alignment of instructional materials; and level of cognitive interaction, classroom displays, resources, and student engagement (Grissom et al., 2013).
CHAPTER TWO: LITERATURE REVIEW

Introduction

Teachers and principals are accountable to ensure students have a high-quality of education and level of achievement. Research suggests that school leaders are essential to teacher effectiveness and motivation (Hattie, 2009). Marzano, Waters, and McNulty (2005) found that leadership and teacher effectiveness are the two main factors affecting student performance. The principals need to motivate their faculty and staff to join forces and work together to improve teacher and student outcomes. They need to inspire the faculty and staff to continuously improve and create a trusting relationship in order to encourage change and improve teacher motivation (Mhlambo, 1993). Teachers play a significant role in students’ lives. Teachers’ knowledge and feelings become integrated within the students’ schemata. For example, when a student has a teacher who is negative toward education, the student is more apt to become negative toward education. However, when a teacher is positive about education, the student is more apt to be positive about education (Czubaj, 1996).

Vroom’s expectancy theory states that individuals are inclined to act in a certain way when there is a positive association between efforts and outcomes. Porter and Lawler (1968) expanded on Vroom’s theory and suggested that the association between people's behavior at work and their goals was not as simple as was first thought by other scientists. Vroom (1964) recognized that employees’ work performance was associated with their personality, skills, knowledge, experience, and abilities. This theory advocates that people who may have different sets of goals, can be motivated if they believe that the principal is focused on employee expectations for success.
Motivation

Muller and Hafgtingl (2011) suggested that teacher motivation is an important facet of learning environments and significantly influences students’ learning, as well as teachers’ support of educational reform (Muller & Hanfstingl, 2011). Payne (2008) stated that when students see their teacher being cold and controlling they are more apt not to learn even if the teacher’s instruction is great. Instructional leaders and teachers need to create motivating learning environments for all students to be successful. Greenberg and Baron (1993) suggested that motivation is a set of processes that arouse, direct, and maintain human behavior toward a goal.

There are several motivational theories. Maslow’s Hierarchy of Needs theory states that the five hierarchical levels of needs: physiological, security, belongingness, esteem, and self-actualization, need to be met before directing behavior toward satisfying upper-level needs. Maslow’s theory states that these needs must be met before individuals are motivated, and rewards need to be differentiated among individual in order to meet their needs. Expectancy theories suggest that motivation is the product of expectancy, instrumentality, and valence of rewards (Kini & Hobson, 2002). The motivation depends on the individual’s perception of his or her abilities to accomplish the needed task, and how much he or she values the reward. The expectancy theory suggests that if individuals are attracted to the reward, their perception will increase and more work effort will go toward the reward (Halepota, 2005). Herzberg’s (1966) theory emphasized job enrichment rather than enlargement. For example, Herzberg’s theorized that job content, or hygiene, needs to be optimal to prevent job dissatisfaction. The motivational factors in Herzberg’s theory are achievement, recognition, work, responsibility, advancement, and growth. According to the Herzberg theory, motivators can contribute to job satisfaction, and
hygiene can contribute to job dissatisfaction. Herzberg stated that company policy and administration, supervision, salary, security, merit pay, interpersonal relationships and working conditions can be job dissatisfiers. According to Herzberg’s, job dissatisfiers are unidimensional and rarely bring positive job attitudes. The Maslow’s theory, expectancy theory, and Herzberg’s theory all deal with motivation. It is important to understand the different motivational theories and use them wisely (Halepota, 2005).

There is little evidence that suggest that offering stronger rewards (e.g., salary increase) leads to improved educator performance. For example, research has shown that merit pay does not improve student outcomes or change teacher behavior in a positive way (Gawel, 1997, Pfeffer & Sutton, 2013; Springer et al., 2011). DuFour & Mattos (2013) found that there has not been any research to support the assumption that educators choose to use average instructional strategies and withhold effective practices until they receive increased financial incentives. Maloy (1998) reported that instructional improvement took place when the leader found ways to motivate teachers, devise opportunities for them to work with colleagues, keep up with the most current theories, and best practices (Stout et al., 2013). Knowles, Holton, and Swanson (1998) found that most teachers respond to some external motivators, such as better jobs or higher salaries, but found that the most powerful motivators were internal, such as, student success, desire for increased job satisfaction, and job esteem. Walkthroughs that provide positive feedback can be very effective in motivating teachers to want to increase teacher and student performance (Dean, 2012).

In the 1980s, states and local governments tried a variety of motivational incentives to recruit, reward, and retain the best teachers. Today, leaders are using motivation to increase teacher and student performance (Oregon School Boards Association, 2009). Educational
researchers and school leaders have had challenges in motivating teachers to high levels of performance (Dornyei & Hadfield, 2013; Liu, 2015). Motivating teachers could be challenging because teachers are isolated from their colleagues, and most of their work is in a self-contained classroom, which gives them little support. Maloy (1998) found that when teachers are given opportunities to work and communicate with their colleagues and instructional leader their motivation increases.

Frase (1992) identified two motivating factors that affect a teacher’s ability to perform effectively, work context factor and work content factor. Examples of work content factors are class size, discipline conditions, availability of teaching materials, and the quality of the principal’s supervision. Inadequate supply of these factors will create dissatisfaction and affect teacher motivation. Work context factor is important, but it may not be enough to motivate teachers to improve their teaching. Examples of work context factors are schedules, curriculum, teacher leadership, teacher expectations, and policies (Frase, 1992). According to Frase, content variables are critical factors in motivating teachers to high levels of performance. Content factors are intrinsic and include opportunities for professional development and recognition. They are challenging and increase responsibility, achievement, empowerment, and authority. However, when teachers do not feel supported in these areas, they are less likely to be motivated to do their best in the classroom (“Motivating Teachers,” 2009).

Intrinsic motivation is when an act is performed because it is interesting. In order for an individual to experience intrinsic motivation, he or she must develop autonomy or, in other words, internalize the value attributed to a behavior. When motivation has not been internalized, guidelines are said to be external for helping people to become more motivated. External consequences usually come from a controlled environment where motivation is not autonomous.
Autonomy-supportive behaviors, such as provision of the rationale, provision of choice, allowing criticism, encouraging critical thinking, and demonstrating the intrinsic value of behavior, can increase autonomy and intrinsic motivation (Assor, Kaplan, & Roth, 2002). Extrinsic motivation is when individuals perform an activity because there is a consequence. Compared with extrinsic motivation, intrinsic motivation is associated with higher performance, well-being, and lower burnout (Grolnick & Ryan, 1989). Intrinsic motivation is more likely to flourish in settings that are supportive. Johnson (1986) suggested that intrinsic motivational rewards, such as self-respect, responsibility, and a sense of accomplishment, were more effective in motivating teachers and improving their practices than individual extrinsic rewards. New teachers enter into the profession for intrinsic rewards, but the negative effects of extrinsic conditions may overwhelm them. It is important to provide proper support by providing assistance and mentoring to help boost teacher motivation and productivity (“Motivating Teachers,” 2009).

Job Satisfaction

According to Kyriacou (2001), teaching is one of the most stressful professions, and can cause a lot of stress for teachers. Weiss (2002) stated that job satisfaction is a positive or negative evaluative judgment people make about their job. Caprara, Barbaranelli, Steca, and Malone (2006) found that teachers’ belief about their capabilities to influence students’ learning can affect job comment and satisfaction and can influence teachers’ attitude and performance. Job satisfaction is one of the most important factors in influencing teacher and student relations, teachers’ enthusiasm, and teacher retention (Chen, Chen, Tsai, & Lo, 2007; Ingersoll, 2001; Schaufeli & Salanova, 2007; van den Berg, 2002). Job conditions, timing, structure, compensation, tasks, relationships with co-workers and responsibilities can affect job satisfaction in a positive or negative way. For example, Sargent and Hannum (2005) found that job
attachment, dedication, and willingness influenced job satisfaction. Good pay, a chance for professional growth, manageable workload, and administrative support can have a positive effect on job satisfaction also (Sargent & Hannum, 2005). On-the other hand, Liu and Ramsey (2008) suggested that teachers were more dissatisfied with their job when they had poor work conditions, inadequate time for planning and preparation and heavy workload. Greenglass and Burke (2003) suggested that job dissatisfaction could also be caused by lack of recognition, administrative demands, and student behaviors. Employees who are highly satisfied are more apt to have a high morale and high productivity (Metha, 2012).

Improving Academic Performance

Instructional leaders can facilitate improvement and can shape the behavior of the students and faculty. For example, collaborative leaders have a positive impact on student growth and learning by building the academic capacity in the schools (Hallinger & Heck, 2010). Classroom practices and student academic performance when teachers emphasize academic objectives in allocating time and use reflective management strategies to maximize learning. Jennings and Greenberg (2009) suggested that teachers’ warmth and responsiveness to students’ needs predict early language and literacy skills. They suggested that teachers’ warmth and responsiveness to students’ needs can help close the achievement gap between subgroups. Teachers who are not warm and responsive to their students can affect student development in a negative way (Jennings & Greenberg, 2009). This supports the idea that job satisfaction and motivation are two of the most important factors in influencing teacher and student relations and teachers’ enthusiasm (Chen et al., 2007; Ingersoll, 2001; Muller & Hanfstingl, 2011; Schaufeli & Salanova, 2007; van den Berg, 2002).

Classroom environment can also predict student achievement. Using general literacy instructional quality ratings, the National Institute of Child Health and Human Development
(2002) indicated that a classroom environment was a multidimensional construct of instructional quality, in contrast to time on task, when teachers used valuable feedback and instructional conversations with their students. Rossi (2007) suggest that this same concept of valuable feedback that works with students can work with teachers when principals have meaningful conservations about best instructional practices after each walkthrough.

Guo et al. (2012) found that teacher education did not significantly predict student outcomes, but teacher support did significantly affect student outcomes. Sargent and Hannum, (2005) suggested administrative support can have a positive effect on teachers’ job satisfaction, which, in turn, can affect student and teacher relationship. However, Guo; Connor, Yang, Roehrig, and Morrison. (2012) suggested that the cross sectional design of existing research on school improvement limited our interpretation of how these proposed factors might improve student performance

Teachers have a very powerful impact on student growth in the primary grades. For example, students who had effective teachers in one grade demonstrate higher achievement in the next grade (Nye, Konstantopoulos, & Hedges, 2004). Further, students who have had effective teachers for consecutive years in the primary grades make larger gains than students who only have had effective teachers for one year (Tucker & Stronge, 2005). Studies have also shown that minorities, who are some of the most at-risk students, benefit the most from effective teachers (Konstantopoulos, 2009). It is, therefore, very important to have the most effective teachers in Pre-K, kindergarten, and first grade to help students develop basic reading skills. Research has shown that teachers with the most experience in early childhood education provide higher quality classroom management and instruction and produce stronger student achievement. However, most teachers in the primary grades do not know how to use reading interventions
effectively to help struggling readers and are not providing necessary skills for beginner readers. High-quality professional development is, therefore, important. Studies have found that interactions with a reading coach increased reading performance among struggling readers (Vernon-Feagans et al., 2010). The coaches were able to evaluate student data and work with the teachers to create effective lessons that are appropriate for each child. However, there is a lack of reading specialists who are qualified (Allington, 2013). In addition, most struggling students receive their intervention from paraprofessionals who are usually the least qualified to provide appropriate interventions. Students who received remediation from paraprofessionals did not show significant improvement (Allington, 2013). Invernizzi, Juel, and Rosemary (1996) suggested that volunteers need to be recruited and trained to use research-based methods to help struggling children.

Instructional leaders need to have teaching and learning at the top of their priority list (NAESP, 2001). It is important that instructional leaders know what to look for when they evaluate classrooms in order to provide support for teacher growth. A seminal 2004 study, How Leadership Influence Student Learning, found that leadership was the second most important factor that affected students’ academic performance. Classroom walkthroughs need to be used to collect data and provide meaningful conversations that will help teachers improve their instruction and student performance. Instructional leaders can help teachers improve instruction by enabling teachers to teach at their best, which, in turn, creates an environment for student to learn at their utmost (Mendels, 2012).

Early grades can have a high impact on children’s cognitive and social-emotional development, if the child’s needs are met (Phillips, Gormley, & Lowenstein, 2009). Early grades that are well-designed and have teachers who are involved in intensive supervision and coaching
have shown long-term achievement in test scores, and lower rates of grade repetition and special education referrals, with disadvantaged children having the most long-term benefits (Konstantopoulos, 2009). Evidence has shown that providing high-quality, qualified teachers who understand early childhood development has a positive effect on children’s language and cognitive skills by the age of five (Engle & Black, 2008). Graduation rates, health, attendance, and educational attainment of children living in poverty who attended high quality pre-K programs have increased dramatically. However, teachers have identified alignment issues in the early grades; the material taught in one grade did not align in the next grade. These alignment issues have caused a push to have standards that are aligned for all early grades starting with pre-K (Brown & Mowry, 2009). Because of the importance of effective preschool programs and current poor performance in existing preschools, President Obama has made funding for preschool programs competitive by basing it on performance (Barnett & Haskins, 2010).

Instructional leaders can play an important role in increasing academic performance. Principals have to become instructional leaders who select teachers that understand curriculum, instruction, and professional development, in order to help teachers address student’s needs. Walkthroughs with meaningful conversations about instruction can give the principal information about what is and is not working in the school and can show a picture of what instructional improvements need to take place (Protheroe, 2009).

Teachers’ impact on students can be positive or negative. Studies have shown that teachers’ negative reactions in the classroom could cause students to have lower academic competence (Vaughn, 2009). This could also cause low motivation and lack of persistence from the students. Teachers need to make sure they are engaging students to develop relationships with their students so they will feel connected to learning and work towards attainable goals.
(Cardinal, 2011). Teachers need to create a positive classroom climate where all students feel like they belong (Cuthrell, Stapleton, & Ledford, 2019). Many children living in poverty have low self-esteem and give up too quickly; it is important that teachers have high expectations for all students (Cuthrell et al., 2009). Effective teachers, therefore, play a big factor in decreasing the achievement gap for all students (Konstantopoulos, 2009).

Teachers’ self-concept can improve students’ academic performance. Self-concept can be an influential factor that enhances educational goals and is an important vehicle for addressing social inequities experienced by disadvantaged students. Marsh and Craven (2006) emphasized the importance of maximizing academic self-concept and self-reliance, and stated that academic achievement should be a major outcome goal for schools. Research has shown that self-concept can play a critical role in students’ interest and satisfaction at school, can underpin their academic achievement, and can be very influential beyond school (Ackerman, 2003; Marsh, Hau, Artelt, Baumert, & Peschar, 2006). Teachers need to have instruction that is rigorous with continuous evaluation, in order to show progress that is data driven. Teachers’ motivation and self-efficacy is very important for young children, because the teacher’s self-efficacy is their belief to carry out a particular task successfully and can play an important role in influencing student’s achievement and behavior (Krashen, 2011).

Self-Efficacy

Researchers have defined self-efficacy into two constructs. The first construct of self-efficacy, personal teaching efficacy, is the teachers’ confident in their ability to teach. The second construct, is the teachers’ beliefs about reaching difficult children (Protheroe, 2008). Students of teachers with high levels of self-efficacy compared with teachers who have low self-efficacy levels show higher achievement level in reading and math (Ashton & Webb, 1986).
Poor job satisfaction and low self-efficacy can create problems on education outcomes especially when teachers have extra-role expectations, poor organization support, and declining prestige of their profession. Teachers’ self-efficacy beliefs are a powerful predictor of their effort, choice, persistence, and level of performance. Teachers who have strong self-efficacy seem to work harder to help struggling students and are more willing to take risks, try new strategies, and be less critical of student behavioral issues (Duyar, Gumus, & Bellibas, 2013).

Self-efficacy is the concept that individuals believe that they will be effective on a given task and is grounded within the social cognitive theory. Higher levels of self-efficacy among teachers are linked to higher levels of student academic performance (Guo et al., 2012). Self-efficacy also predicts teachers’ goals, attitudes towards innovation and changes, special education referrals, use of teaching strategies, and teacher retention. Schools with high collective teacher efficacy are more apt to meet challenging goals. In addition, teachers with high self-efficacy encourage other teachers to improve and persist with challenges. Further, the Rotter (1966) report suggested that teachers’ self-efficacy increased teachers’ belief that students’ achievement and behavior can be influenced by education, and decreased teachers’ belief that external factors were more important in students’ learning than teacher influence (Skaalvik & Skaalvik, 2010). Ashton and Webb (1986) found that teachers’ self-efficacy explained 24 to 46% of the variance in middle school students’ math and reading scores. Further, teachers with a high sense of self-efficacy were more apt to use strategies that minimized negative effects and promoted classroom expectations by creating interpersonal relationships and academic work.

Hoy (2000) suggested that the most powerful influence on teacher efficacy took place during student teaching and the induction year. He stated that the first years could be critical in
long-term effects of self-efficacy. Hoy suggested that during the first years it was important that teachers are able to observe other teachers who were effective in reaching students. He also suggested that teachers and leaders need to participate in pep talks or feedback on effective instructional teaching, where the leader is providing specific suggestion on ways to improve instruction. Hipps (1982) study found that principals’ leadership can significantly influence teachers’ self-efficacy. Principals who were risk-takers, cooperative, inspiring, and contributed to a shared vision seemed to have teachers with higher self-efficacy. Goddard, Hoy, and Hoy (2000) stated that mastery experiences seemed to be the most powerful efficacy changing force, but warned that a faculty with a low collective efficacy could be the most difficult to change.

Evaluations

Evaluations can serve two purposes. The first purpose is to assess how effectively teachers are doing their jobs, and the second purpose is to provide valuable information for professional growth and to help teachers to become more effective. Policy makers prefer the value-added evaluation method because, according to them, the model is more quantitative, valid and reliable than the standards-based method, which relies on classroom observations. Research suggests that both models are more alike than different and both face serious concerns about bias, reliability, and validity. It has been found that evaluations can improve teachers’ instructional effectiveness if they are more rigorous and provide feedback that will affect instructional improvement (Papay, 2012). Marzano (2012) stated an evaluation system that fosters teacher learning will differ from one that measures teacher competence. Teacher evaluations do not accurately measure teacher quality because (a) teacher evaluations do not discriminate between effective and ineffective teachers and (b) teacher evaluations do not aide in developing highly skilled teachers (Bill and Melinda Gates Foundation, 2010; Toch & Rothman, 2008; U.S. Department of Education, 2009; Weisberg et al., 2009).
Evaluations should help teachers become aware of their strengths and weaknesses so they can improve their teaching (Wagoner & O’Hanlon, 1968). Most practitioners, researchers, and policy makers agree that the current teacher evaluation system does little to help or support teacher improvement. Value-added models have been used to evaluate annual student growth and teachers’ effectiveness. However, value-added models do not evaluate class size, curriculum materials, instructional time, availability of specialists and tutors, home and community support, individual student needs, peer culture, prior teachers and schooling, differential summer learning loss, and specific tests used, which emphasized some kinds of learning but rarely measures achievement that is well above or below grade level. The value-added model is, therefore, limited because teacher effectiveness ratings differ substantially based on class, year, and statistical method. Researchers found that the value-added models are not suitable as a main measure for evaluating teachers and can be difficult to understand when only looking at test scores. The value-added models are useful for looking at groups of teachers for research purposes. They produce a large amount of data that can be used to show how specific teaching practice influence student learning gain but not for teacher evaluations (Briggs & Domingue, 2011; Darling-Hammond et al., 2012).

It is suggested that instructional leaders need to use an evaluation system that helps teachers improve and that supports timely and efficient personnel decisions, and that has multiple classroom observations that will provide multiple sources of data and timely feedback. The standards-based evaluations process has been found useful in predicting student gains and productive for teacher improvement. Effective evaluation systems need to integrate a set of measures that will show what teachers are doing in the classrooms with the use of observations and artifacts. It is important that principals are trained how to efficiently observe and evaluate
teachers with regular and meaningful feedback (Briggs & Domingue, 2011; Darling-Hammond et al., 2012). Teachers are also not evaluated on a regular basis, and principals are evaluating teachers by observing their classrooms for a short period of time and checking satisfactory or unsatisfactory on a basic checklist without helpful feedback (Papay, 2012). Donaldson (2009) stated that ineffective evaluations lead to a *Lake Wobegon effect* where nearly all teachers are deemed satisfactory. The *Lake Wobegon effect* can make it possible that all teachers are above average according to their evaluation, not showing any under-performing teachers according to the evaluation ratings. In reality, the principals and teachers believe that there are less effective teachers than the evaluation ratings are showing and are that there are variation in teacher effectiveness within schools. This creates a problem because, every time unsatisfactory teachers receives a satisfactory rating on their evaluation it makes it more difficult to fire the teacher based on performance. It also makes it hard to reward outstanding teachers, and can cause some outstanding teachers to become discouraged (Donaldson, 2009). The new teacher project found that less than 1% of all teachers were evaluated as unsatisfactory, but only a few teachers were dismissed because of lack of performance (Weisberg et al., 2009). One report showed that only half of all tenured teachers had been evaluated within the past two years (Cohen & Varghese, 2011). Principals can use teacher evaluations to direct the teachers on the correct path towards professional growth and improvement (“Motivating Teachers,” 2009). Frase (1992) stated that teacher recognition and feedback have been cited as important motivators for teachers. Due to Race to the Top regulations, many states have changed their teacher evaluation system to incorporate multiple measures of teacher effectiveness, such as who conducts the evaluation, timing of observations, methods for collecting data on teachers’ classroom practice, and different types of evidence rating on teacher performance. Race to the Top gives principals the
opportunity to use multiple measures to evaluate teachers through classroom observations and to provide feedback. The principals are, therefore, able to focus on instruction and learn what is going on in the classroom in order to provide quality feedback to improve instruction. Quality feedback can help the principal provide effective professional development to ensure effective teachers are in each classroom (Race to the Top, 2012). The National Board for Professional Teaching Standards has revised the teaching standards to reflect the knowledge, skills, and understanding that the teachers need, and has based the assessment of teaching on ratings that are much more stable than the value-added measures. Several states are creating a teacher evaluation model that involves multiple classroom observations and detailed written feedback to the teachers (Darling-Hammond et al., 2012).

There is universal agreement that current teacher evaluations are not effective. Duffett, Farkas, Rotherham, and Silva (2008) found that three out of four teachers stated their evaluation process has nearly no impact on their classroom performance. Most of these teachers were rated above average or superior, and tenured teachers were rarely rated as unsatisfactory. Weisberg et al. (2009) found that teacher evaluations did not recognize good teaching, left poor teaching unaddressed, and did not inform decision makers in a meaningful way. Principals, therefore, need to spend more time in the classroom supervising and evaluating teachers, helping them improve their instruction. DuFour and Mattos (2013) suggested that regular and rigorous evaluation of teachers by their principals will lead to higher levels of student learning if (a) the educator knows how to improve student learning but has not been sufficiently motivated to do so, and (b) the principal has time and expertise to improve the teacher’s professional practice through classroom observation. In addition, most teacher evaluations are satisfactory or above,
with most teachers receiving a rating of 4 or 5 even in failing schools where students could not read at grade level or meet state standards (Frase & Streshly, 1994).

In conclusion, teacher evaluations need to be more effective. Most principals use a system in which evaluations are brief and few teachers are evaluated and given satisfactory reports, usually with no effective feedback. This type of system does not help administrators or policy makers gain information about teacher effectiveness and does not provide teachers with feedback to improve their instruction (Papay, 2012).

Teacher’s Attitude Toward Evaluation

Teachers who have a positive attitude towards evaluations experience greater benefit than teachers who have a negative attitudes towards evaluations. Teachers with positive attitudes are more willing to accept constructive criticism and are more willing to improve in their job performance (Wagoner & O’Hanlon, 1968). Researchers have found a significant relationship between attitudes and behaviors. When attitudes are changed positively usually productive behavior changes. It is assumed that attitudes toward the superior, perceptions of superior, value on performance, and perceived future utility of performance can influence desired outcomes (Matthews, 1979).

Some teachers view evaluations as a threat, and others see it as a challenge. When teachers feel like they are endangered, they are more apt to have an unpleasant reaction and, therefore, will not gain insight from an evaluation. Teachers who feel challenged by evaluations are more apt to see the potential reward and want to make a change. Teachers who see evaluations as noncompetitive will have more of a negative attitude compared to teachers who are competitive. For example, non-tenured teachers are more positive about evaluation compared with tenured teachers (Wagoner & O’Hanlon, 1968). Tenured teachers might feel they should not be put on trial to demonstrate their competence, while non-tenured teachers
might be working towards tenure and, therefore, desire constructive feedback (Wagoner & O’Hanlon, 1968). Zemmeiman, Daniels, and Hyde (1993) stated that teachers’ attitudes are very important to the achievement of in-depth curricular innovation and school reform (“Motivating Teachers,” 2009). According to DuFours and Marzano (2009), the current teacher evaluation system is flawed because of infrequent feedback and unfocused, unconstructive quality instruction. Walkthroughs are a better way to evaluate teachers because educational leaders can become familiar with a teacher’s approach to making curricular and instructional decisions and can provide valuable feedback (Milanowski, 2011). However, Milanowski (2011) suggested that teachers were not persuaded by recommendations from their evaluations. This could be because their previous principal found them satisfactory or exemplary. A problem with middle and high school teacher evaluations is that some principals are not familiar with the content areas of the teachers they are observing, and the teachers do not see the value of the evaluation. Dufour & Mattos (2013) suggest that teacher evaluations are valuable, even if the leader is not familiar with the content area. The leader can look for instructional patterns that the teacher may not be aware of and provide instructional strategies to help with effective teaching (DuFour & Mattos, 2013).

Teacher’s Attitude Toward Principal

Principals’ leadership style and can impact teachers’ performance. Teachers are more satisfied with their job when the principal helps create an environment that is safe by controlling student behavioral issues, protecting teachers from external forces, providing personal and professional support, and recognizing teachers’ efforts and accomplishments (Duyar et al., 2013). A link has been found between employee attitude, behavior and performance and is one of the best predictors for relationships in the organization (Ariani, 2013). Argyris (1964)
discovered that work attitude drives employee behaviors and performance. Demands and accountability have increased for teachers and principals to improve school performances. Anderson (1991) found that principal instructional leadership practices (e.g., curriculum and instructional issues, clarification of school vision, curriculum management, supervision of teaching, effective instructional climate, and monitoring of student success) can influence teachers’ job satisfaction. Cerit (2009) found that the principals who make teachers a priority, consider their emotions, are active listeners, and provide support are more likely to have higher job satisfaction (Duyar et al., 2013).

There has been little research on understanding teachers’ perceptions of a leader’s effectiveness. It was found that teachers find a principal’s power as being imperative to ultimate decision-making that benefits the whole school, and that a principal should be able to make the final decision. Teachers also felt that leaders can have an impact on student achievement and could impact classroom curriculum (Odhiambo & Hii, 2012). Leaders have a difficult role in decision making. Teachers do not recognize a principal’s power but are dependent on it for positive classroom impact. Instructional leaders need to be able to evaluate teachers and provide feedback from classroom observations, maintain a vision for school’s future, supply adequate resources for teacher to do their jobs effectively, and improve student achievement. Teachers have stated that principals play a big role in evaluating classroom instruction, evaluating curriculum and instruction, providing instructional feedback, and are the anchor for effective school instruction. Most teachers are happy with principals taking the leading role in developing the school’s vision, but want adequate space, resources, and facilities to teach (Odhiambo & Hii, 2012).
Principals play an important role in changing teachers’ attitudes. It is important that principals and teachers work together to create an atmosphere for learning. In this type of environment, principals and teachers need to trust, share visions, and communicate concerns and issues openly. Price (2012) found that principals’ relationships with their teachers affected teachers’ satisfaction, cohesion, and commitment levels. Fullan (2001) stated that principals are a critical component in educational innovations and teachers' attitudes.

Principal’s Leadership

Stout, Kachur, and Edwards (2013) stated that effective instructional leaders are visible and accessible to teachers and students. They suggested that instructional leaders visit classrooms frequently and interact with staff members. Today, principals are expected to be instructional leaders who can meet the rigorous demands from No Child Left Behind and Race to the Top. Teacher quality is a major factor in improving student performance, with school leadership being the second contributing factor in student learning (Padgham & Chatto, 2013). School leaders are expected to have updated knowledge and help create an environment that is both pleasant for the faculty and provides a high quality education for the students (Shahmandi, Silong, Ismail, Samah, & Othman, 2011). Leaders need to help build teacher capacity and lead teachers to develop a better understanding of best teaching practices and strategies. It is important that leaders understand that all teachers will not be at the same level of understanding and development and to know the teaching philosophies of their staff in order to individually help them apply best teaching practices and increase student performance. When leaders determine what teachers know, they can develop strong professional relationships, which can then lead to conversations about teaching, data, literature, walk-throughs, and observations. These conversations can, therefore, promote professional growth. As teachers learn, leaders can
gradually release responsibility to build their capacity and guide them through practice and demonstration

A leaders are people who can enlist, mobilize, and motivate others to apply their abilities and resources to a given reason. They are able to influence others to devote their time to attaining goals (Matthews, 1979). Prominent theorists suggest that effective leaders need to focus on performance and individuality in human relations (Matthews, 1979). Baard, Deci, & Ryan (2000) and Baard et al. (2004) found that how followers perceive their managers’ autonomy-supportive behavior predicts followers’ adaptation and performance. Studies have shown that leadership can affect student outcomes indirectly by creating conditions that support teachers’ ability to teach by making sure students are at school, setting high standards, focusing on graduation rate, and encouraging students to go to college (Day & Leithwood, 2007; Hallinger & Heck, 1998; Porter; Lawler, & Hackman, 1968; Robinson, 1998).

In order for principals to incite change in teachers who have a negative attitude towards evaluations, they need to approach them in a different manner (Matthews, 1979). Leaders can help improve instructional change by building relationships in the school community. Leaders need to know that schools are complex organizations with five essential organizational supports that drive change: a coherent instructional guidance system, the school’s professional capacity, strong parent-community-school ties, a student-centered learning climate, and leaders. Teachers perceive their principal as a strong leader when they can communicate school goals through (a) interaction about their classroom performance, (b) being accessible to discuss instructional concerns, (c) allowing teachers to try new instructional strategies, and (d) clearly communicating the school’s vision (Smith & Andrews, 1989).
Teacher Accountability

Accountability has increased for teachers, requiring them to produce better educational outcomes (Matthews, 1979). Arne Duncan, U.S. Secretary of Educations, and Bill Gates support a new accountability system for teachers, which was based on research showing significant variability in teachers’ effectiveness of student learning. They proposed pay increases for effective teachers and removal of ineffective teachers. This approach was called the inspection method (Stigler, 2010). However, W. Edwards Deming (2000) found that this method was not effective. Deming stated that to see real and continuous improvement, workers themselves need to study outcomes variability and process it. Deming’s alternative to the inspection method is to start with a well-defined goal and agree on measures for charting progress toward change. Deming recommended using the plan-do-study-act (PDSA) design which involves planning an innovation, executing it, studying the results and finally, making the needed changes. According to Deming, PDSA cycles yield permanent improvements. Deming’s PDSA cycle is not widely used in the United States but is widely used in Japan. The PDSA cycle helps teachers make incremental improvements to their teaching methods over time and gives them the opportunity to learn and grow (Stigler, 2010).

The Japanese accountability system gives teachers realistic feedback on performance. They also analyze and interpret quantitative data to implement changes and facilitate improvement in schools. Implementing an accountability system, similar to Japan’s, in the United States would require a change in the culture of teaching. Teachers would have to be willing to make their work public and to engage in discussions and analysis with their colleagues. They would have to change their teaching from being an idiosyncratic art to a practice that can be studied and improved over time. The Duncan and Gates accountability
system would also have to go through a culture change. The system could be less collaborative, and teachers might try to outperform each other for higher pay (Stigler, 2010).

NCLB and Race to the Top funding favors the value-added model, which emphasized professional development, to determine teacher quality (Knight et al., 2012). Knight et al., (2012) suggested that the value-added model provides evidence that can potentially be used to reward, improve, or remove teachers. The problem is, researchers have found that value-added models are inadequate measures for evaluating individual teachers and the ratings are not sufficiently reliable or valid enough to support high-stakes, individual-level evaluations about teacher performance (Darling-Hammond et al., 2012). A Tennessee study (Sanders & Horn, 1998) found that students who had high-quality teachers over a number of years had an advantage over other students. These high-quality teachers made a big difference in closing the achievement gap between subgroups (Knight et al., 2012). However, there is a deficit in resources to produce better educational outcomes, and research findings are inconsistent in the literature. Another problem with finding better resources is that the same treatment may affect different students in different ways (Matthews, 1979).

Professional Development

Maloy (1998) read in Alvarado and Fink research report that when instructional leaders use walkthroughs to focus on improvement of instruction, they can target professional development needs. Targeting professional development might improve student performance, as student outcomes are associated with teacher quality (Abdurrahmani, 2013). Further, collaboration between teachers can be a very effective tool for professional development and can help drive the school improvement plan. However, most teachers find it hard to collaborate with other teachers because of conflicting schedules, or they find that true collaboration is challenging. Leo and Cowan (2000) and Hord (1997) identified shared vision and values as one
of the five dimensions that focus on student learning where teachers are able to connect with the improvement priorities of the school (Duke, 2008).

Governments, politicians, and school leaders need to support teachers in continuous professional development in order to keep teachers abreast of ongoing changes and ultimately help improve quality education for students. Professional development is a prerequisite for addressing ongoing changes that address the multidimensional restructuring demands of tighter accountability. Abdurrahmani (2013) found that university teacher preparation did not give new teachers enough opportunity to observe teaching in a real classroom, and did not equip students with the skills needed for working in the community. High-quality professional development can enhance a teacher’s capacity to use instruction that works. When teachers or schools do not have high-quality professional development, they can become weak in their instruction over time (Bryk, 2010). Lieberman (1995) stated that professional development encourages teachers to grow by giving them the opportunity to try new practices and to adapt new roles.

Comprehensive professional development focuses on strategies for facilitating teacher growth through professional discussions with colleagues and through peer coaching and curriculum development, but reports found that most principals and teachers see comprehensive professional development as less important than traditional staff development models (Monahan, 1996). Traditional staff development models can still be motivational if teachers are given control of their own agenda in the beginning and are given the opportunity to express themselves honestly. Moursund, Bielefeldt, and Underwood (1997) stated that principals needed to find the time to build professional development by enabling teachers to work together. Further, individual teachers need to assume responsibility for their own professional development based on the analysis of the needs of their students (“Motivating Teachers,” 2009). Good professional
development can help teachers learn the best practices and strategies to help struggling students. As classrooms become more diverse, teachers are encouraged to find better teaching strategies to teach children in poverty (Cuthrell et al., 2009).

Most teachers have limited access to professional development that is practical for classroom use, and therefore, are not keeping up with the most effective strategies to help improve instruction. Strong professional development that has learning while doing activities is more important than teacher qualification, experience, or education. Teachers are learning while doing and are able to take learned skills back to the classroom (Vernon-Feagans et al., 2010). It is also important for teachers to continually stay informed about new research on the best evidence-based practices for teaching and develop a network of professionals who can share information.

Professional development should help teachers teach, but it has been found that professional development is considered a dismal failure across the nation. The National Staff Development Council stated that, in their opinion, the current professional development practices are inadequately designed to serve as a bridge that takes teachers from where they are to where they need to go in order to improve student achievement (Downey, Steffy, English, Frase, & Poston, 2004). Orlich (1993) found little evidence that professional development improved student achievement. Fraser (2001) suggested that when principals are in the classrooms more often, teachers express higher respect for professional development. Walkthroughs can inform principals of needed professional development based on individual needs.

Self-Concept of Ability

Brookover, Thomas, and Paterson (1964) stated that self-concept is developed through interaction with significant others which, in turn, influences a person’s behavior. Brookover et al. went on to say that, when applied to a specific school learning situation, the relevant aspect of
self-concept is the person’s own perception of his/her own ability to learn and accept academic behavior and performance in terms of school achievement and influenced behavior. The Urhahne et al. (2011) study found that teachers who possess high judgment and accuracy in the classroom are more successful with student performance. The problem is that teachers’ judgments are not always accurate because they rely too much on informal assessments instead of standardized examinations. Teachers’ competence is important in making accurate judgments about student abilities. It is necessary that teachers diagnose students correctly in order to plan appropriately and evaluate instruction (Urhahne et al., 2011).

Expectancy Theory

Vroom’s (1964) expectancy theory explains that individual workers seem to adjust their own motivational levels when they are accepted by their colleagues and know that exceptional output is expected. The expectancy theory also explains that when individuals feel frustrated and unhappy, they will not have maximum performance, which can affect job performances and individual needs (Ugah & Arua, 2011). Vroom’s theory hypothesized that employee job performance is a function of the interaction between force to perform or motivation and ability. Porter and Lawler (1968) added to Vroom’s theory by hypothesizing that performance is a function of the three-way interaction among exerted effort or motivation, ability, and role perception. Vroom, Porter, and Lawler hypothesized that an individual’s actual performance is dependent upon his ability to perform. They defined the three forces of performance to determine motivational behavior. Instrumentality was hypothesized to be a function of path-goal perceptions, balancing the level of need, and having the freedom to alter one’s performance behavior (Heneman & Schwab, 1972).

Karathanos, Pettypool, & Troutt (1994) defined expectancy as the belief that people expend effort when they believe that certain levels of performance are attainable. Johnson
(1986) suggested that the expectancy theory boosts teacher motivation and that teachers are more likely to attempt their work if there is an expected reward they value ("Motivating Teachers," 2009). The expectancy theory states that the workforce needs leaders rather than employees. This theory guides individuals to realize their leadership goals and equips them with tools to influence the psychological process followers can later use continuously to create expectations resulting from views of their environments. Vroom (1964) suggested that, to increase pleasure and avoid pain, people will consciously choose a particular course of action, based upon perceptions, attitudes, beliefs, and consequence of their desires. Porter and Lawler (1968) developed a theoretical model, suggesting that the outflow of one’s effort will be determined by expectations that an outcome may be achieved by the degree of value placed on an outcome in the person’s mind. According to the expectancy theory, the three components of this theoretical model, which are expectancy, instrumentality, and valence, are all important in improving teacher motivation (Rainlall, 2004).

Valence is defined as the belief or the person’s perception that their effort will result in performance. Instrumentality is the perception that performance will result in outcomes. Instrumentality states that workers are motivated if they think performance leads to an outcome. Vroom suggested that leaders link performance to outcomes. Valence is a desirable outcome. Leaders need to determine the outcomes workers want the most.

The expectancy theory is classified as a process theory of motivation, because of the emphasis it has on individual perceptions of the environment and following connections arising as a consequence of personal expectation (Isaac, Zerbe, & Pitt., 2001). The expectancy theory uses extrinsic motivators to explain the causes for behaviors exhibited in the workplace as opposed to intrinsic motivators, where behaviors arise from consequences of internal forces and
followers make conscious choices to maximize self-interests. This theory appears to be an
equitably valid model for explaining behavioral causes in the work setting. The expectancy
theory states that leaders need to know their people well and need to be consistently
conscientious (Isaac et al., 2001).

Georgopoulos, Mahoney, and Jones (1957) extended the expectancy theory of motivation
by adding two basic probability concepts, instrumentality and expectancy. Instrumentality
provides a link between two outcomes that represent an individual’s beliefs that one outcome is
associated with another; for example, walkthroughs resulting in higher performance and
expectancy provide a probability link between behavior and outcome. Expectancy represents an
individual’s belief that the outcome is associated with the behavior; for example, walkthroughs
are perceived as positive or negative. Vroom’s model has been tested and confirmed in
experimental cross-sectional studies (Porter & Lawler, 1968; Schuster, Clark & Rogers, 1971)
and longitudinal studies (Evans, 1974; Lawler, 1968). Heneman and Schwab (1972) found that
the expectancy theory clearly places the greatest emphasis on the role of motivation as a
determinant of job performance.

Walkthroughs

Literature has shown that instructional leaders can use classroom walkthroughs as a tool
for school improvement (Hord & Sommers, 2008). Rossi (2007) suggested that teachers were
more apt to share more frequently about best practices, meaningful data, and were better
informed when their instructional leaders had meaningful conversations with the teachers after a
walkthrough. Walkthroughs can be used as a tool to enhance student and teacher learning
instead of a tool to identify and fix problems. Instructional leaders can use walkthroughs to
identify classroom teachers who can be potential leaders that can take on the role of instructional,
peer, cognitive, or literacy coaches. Lambert (2002) stated that leadership is a shared responsibility between the instructional leader and the staff. Walkthroughs can help leaders build teams instead of individuals to share the responsibility between the instructional leader and the staff (Stout et al., 2013).

In 1990 the Larry Frase and Robert Hetzel model appeared. This model had instructional leaders walking around listening and looking for better instructional practices. In 1998 the data-in-a-day model appeared. This model was used to collect data on teachers and students, and had a self-study tool kit that used data for school improvement. Downey et al., (2004), a strong advocate of classroom walkthroughs, has promoted collaboration and reflection between the instructional leader and the teacher. Further, Martinez-Miller and Cervone (2008) wrote that teachers, leadership teams, and administrators can make a difference when walkthroughs focus on coaching teachers as practitioners and examining students’ academic behavior instead of focusing on programs. On the other hand, David (2008) and Valli and Buese (2007) found in their studies that walkthroughs could have a negative effect on teacher motivation and could raise teacher anxiety levels. In addition, teachers felt like they were under the gun instead of seeing the actions as a tool for teacher and student improvement. To help reduce teacher anxiety, instructional leader needs to make sure they have clearly communicated the purpose of the walkthrough to the staff. They also need to make sure they have stated what is expected from the teacher, and be aware of what causes and how to reduce teacher anxiety. The instructional leader needs to work with teachers to develop expectations from each walkthrough (Stout et al., 2013).

Stout et al. (2013) suggested that there are many benefits to walkthroughs. They stated that walkthroughs can help increase communication between the instructional leader, teachers,
and students, and can help the instructional leader keep in contact with the teachers and students by being visible and interactive. They stated that walkthroughs help with monitoring and evaluating the effectiveness of the school’s practices and student learning, and can also help them become aware of situations that can be addressed promptly (Stout et al., 2013).

NCLB and Race to the Top requires educators to use research-based strategies, but unfortunately, neither reform has been effective with implementing this practice. Principals have been asked to improve student learning by implementing more research-based instruction. The current emphasis is to use more intensive supervision and evaluation of teachers to help them improve school performance. Race to the Top guidelines include more rigorous supervision and should include recommendations for professional development (DuFour & Mattos, 2013).

Papay (2012) stated that there has been a consensus among teachers, administrators, and policy makers that teacher evaluations are not effective and need to improve and, therefore, that teacher evaluations need to assess teacher ability to perform accurately and inform and support ongoing teacher development. Most school districts use evaluation systems where teacher evaluations do not happen on a regular basis and have been found to be cursory. Because of this, the country has asked for a reform, but districts are having problems identifying and implementing a better evaluation system (Papay, 2012).

DuFour and Marzano (2009) suggested that educational practices and systemic policies need to change in order to close the achievement gap. They recommended that principals spend less time doing supervision and more time working collaboratively with teachers, examining evidence of student learning, and helping teachers develop strategies to improve student performance (Dufour & Marzano, 2009). Principals can monitor teacher performance by conducting classroom observations and instructional conferences (Hallinger & Murphy, 1985).
Blasé (1991) found that instructional conferences with teachers have an effect on classroom instruction. They stated that teachers believed that good principals used the five strategies during a conference after a classroom observation: (a) made suggestions for instructional improvement, (b) gave feedback on classroom observation, (c) used inquiry to discover what teachers are thinking, (d) modeled good instruction and (e) solicited advice and opinions from teachers.

However, creating effective walkthroughs can be difficult. Lemons and Helsing (2009) found that it took time for principals to build their sense of efficacy as an instructional leader. After a two-year report, principals stated that they experienced a deeper connection to what is going on in the classroom and were more comfortable with conferences after the walkthrough. The teachers stated that despite the intense anxiety and stress that emerged in the beginning, it was not a problem at the end of the second year (Lemons & Helsing, 2009). Spending more time in the classroom can, therefore, provide valuable information. However, Lemons and Helsing suggested that most principals feel anxious about finding time to do regular classroom visits and the negative reactions they can receive from the teachers.

Lemons and Helsing (2009) assessed two school districts that implemented walkthroughs and demonstrated different results. After collecting and analyzing data to find Baxter School District’s core problems, they implemented walkthroughs. However, the principals could not agree on how walkthroughs could help them. Baxter teachers had mixed feelings from excitement to outrage and had a lot of questions that could not be answered. The district realized that they did not have all the answers but could work as a team to solve the problems. After two years of struggles, they noticed a change. Principals started looking at how teachers implemented particular strategies. The teachers started using a common language and
communicating with each other. The district used data to look at schedules, professional
development, and evaluation systems to align district goals (Lemons & Helsing, 2009).

The two-year study on the effects of walkthroughs on improvement in Alexander Public
Schools identified tangible improvement in teaching and learning compared to the Baxter
District, who had more favorable gains. This could be because the Baxter School district took
the time to target the district’s problem before implementing walkthroughs compared to the
Alexander District that quickly acted without answering the larger questions. The Baxter District
took the time to answer needed questions to help teachers change practices and improve student
learning by implementing strategies. The Alexander Public Schools implemented walkthroughs
with little recognition of the initiative’s systemic implication. They treated the walkthroughs as
a discrete activity, disconnected from other improvement efforts and organizational practices.
The leaders focused on short-term issues and misunderstood longer term implications. They
were not aligned with various conditions, competencies, and cultural dimensions necessary for
effective walkthroughs (Lemons & Helsing, 2009).

Many schools are talking about adopting walkthroughs as a method to help teachers
improve academic performance. Heifetz (1994) stated that most principals are using
walkthroughs as technical solutions to address student and teacher academic performance, and
argues that walkthroughs are technical and adaptive. Technical problems are problems to which
teachers and principals can easily provide a solution. In contrast, adaptive problems are the ones
that a single expert cannot solve and may require communities to alter values and beliefs as they
learn to work in a new way. Many schools are talking about walkthroughs because the evidence
is staggering, and it is easier to talk about than do successfully. There are currently a lack of
technical solutions to produce dramatic change in the schools and classrooms. There is no off-
the-shelf product that is going to address individual schools. Principals and teachers need to understand the problem they are trying to improve before starting any improvement plan (Lemons & Helsing, 2009). Deming (2000) stated that leaders need to drive out fear from their organization before they see effective collaboration. When teachers foster fear, they are more concerned with competition rather than collaboration. A research-based program should not be tied to sanctions and punishments intended to generate fear (DuFour & Mattos, 2013).

Downey et al. (2004) stated that the principal’s main role as an instructional leader is to improve student achievement and that the only way to improve student achievement is through a teacher’s actions in the classroom. Hall and Hord (2006) found that brief, one-on-one, focused feedback was the most powerful staff development approach to change behavior. Downey et al. (2004) suggested that administrators use the walkthrough approach with relative dialogue that consists of three to five minute conversation with teachers that lead them to future thought about best practices and school improvement. The ultimate goal of a walkthrough is to help teachers examine their own practices and become reflective, self-directed, self-analytical, and interdependent. The goal is to help teachers continually and willingly improve their teaching practices, become committed to teaching the district’s curriculum, and to work towards higher student achievement.

Collaborative, reflective dialogue classroom visits help build on the fact that change is intrapersonal. Leaders need to focus on the use of intrinsic motivational strategies that will communicate with the teacher about his or her decisions versus telling the teacher what to do. The leader needs to recognize the teacher’s level of experience and readiness for self-direction. The leader needs to engage in dialogue that moves the teacher to self-analysis and encourages collegial interactions. Downey et al. (2004) stressed the important of self-analysis after
attending training with Sue Wells Welsh. She used conversations with self-reflection to motivate staff toward change, instead of telling or selling an idea. Her model suggested a more collaborative and independent practice which focused on reflections. Downey et al. stated that the goal of a supervisor is not to change teacher behavior but rather to influence a teacher’s thinking so the teacher has a desire to change his or her own behavior. The goal is that the teachers’ thinking will influence the teachers’ behavior, which in turn influences student performance. Further, the teacher’s thinking can influence the teacher’s behavior which might influence the leader’s thinking. Multiple observations can provide minimum information.

Downey et al. has a five-step approach. The steps are student orientation to the work, curricular decision points, instructional decision points, “walk-the-walls,” and safety and health issues.

Reflective Conversations

It is recommended that instructional leaders have follow-up conversations with the teachers after a walkthrough to assist them in engaging and thoughtful conversations. The goal for the leader is to differentiate the coaching approach to help move teachers through dependent, independent, and interdependent stages. The ultimate outcome of these conservations is to treat the teachers as participants in a collaborative, interactive conversation. In a dependent or direct approach, the leader gives feedback to the teacher and then teaches the teacher in the feedback conversation. In an independent or indirect approach, the leader invites the teacher to reflect on the short segment of observed teaching and follows up on those teaching practices that the teacher brings up. In the independent or collegial approach, the leader poses reflective questions in a conversation and engages in further dialogue.

The one way to provide direct feedback is through notes. Notes are a one-way conversation-like adult to child or boss to employee. The bosses is telling the employees what
they think of their work. This approach could reinforce the boss-employee relationship rather than encourage collaborative interaction. Blasé (1989) found that teachers liked receiving notes as an external affirmation of their work. However, there is not enough creative thought and employees rely on the boss’s approval. When leaders leave notes that are negative, teachers can misinterpret, which might hinder teacher improvement. A better approach is a two-way conversation where the leader can clarify ideas, influence thought, and respond to the teacher’s reactions. A note does not stretch a person’s cognitive thinking, is short-lived, and seldom increases long-term growth. In addition, there is little time spent to prepare a culture of reflective conversations. This approach will backfire if the teachers feel like they are being interrogated. The leader needs to understand that thoughtful questions involve the principal knowing how much dissonance a teacher can handle. The questions should be asked in a positive way that can cause some discomfort to promote cognitive growth, but not so overwhelming that is seems like a punishment (Downey et al., 2004). Downey et al. (2004) stated that walkthroughs might be less effective if leaders do not have meaningful conversations following walkthroughs. They indicated that when instructional leaders communicated to teachers through written statements instead of in-person conversations, the teacher might react negatively and demonstrate less improvement.

Conclusion

Research has shown that teacher quality is a major factor in improving students’ outcomes (Padgham & Chatto, 2013). The current trend is that school principals need to be instructional leaders (Fullan, 2009). In the 1980’s, walkthroughs were mainly used to monitor teacher’s daily performance (Downey et al., 2004). Today, leaders are using walkthroughs to better understand staff concerns by collecting data and focusing on instructional improvement
and staff development training (Pitler & Goodwin, 2008). Administrators who are literacy leaders can help build teacher capacity, or perceived abilities, by helping teachers develop a strong educational framework and understand the best educational practices (Padgham & Chatto, 2013). The two major purposes of teacher evaluations are improving instruction and making personnel decisions. Formative evaluation provides feedback to the teachers and encourages improvement, and summative evaluation is used to select teachers and hold them accountable for meeting basic skills. Teachers have a more positive attitude toward formative evaluation than summative evaluations (Airasian, 1993).

Stout (2013) suggested that there is a limited amount of research on walkthrough and teacher motivation. The research shows a strong correlation between walkthrough and school improvements, but there is not enough quality research to determine the impact of the walkthroughs on school improvement. Research has shown that that walkthroughs can be effective when appropriate improvement strategies and tools, such as peer coaching, mentoring, data-driven decision-making, and group analysis of student’s work are used (Stout et al., 2013). There is a gap in the literature that shows walkthroughs as being reliable with an emphasis on school improvement. Principals have been doing walkthroughs for years, but there is a shortage in literature that shows how walkthroughs affect teacher motivation. Most information on walkthroughs with an emphasis on school improvement has been unreliable (Horng & Loeb, 2010). There is a growing agreement that evidence of teachers’ evaluations should include a component of student learning. However, current research suggests that value-added models ratings are not sufficiently reliable or valid to support high-stakes, individual-level decisions about teachers (Darling-Hammond et al., 2012). Multiple walkthroughs throughout the year can provide the instructional leader with a snapshot of what is and is not working in their building.
The collected data can be used to improve teacher and student performance. Effective walkthroughs can help teachers with curriculum alignment, better communication, and can identify professional development needs, which ultimately might improve the overall school performance (Stout et al., 2013).
CHAPTER THREE: METHODS

Design

A pretest-posttest control group experiential design was used for this study. The purpose of this pretest-posttest control group experimental study was to examine the effect of classroom walkthroughs on middle school teacher motivation. The pretest-posttest control group experimental design was chosen because the pretest-posttest control-group experimental design effectively controls for eight threats to internal validity that were originally identified by Campbell and Stanley (1963) to create a strong level in internal validity. These threats to internal validity include the following: history, maturation, testing, instrumentation, statistical regression, differential selection, experimental mortality, and selection-maturation interaction. The pretest-posttest control group experiential design looks to see if extraneous variables have brought about changes between the pretest and posttest. If changes have occurred, they would be reflected in the scores of the experimental group that received the treatment. Using this design gave the researcher the tools needed to filter out experimental noise and confounding variables. This design was the optimal choice because the intent of the design is to keep the experiences of the experimental and control groups as identical as possible (Gall, Gall, & Borg, 2007).

The dependent variables, Teacher Motivation Diagnostic Questionnaire (TMDQ) were teachers’ self-concept of ability to affect student achievement, teachers’ attitude toward the principal, teachers’ beliefs of the principal’s value and expectations for achievement, and teachers’ belief about future utility of efforts as measured by the TMDQ. The independent variable was walkthroughs and no walkthroughs. The treatment group received six walkthroughs with conferences, was defined as several two to three-minute classroom visits, during which principals gathered information and engaged in high-quality conversations after
their walkthrough about curricular and instructional teaching practices, decisions that teachers are making, and how these practices impacted student learning. The control groups receive no walkthroughs with conferences. The covariate was pretest scores on the TDMQ.

Research Questions

RQ1: Is there a statistically significant difference in (overall) teacher motivation scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control group), while controlling for pre-test (overall) teacher motivation scores?

RQ2: Is there a statistically significant difference in attitude toward principal’s (AP) scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (AP) pre-test scores?

RQ3: Is there a statistically significant difference in self-concept (SC) of ability scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (SC) pre-test scores?

RQ4: Is there a statistically significant difference in beliefs about the principal’s value and expectations (PE) between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (PE) pre-test scores?

RQ5: Is there a statistically significant difference in the teacher’s beliefs about the future utility (FU) of their efforts between those who receive the walkthrough with conferences
(treatment) and those who do not receive the walkthrough with conferences (control), while controlling for (FU) pre-test scores?

Null Hypotheses

The null hypotheses for this study are listed below.

H₀₁: There is no statistically significant difference in (overall) teacher motivation scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control group), while controlling for pre-test (overall) teacher motivation scores.

H₀₂: There is no statistically significant difference in attitude toward principal’s (AP) scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (AP) pre-test scores.

H₀₃: There is no statistically significant difference in self-concept (SC) ability scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (SC) pre-test scores.

H₀₄: There is no statistically significant difference in beliefs of principal’s value and expectations (PE) between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (PE) pre-test scores.

H₀₅: There is no statistically significant difference in the teacher’s beliefs about future utility (FU) of their efforts between those who receive the walkthrough with conferences
(treatment) and those who do not receive the walkthrough with conferences (control), while controlling for (FU) pre-test scores.

Participants and Settings

The participants for the study were a convenience sample consisting of language arts and math teachers of Grades 5 to 8, from six middle schools located in rural Southwest Virginia, during the fall semester of 2014. The six schools were public schools with a diverse population ranging from low-to-upper income levels. The school district’s population was 96% White and 4% minority. Fifty-two percent of the population was male and 48% female. The school district had a total of 5,895 students and a free or reduced lunch rate of 55% as of September 30, 2013. Three of the schools were true middle schools with Grades 5 to 8, and three of the schools are elementary schools with grades pre-K to 8. The six schools were chosen because of the author’s professional relationship with the teachers and administrators. There were six male principals and 68 teachers with 32 in the experimental group and 36 in the control group. The sample size was sufficient enough to provide a medium effect size with a statistical power of .70 at a .05 alpha level (Gall et al., 2007). This study included 34 females and two males teaching fifth through eighth grade language arts, and 11 males and 21 females teaching fifth through eighth grade math for a total of 68 participants. Age of the sample ranged from 28 to 61 years old. All participants were White, except for one African American teacher. See table 1 for frequency distribution of participants. See table 2 for frequency distribution of participants in the treatment group. See table 3 for frequency distribution of participants in the control group.
Table 1

Frequency Distribution of Participants

<table>
<thead>
<tr>
<th>Grade</th>
<th>Language Arts (n = 36)</th>
<th>Males</th>
<th>Females</th>
<th>Math (n = 32)</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

The treatment group consisted of a total of 32 Participants [see table 2].

Table 2

Frequency Distribution of Participants Treatment Group

<table>
<thead>
<tr>
<th>Grade</th>
<th>Language Arts (n = 14)</th>
<th>Males</th>
<th>Females</th>
<th>Math (n = 18)</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

The control group consisted of 36 Participants [see table 3].

Table 3

Frequency Distribution of Participants Control Group

<table>
<thead>
<tr>
<th>Grade</th>
<th>Language Arts (n = 22)</th>
<th>Males</th>
<th>Females</th>
<th>Math (n = 14)</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Instrumentation

The instrument for this study was the *Teacher Motivation Diagnostic Questionnaire* (TMDQ) developed by Ken Matthews from the University of Georgia. The TMDQ was administered as a paper and pencil questionnaire. This instrument was administered at the pretest and the posttest. The purpose of this instrument was to measure the four aspects of teacher motivation: (a) attitude toward principal, (b) self-concept of ability, (c) future utility of improved student academic performance, and (d) beliefs about the principal’s expectations.

The TMDQ was developed in the 1970s when Ken Matthews wrote on the subject of student achievement, Improving Academic Performance (Matthews, 1979), and the Principal’s Influence on Student Achievement (Matthews & Brown, 1976). The first three factors to affect teacher’s motivation to be addressed were: (a) the teacher’s self-concept of ability to affect student achievement, (b) the teacher’s attitude toward the principal, and (c) the teacher’s beliefs of the principal’s value and expectations for achievement. In 1979, the fourth factor, a teacher’s beliefs about future utility of improved performance, was added. After the four factors were identified, Matthews (1982) developed the TMDQ.

The TMDQ instrument consists of 16 questions, with four questions for each factor. Factor 1, (SE), has four questions, Questions 4, 8, 9, and 13. Factor 2, (AP), has four questions, Questions 2, 6, 11, and 15. Factor 3, (PE), has four questions, Questions 1, 5, 12, and 16. Factor 4, (FU), consists of Questions 3, 7, 10, and 14. There was no reverse scoring for this instrument.

The TMDQ uses an Osgood Semantic Differential format with a 7-point scale (Osgood, 1952) and uses adjective descriptors specifically geared toward teacher motivation. The Osgood Semantic Differential scale is composed of polar opposite objectives separated by 7-point rating scale from bad to good (see Appendix A for a guide on semantic differential scales). Higher
scores indicated that the teacher was more motivated and lower scores showed the teacher had a lower motivation level.

The reliability and validity of the TMDQ was well established by Matthews and Holmes (1982) with a Cronbach’s alpha of .90. National and state norms were also established (Callaway, 1993; 1992; McNeely, 1996). Callaway (1993) established that questionnaire had face and concurrent validity, and found that the TMDQ correlated with the Purdue Teacher Opinionnaire section on teacher and principal relationship (see Appendix B for permission to use the instrument).

The Osgood’s Semantic Differential scale measures attitudes toward a concept or person on a good–bad continuum. Teachers were asked to respond to each of the 16 questions by marking one circle per question that best represents their opinion on the TMDQ using an Osgood’s Semantic Differential scale. Factor scores on the scale were calculated by adding up the numerical value of the scales endorsed. The maximum score would be 42 and the minimum 6 on a set of semantic scales, which are bipolar and 7 points apart. The closer the score is to 0, the more neutral the teacher was on the individual factor. The teachers answered the questions by putting a mark on one of the 7 points along each dimension. To safeguard against the subjects developing some type of response bias (responding to all factors with the same ratings), the polarity of the scales could be reversed.

The data were analyzed by factor analytic procedures to determine possible common factors which could be identified in the collection of semantic scales. The blanks were numbered from 1 to 7 and then the responses were averaged for each dimension. The average was plotted on a form and provides a profile of the meaning of the target concept (see Appendix C for teacher instructions for completing the TMDQ).
The researcher created principal packets for each participating principal during the summer. Each principal packet contained a cover letter for the principal (see Appendix D) and instructions for distribution of teacher packets (see Appendix E). Each teacher packet contained a teacher letter (see Appendix F). The researcher delivered copies of the teacher’s packets to each participating principal before pretest and after treatment to obtain posttest scores. The principal gave each participating language arts and math teachers in Grades 5 to 8 a copy of TMDQ to complete. It did not take more than five to 10 minutes to answer the 16 questions, and no additional explanation was needed. Teachers placed their competed surveys in an envelope and gave them to the researcher to be scored. All responses on the questionnaire were anonymous, but each questionnaire contained a school number for tracking the rate of return. No individual responses were identified and no scores were reported for individual schools.

Procedures

The researcher initiated the study by getting a written permission from the division superintendent (see Appendix G). The researcher contacted the six middle school principals during the summer to solicit participation in the study. Each participating principal received a copy of the book, *The Three-Minute Classroom Walk-Through: Changing School Supervisory Practice one Teacher at a Time* (Downey, Steffy, English, Frase, & Poston., 2004), a practical, time-saving alternative that impacts student achievement by cultivating self-reliant teacher who are continually improving their practices. The researcher requested Institutional Review Board (IRB) approval (Reference No. 1981.110514, see Appendix H). The researcher also contacted the language arts and math teachers in Grades 5 to 8 for recruitment purposes. After IRB approval, the researcher issued letters and consent forms, with an outline of the study, to the participating principals (see Appendices I and J for principal and teacher consent forms). The
The researcher collected all forms from the teachers and principals. The researcher trained all participating principals on how to use TalentEd, walkthrough software, reviewed effective teaching strategies, and discussed the procedures of conducting walkthrough. The researcher randomly assigned teachers to Group A, the experimental group, or Group B, control group, with the Microsoft Excel random function. The researcher did not inform the teachers were not informed about which group they were assigned to. Group A received five, two to three-minute walkthroughs during the first semester, with principals providing feedback about best teaching practices after each walkthrough. Group B did not receive any walkthroughs. Both groups were given a pretest and posttest at the beginning of the study and at the end of the study to see if there were any significant differences between teachers who underwent walkthroughs and those who did not. The pretest was given one week before any walkthroughs were administered. The researcher collected pretest and entered data into SPSS. Treatment was administered to Group A during the first semester. After walkthroughs had been administered, all participants took a posttest during Week 3 in December. Then, the researcher collected the posttest data and entered it into SPSS.

Data Analysis

In this study, the null hypotheses indicated a need to examine the mean levels of the four aspects of teacher motivation. These four levels included (a) attitude toward principal, (b) self-concept of ability, (c) future utility of improved student academic performance, and (d) beliefs about the principal’s expectations. The dependent variable was posttest scores on the TMDQ, and the independent variable was the two groups that either did or did not receive the walkthroughs with conferences. The controlling factor was the covariate pretest scores on the TMDQ. ANCOVA was used to analyze the data.
The researcher used SPSS to compile data collected from the pretest and posttest. After entering the data into SPSS, preliminary analyses were conducted to examine the assumptions of normality using box and whisker plots, homogeneity of variances using Levene’s test, and to make sure there were no extreme outliers using boxplots for the experimental and control groups (Gall et al., 2007).

As part of the ANCOVA, data screening included testing the homogeneity-of-slopes assumption and the assumption concerning whether the relationship was linear between the pretest and post-test on each group. A significant level of alpha less than .05 was used as an indicator of rejecting null hypotheses. This level of statistical significance was selected on the basis of the consequences of making a wrong conclusion about the hypotheses. The effect size was measured and discussed in terms of the partial eta-squared statistic (Gall et al., 2007).

ANCOVA was selected because it adjusts the posttest means for initial differences in pretest means. The ANCOVA helped compensate for initial group differences on the variables related to the dependent variable, and helped to reduce within-group error variance, allowing a more accurate assessment. This technique was used to determine if the within-subject difference in the experimental group is reliably different from the within-subject difference in the control group (Gall et al., 2007). This study used a confidence interval of 95% which was considered a relatively conservative criterion by statisticians, and therefore, a good choice for this study.
CHAPTER FOUR: FINDINGS

Research Questions

RQ1: Is there a statistically significant difference in (overall) teacher motivation scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control group), while controlling for pre-test (overall) teacher motivation scores?

RQ2: Is there a statistically significant difference in attitude toward principal’s (AP) scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (AP) pre-test scores?

RQ3: Is there a statistically significant difference in self-concept (SC) of ability scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (SC) pre-test scores?

RQ4: Is there a statistically significant difference in beliefs about the principal’s value and expectations (PE) between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (PE) pre-test scores?

RQ5: Is there a statistically significant difference in the teacher’s beliefs about the future utility (FU) of their efforts between those who receive the walkthrough with conferences (treatment) and those who do not receive the walkthrough with conferences (control), while controlling for (FU) pre-test scores?
Null Hypotheses

The null hypotheses for this study are listed below.

H₀₁: There is no statistically significant difference in (overall) teacher motivation scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control group), while controlling for pre-test (overall) teacher motivation scores.

H₀₂: There is no statistically significant difference in attitude toward principal’s (AP) scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (AP) pre-test scores.

H₀₃: There is no statistically significant difference in self-concept (SC) ability scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (SC) pre-test scores.

H₀₄: There is no statistically significant difference in beliefs of principal’s value and expectations (PE) between teachers who receive the walkthrough with conferences (treatment) and teachers who do not receive the walkthrough with conferences (control), while controlling for (PE) pre-test scores.

H₀₅: There is no statistically significant difference in the teacher’s beliefs about future utility (FU) of their efforts between those who receive the walkthrough with conferences (treatment) and those who do not receive the walkthrough with conferences (control), while controlling for (FU) pre-test scores.
Descriptive Statistics

Table 4 displays means and standard deviations that were calculated for all variables used in the investigation. For these variables, all mean scores can be interpreted as a function of the measurement metric. For example, the average Teacher Motivation Diagnostic Questionnaire (TMDQ) overall scale score in the pre-test time period (i.e., Time 1) is 5.893 on a scale of one to seven, where higher scores indicate higher levels of agreement with the overall scale. It should be noted that all Time 1 scores reflect pre-test time period scores, while all Time 2 scores reflect post-test time period scores.

Table 4

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher Motivation Diagnostic Questionnaire Overall Scale, Time 1</td>
<td>5.893</td>
<td>0.739</td>
</tr>
<tr>
<td>Attitude Towards Principal Scale, Time 1</td>
<td>6.055</td>
<td>1.099</td>
</tr>
<tr>
<td>Principal Expectations Scale, Time 1</td>
<td>6.276</td>
<td>0.811</td>
</tr>
<tr>
<td>Future Utility Scale, Time 1</td>
<td>5.934</td>
<td>1.197</td>
</tr>
<tr>
<td>Self-Concept of Ability Scale, Time 1</td>
<td>5.308</td>
<td>0.844</td>
</tr>
<tr>
<td>Teacher Motivation Diagnostic Questionnaire Overall Scale, Time 2</td>
<td>5.825</td>
<td>0.755</td>
</tr>
<tr>
<td>Attitude Towards Principal Scale, Time 2</td>
<td>6.085</td>
<td>1.120</td>
</tr>
<tr>
<td>Principal Expectations Scale, Time 2</td>
<td>6.336</td>
<td>0.763</td>
</tr>
<tr>
<td>Future Utility Scale, Time 2</td>
<td>5.647</td>
<td>1.516</td>
</tr>
<tr>
<td>Self-Concept of Ability Scale, Time 2</td>
<td>5.231</td>
<td>0.726</td>
</tr>
</tbody>
</table>

Note: n=68.

Table 5 displays adjusted means and standard errors study variables Time 2 that were calculated for all variables used in the investigation. Adjusted mean scores provide an estimate for post-test scores (i.e., Time 2 scores) after controlling for pre-test scores. Adjusted means for all post-test scores are presented for both the treatment group (i.e., the group which received the classroom walkthrough with conferences) and the control group (i.e., the group which did not receive the classroom walkthrough with conferences). As before in Table 4 above, all adjusted
mean scores can be interpreted as a function of the measurement metric for a given variable in a given condition. For example, the adjusted mean for Teacher Motivation Diagnostic Questionnaire (TMDQ) overall scale score in the pre-test time period (i.e., Time 1) for the treatment group is 5.753 on a scale of one to seven, where higher scores indicate higher levels of agreement with the overall scale.

Table 5

Adjusted Means and Standard Errors Study Variables, Time 2

<table>
<thead>
<tr>
<th>Study Variables</th>
<th>Adj. Mean</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher Motivation Diagnostic Questionnaire Overall Scale, Time 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>5.888</td>
<td>0.122</td>
</tr>
<tr>
<td>Treatment group</td>
<td>5.753</td>
<td>0.129</td>
</tr>
<tr>
<td>Attitude Towards Principal Scale, Time 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>6.067</td>
<td>0.179</td>
</tr>
<tr>
<td>Treatment group</td>
<td>6.105</td>
<td>0.19</td>
</tr>
<tr>
<td>Principal Expectations Scale, Time 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>6.424</td>
<td>0.127</td>
</tr>
<tr>
<td>Treatment group</td>
<td>6.237</td>
<td>0.135</td>
</tr>
<tr>
<td>Future Utility Scale, Time 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>5.753</td>
<td>0.244</td>
</tr>
<tr>
<td>Treatment group</td>
<td>5.528</td>
<td>0.259</td>
</tr>
<tr>
<td>Self-Concept of Ability Scale, Time 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>5.316</td>
<td>0.117</td>
</tr>
<tr>
<td>Treatment group</td>
<td>5.135</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Note: n=68.

Data Screening. Data screening was conducted on each group’s dependent variable for data inconsistencies, outliers, and normality. The researcher sorted the data for each of the dependent variables and scanned for data inconsistencies. Five respondents within the dataset had systematic missing data (i.e., more that 50% missing data on series of questions) and, as
such, were eliminated from the analyses. This reduced the dataset from 73 valid responses to 68 valid responses, which represents an attrition of 6.8%. Next, Box and Whiskers plots were then used to detect for outliers on each of the post-test variables. Outliers were detected in the TDMQ Overall scale at Time 2, the TDMQ AP scale at Time 2, and the TDMQ PE scale at Time 2. See Figure 1 through Figure 5 for the box and whisker plots for each of the post-test variables.

Given the relatively small sample size, it is the case that deleting the outliers would reduce the overall power of any statistical tests. In other words, deleting any data from the dataset (such as outliers) would reduce the chances of detecting a statistically significant result. As such, the researcher decided to leave in outliers within the data.

Outliers were checked for all Time 1 and all Time 2 variables via box and whisker plots. These plots are shown below; outliers are noted.
Figure 1. Box and Whisker Plot for TMDQ Overall Scale, Time 1.

As can be seen in Figure 1, no outliers are present for the TMDQ Overall Scale at Time 1.

Figure 2. Box and Whisker Plot for TMDQ Overall Scale, Time 2.

As can be seen in Figure 2, two outliers are present for the TMDQ Overall Scale at Time 2.
Figure 3. Box and Whisker Plot for TMDQ AP Scale, Time 1.

As can be seen in Figure 3, two outliers are present for the TMDQ AP Scale at Time 1.

Figure 4. Box and Whisker Plot for TMDQ AP Scale, Time 2.

As can be seen in Figure 4, five outliers are present for the TMDQ AP Scale at Time 2.
As can be seen in Figure 5, two outliers are present for the TMDQ PE Scale at Time 1.

As can be seen in Figure 6, two outliers are present for the TMDQ PE Scale at Time 2.
Figure 7. Box and Whisker Plot for TMDQ FU Scale, Time 1.

As can be seen in Figure 7, two outliers are present for the TMDQ FU Scale at Time 1.

Figure 8. Box and Whisker Plot for TMDQ FU Scale, Time 2.

As can be seen in Figure 8, no outliers are present for the TMDQ FU Scale at Time 2.
Figure 9. Box and Whisker Plot for TMDQ SC Scale, Time 1.

As can be seen in Figure 9, no outliers are present for the TMDQ SC Scale at Time 1.

Figure 10. Box and Whisker Plot for TMDQ SC Scale, Time 2.

As can be seen in Figure 10, no outliers are present for the TMDQ SC Scale at Time 1.
Normality was checked via the Kolmogorov-Smirnov test. These tests were performed for all Time 1 and Time 2 variables. Results of the Kolmogorov-Smirnov tests are shown in Table 6.

Table 6

Tests of Normality, Kolmogorov-Smirnov Tests

<table>
<thead>
<tr>
<th>Scale, Time</th>
<th>Statistic</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDQ Overall</td>
<td>0.093</td>
<td>68</td>
<td>0.200</td>
</tr>
<tr>
<td>TMDQ Overall</td>
<td>0.095</td>
<td>68</td>
<td>0.200</td>
</tr>
<tr>
<td>AP</td>
<td>0.195</td>
<td>68</td>
<td>0.000</td>
</tr>
<tr>
<td>AP</td>
<td>0.207</td>
<td>68</td>
<td>0.000</td>
</tr>
<tr>
<td>PE</td>
<td>0.186</td>
<td>68</td>
<td>0.000</td>
</tr>
<tr>
<td>PE</td>
<td>0.192</td>
<td>68</td>
<td>0.000</td>
</tr>
<tr>
<td>FU</td>
<td>0.186</td>
<td>68</td>
<td>0.000</td>
</tr>
<tr>
<td>FU</td>
<td>0.195</td>
<td>68</td>
<td>0.000</td>
</tr>
<tr>
<td>SC</td>
<td>0.134</td>
<td>68</td>
<td>0.004</td>
</tr>
<tr>
<td>SC</td>
<td>0.128</td>
<td>68</td>
<td>0.007</td>
</tr>
</tbody>
</table>

As can be seen in Table 5, all variables except the TMDQ Overall Scale at Time 1 and 2 violate the assumption of normality.

Assumptions. Several tests were conducted to assist in the analysis of the data. An Assumption of Linearity was conducted to examine whether there was a linear trend within each of the TMDQ dependent variables (the TMDQ Overall score, the TMDQ AP score, the TMDQ PE score, the TMDQ FU score, and the TMDQ SC score). Figures 11 through 15 show the normal scatter plots of these variables. It is noted that every plot compared a Time 1 variable to a Time 2 variable.
As can be seen in Figure 11, the classic *cigar shape* is somewhat present.

Figure 11. Scatter plot for TMDQ Overall Scale, Time 1 and TMDQ Overall Scale, Time 2.

As can be seen in Figure 12, the classic ‘cigar shape’ is not present.

Figure 12. Scatter plot for TMDQ AP Scale, Time 1 and TMDQ AP Scale, Time 2.
As can be seen in Figure 13, the classic ‘cigar shape’ is not present.

As can be seen in Figure 14, the classic ‘cigar shape’ is not present.
An Analysis Covariance (ANCOVA) was used to test the null hypothesis that examined TDMQ scores at Time 2 for those participants who received the walkthrough versus those who did not receive the walkthrough while controlling for TMDQ scores at Time 1. The ANCOVA required that the assumption of homogeneity of variance be met. Levene’s test examined the assumption of homogeneity of variance for all dependent variables. Violations of this assumption were present for the TMDQ Overall scale, the TMDQ SC scale and the TMDQ PE scale. The assumption of homogeneity was not met in all cases. See Table 7 for all of the Levene’s test results. Even though there were violations of homogeneity, the research continued with the analysis because the ANCOVA is considered robust enough for the violations.
Table 7

Levene’s Test for All Dependent Variables

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDQ Overall Scale</td>
<td>4.816</td>
<td>1</td>
<td>66</td>
<td>0.032</td>
</tr>
<tr>
<td>TMDQ AP Scale</td>
<td>0.728</td>
<td>1</td>
<td>66</td>
<td>0.397</td>
</tr>
<tr>
<td>TMDQ FU Scale</td>
<td>2.466</td>
<td>1</td>
<td>66</td>
<td>0.121</td>
</tr>
<tr>
<td>TMDQ SC Scale</td>
<td>5.230</td>
<td>1</td>
<td>66</td>
<td>0.025</td>
</tr>
<tr>
<td>TMDQ PE Scale</td>
<td>4.051</td>
<td>1</td>
<td>66</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Table 8

Assumption of Homogeneity of Slopes Test for All Dependent Variables

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDQ Overall Scale</td>
<td>0.434</td>
<td>1</td>
<td>66</td>
<td>0.513</td>
</tr>
<tr>
<td>TMDQ AP Scale</td>
<td>0.167</td>
<td>1</td>
<td>66</td>
<td>0.684</td>
</tr>
<tr>
<td>TMDQ FU Scale</td>
<td>0.003</td>
<td>1</td>
<td>66</td>
<td>0.955</td>
</tr>
<tr>
<td>TMDQ SC Scale</td>
<td>1.488</td>
<td>1</td>
<td>66</td>
<td>0.228</td>
</tr>
<tr>
<td>TMDQ PE Scale</td>
<td>0.700</td>
<td>1</td>
<td>66</td>
<td>0.407</td>
</tr>
</tbody>
</table>
Results

Null Hypothesis One

A one-way analysis of covariance (ANCOVA) was conducted. The independent variable included a treatment group and a control group. The dependent variable was TMDQ Overall score at Time 2. The covariate was TMDQ Overall score at Time 1. A preliminary analysis evaluating the homogeneity-of-slopes assumption indicated that the relationship between the covariate and the dependent variable did not differ significantly as a function of the independent variable, $F(1, 67) = 1.009, MSE = .582, p = .319, \text{partial } \eta^2 = .016$. Levene’s test for homogeneity of variance was statistically significant, $F(1, 66) = 4.816, p = .032$. The ANCOVA was non-significant, $F(1,67) = .569, MSE = .529, p = .453$. The strength of relationship between the independent variable and the dependent variable was very weak, as assessed by a partial η^2, with the independent variable accounting for .9% of the variance in the dependent variable, holding constant TMDQ Overall score at Time 1. The means for the treatment group and control group were adjusted for initial differences. The treatment group adjusted mean was 5.753, while the control group adjusted mean was 5.888. Follow-up tests of these means were unnecessary given the statistically non-significant ANCOVA results.

Null Hypothesis Two

A one-way analysis of covariance (ANCOVA) was conducted. The independent variable included a treatment group and a control group. The dependent variable was TMDQ AP score at Time 2. The covariate was TMDQ AP score at Time 1. A preliminary analysis evaluating the homogeneity-of-slopes assumption indicated that the relationship between the covariate and the dependent variable did not differ significantly as a function of the independent variable, $F(1, 67) = .108, MSE = 1.160, p = .743, \text{partial } \eta^2 = .002$. Levene’s test for homogeneity of variance was
statistically non-significant, \(F(1, 66) = .728, p = .397 \). The ANVOCA was non-significant, \(F(1,67) = .021, MSE = 1.144, p = .886 \). The strength of relationship between the independent variable and the dependent variable was very weak, as assessed by a partial \(\eta^2 \), with the independent variable accounting for .6% of the variance in the dependent variable, holding constant TMDQ AP score at Time 1. The means for the treatment group and control group were adjusted for initial differences. The treatment group adjusted mean was 6.105, while the control group adjusted mean was 6.067. Follow-up tests of these means were unnecessary given the statistically non-significant ANCOVA results.

Null Hypothesis Three

A one-way analysis of covariance (ANCOVA) was conducted. The independent variable included a treatment group and a control group. The dependent variable was TMDQ SC score at Time 2. The covariate was TMDQ SC score at Time 1. A preliminary analysis evaluating the homogeneity-of-slopes assumption indicated that the relationship between the covariate and the dependent variable did not differ significantly as a function of the independent variable, \(F(1, 67) = 1.013, MSE = .493, p = .318, \) partial \(\eta^2 = .016 \). Levene’s test for homogeneity of variance was statistically significant, \(F(1, 66) = 5.230, p = .025 \). The ANCOVA was non-significant, \(F(1,67) = 1.110, MSE = .493, p = .296 \). The strength of relationship between the independent variable and the dependent variable was very weak, as assessed by a partial \(\eta^2 \), with the independent variable accounting for 1.7% of the variance in the dependent variable, holding constant TMDQ SC score at Time 1. The means for the treatment group and control group were adjusted for initial differences. The treatment group adjusted mean was 5.135, while the control group adjusted mean was 5.316. Follow-up tests of these means were unnecessary given the statistically non-significant ANCOVA results.
Null Hypothesis Four

A one-way analysis of covariance (ANCOVA) was conducted. The independent variable included a treatment group and a control group. The dependent variable was TMDQ PE score at Time 2. The covariate was TMDQ PE score at Time 1. A preliminary analysis evaluating the homogeneity-of-slopes assumption indicated that the relationship between the covariate and the dependent variable did not differ significantly as a function of the independent variable, $F(1, 67) = .802$, $MSE = .582$, $p = .374$, partial $\eta^2 = .012$. Levene’s test for homogeneity of variance was statistically significant, $F(1, 66) = 4.051$, $p = .048$. The ANCOVA was non-significant, $F(1, 67) = 1.011$, $MSE = .580$, $p = .318$. The strength of relationship between the independent variable and the dependent variable was very weak, as assessed by a partial η^2, with the independent variable accounting for 1.5% of the variance in the dependent variable, holding constant TMDQ PE score at Time 1. The means for the treatment group and control group were adjusted for initial differences. The treatment group adjusted mean was 6.237, while the control group adjusted mean was 6.424. Follow-up tests of these means were unnecessary given the statistically non-significant ANCOVA results.

Null Hypothesis Five

A one-way analysis of covariance (ANCOVA) was conducted. The independent variable included a treatment group and a control group. The dependent variable was TMDQ FU score at Time 2. The covariate was TMDQ SC score at Time 1. A preliminary analysis evaluating the homogeneity-of-slopes assumption indicated that the relationship between the covariate and the dependent variable did not differ significantly as a function of the independent variable, $F(1, 67) = .068$, $MSE = 2.182$, $p = .795$, partial $\eta^2 = .001$. Levene’s test for homogeneity of variance was statistically non-significant, $F(1, 66) = 2.966$, $p = .121$. The ANCOVA was non-significant,
\(F(1,67) = .400, MSE = 2.151, \ p = .529 \). The strength of relationship between the independent variable and the dependent variable was very weak, as assessed by a partial \(\eta^2 \), with the independent variable accounting for .6% of the variance in the dependent variable, holding constant TMDQ FU score at Time 1. The means for the treatment group and control group were adjusted for initial differences. The treatment group adjusted mean was 5.528, while the control group adjusted mean was 5.753. Follow-up tests of these means were unnecessary given the statistically non-significant ANCOVA results.
CHAPTER FIVE: DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS

Discussion

The purpose of this pretest-posttest control group experimental study was to see the effect of classroom walkthroughs on middle school teacher motivation. The Teacher Motivation Diagnostic Questionnaire was used to compare motivational scores on the independent variable classroom walkthroughs and the four dependent variables: (a) teachers’ self-concept regarding the ability to impact student achievement, (b) teachers’ attitudes toward the principal, (c) teachers’ beliefs about the principal’s value and expectations for achievement, and (d) teachers’ beliefs about the future utility of their efforts. A total of 68 participants were selected from a convenience sample consisting of language arts and math teachers of Grades 5 to 8, from six middle schools located in rural Southwest Virginia, during the fall semester of 2014.

Marzano, Pickering, and Pollock (2005) found that leadership and teacher effectiveness are the two main factors affecting student performance. Researchers have suggested that walkthroughs can play a constructive role in providing useful information to refine teaching practices (David, 2008). According to Milanowski (2011) walkthroughs can help the instructional leader become familiar with the teachers’ approach and can provide needed information in making curriculum and instructional decisions. It has been suggested that walkthroughs can be used to coach teachers to higher levels of performance by providing opportunities for improvement and supporting best practices by providing valuable feedback (Pitler & Goodwin, 2008).

This pretest-posttest control group experimental study examined the effects of classroom walkthroughs and teacher motivation by collecting data on the dependent variables: teachers’ self-concept of ability to affect student achievement, teachers’ attitude toward the principal,
teachers’ beliefs of the principal’s value and expectations for achievement, and teachers’ belief about future utility of efforts. The independent variable, walkthroughs with conferences, was generally defined as multiple two- to three-minute classroom visits. During these walkthroughs, assessors gathered information about curricular and instructional teaching practices and decisions teachers were making, and subsequently took part in high-quality conversations with the teachers about their observations. This design was chosen because the pretest-posttest control-group experimental design effectively controls for the eight threats to internal validity originally identified by Campbell and Stanley (1963) to create a strong level in internal validity: history, maturation, testing, instrumentation, statistical regression, differential selection, experimental mortality, and selection-maturation interaction (Gall, Gall & Borg, 2003). The control group design looked to see if extraneous variables have brought about changes between the pretest and posttest. If changes have occurred, they will be reflected in the increased sores of the experimental group that received the treatment. This design gave the researcher the tools needed to filter out experimental noise and confounding variable. This design is strong because the goal is to keep the experiences of the experimental and control groups as identical as possible (Gall, Gall, & Borg, 2007).

\textbf{H}_0 \textbf{1}: There is no statistically significant difference in overall teacher motivation scores between teachers who receive walkthroughs and teachers who do not receive walkthroughs, while controlling for pretest overall teacher motivation scores was accepted. The results for TMDQ overall scale indicated that the treatment group had an adjusted mean of 5.72 (0.13) and control group had an adjusted mean 5.91 (0.12), F-value 1.17, and $p > 0.05$. The results indicated that there was no statistically significant difference in overall teacher motivation between teachers who received the walkthrough treatment and those who did not receive it,
controlling for baseline teacher motivation scores. The findings can be supported by the,
Lemons and Helsing (2009) study. They found that it took at least two years of training and
building relationships before instructional leaders and teachers were comfortable with
walkthroughs and conferences. They suggested that it would take time and training for
walkthroughs to be truly effective. This short study lasted only for 16 weeks. The length of the
time could be a reason that a statistically significant difference was not found between the two
groups. On the other hand, David (2008) and Valli and Buese (2007) found that walkthroughs
could have a negative effect on teacher motivation and could raise teacher anxiety levels,
especially when time was not given to build relationships. They suggested that some teachers
felt like they were under the gun instead of seeing the actions as a tool for teacher and student
improvement. Lemons and Helsing suggested that the key to effective walkthroughs is
communication. The negative effect was seen in the Alexander Public School study, but time
made a difference. The teachers stated that despite the intense anxiety and stress that emerged in
the beginning, it was not a problem at the end of the second year (Lemons & Helsing, 2009).
The principals also stated time helped them develop a deeper connection to what was going on in
the classroom and were more comfortable with conferences after the walkthrough (Lemons &
Helsing, 2009). The two year study on the effects of walkthroughs on improvement in
Alexander Public Schools identified tangible improvement in teaching and learning compared to
the Baxter District, who had more favorable gains. This could be because the Baxter School
district took the time to target the district’s problem before implementing walkthroughs
compared to the Alexander District that quickly acted without answering the larger questions.
The Baxter District took the time to answer needed questions to help teachers change practices
and improve student learning by implementing strategies. The Alexander Public Schools
implemented walkthroughs with little recognition of the initiative’s systemic implication. They
treated the walkthroughs as a discrete activity, disconnected from other improvement efforts and
organizational practices. The leaders focused on short-term issues and misunderstood longer
term implications. They were not aligned with various conditions, competencies, and cultural
dimensions necessary for effective walkthroughs (Lemons & Helsing, 2009). Kachur, Stout, and
Edwards (2010) suggest that, before walkthroughs can be successful, there must be a trust
relationship between the teachers and administration. This short 16 week study did not have any
effect, but literature has shown that it takes time make any significant changes. Literature has
also shown that changes could be negative if not properly handled.

H02: There is no statistically significant difference in AP scores between teachers who
receive walkthroughs and teachers who do not receive walkthroughs while controlling for pretest
AP scores was accepted. Attitude toward instructional leaders (AP) is the belief teachers hold
about how much their instructional leader likes them, or how much they like their instructional
leader. The quantitative definition of AP is the sum of responses to questions 2, 6, 11, and 15 on
the TMDQ (Lester & Bishop, 2000). The results for the variable AP scale indicated that the
treatment group had an adjusted mean of 6.07 (0.18) and control group had an adjusted mean of
6.10 (0.17), F-value 0.01, and $p > 0.05$.

Receiving the walkthrough treatment did not improve attitudes toward principals,
controlling for baseline attitudes. Duyar, Gumus, and Bellibas.(2013) suggested that teachers are
more satisfied with their job when the instructional leader helps create an environment that is
safe by controlling student behavioral issues, protecting teachers from external forces, providing
personal and professional support, and recognizing teachers’ efforts and accomplishments.
Wagoner and O’Hanlon (1968) suggested that teachers who had positive attitudes seemed to
benefit more from evaluations than teachers with negative attitudes. Some teachers see evaluations as a threat, a negative reaction, where others see them as a challenge, a positive reaction. When teachers feel like they are endangered, they are more apt to feel like they are being punished and usually have unpleasant feeling about the evaluation. When this happens, the teacher typically will not gain anything from the evaluation. Teachers who feel challenged by evaluations are more apt to see the potential reward and want to make a change. Teachers who see evaluations as noncompetitive will have more of a negative attitude compared to teachers who are competitive (Wagoner & O’Hanlon, 1968). In this study, there was no significant difference in AP scores between teachers who receive walkthroughs and teachers who do not receive walkthroughs. The researcher believed that one reason there was no significant difference in this study is supported by the Henderlong and Lepper (2002) study. They suggested that verbal praise could increase motivation and performance and attitude toward leadership. The Okereke and Ugwuegbulam (2014) study also found that verbal praise could increase motivation toward leadership, especially for females. In this study, 81% of the participants being female, which could explain why the treatment was not effective. The participants in this study received praise from administration, school board, and local media. Another perspective could be the length of the study. Attitudes toward the principal might not have improved because the study was for a short 16-week period, not giving the instructional leader enough time for training and building trust. The instructional leader needs to be able to motivate the group and join forces to inspire and create relationship and trust in order to become a vibrant body, but it takes time to build relationships (Mhlambo, 1993). Kachur et al., (2010) suggest that, before walkthroughs can be successful, there must by a trust relationship between the teachers and administration.
Ho3: There is no statistically significant difference in SC scores between teachers who receive walkthroughs and teachers who do not receive walkthroughs, while controlling for pretest SC scores was accepted. Self-concept of ability (SC) is the teachers’ belief of their ability to improve student achievement. The quantitative definition of SC is the sum of responses to questions 4, 8, 9, and 13 on the TMDQ (Lester & Bishop, 2000). The results for variable SC scale indicated that the treatment group had an adjusted mean of 5.10 (0.13) and control group had an adjusted mean of 5.35 (0.12), F-value 1.70, and p > 0.05.

Receiving the walkthrough treatment did not improve teachers’ self-concept of ability when controlling for baseline self-concept. The researcher believe that the participants in this study already had high self-concept of ability, therefore, not showing any statistically significant difference between the two groups. The participants in this study have consistently received high state test scores. The findings were supported in the Ashton and Webb (1986) study. They found that teacher efficacy had a strong predictive link to student achievement. They found that students who had teachers with high levels of self-efficacy consistently had higher achievement level compared to students who had teachers who had lower self-efficacy levels in reading and math. It is suggested, therefore, that teachers who have a strong self-efficacy work harder to help struggling students and are more willing to take risks, try new strategies, and be less critical of student behavioral issues (Duyar et al., 2013). The Urhahne, Chao, Florineth, Luttenberger, and Paechter (2011) study found that teachers who possess high judgment and accuracy in the classroom are more successful with student performance. The Urhahne, et al. (2011) study also supports the findings in this study. The participants in this study has consistently had high levels of performance on the state standardized test in reading and math. The participants ranked eighth overall in state performance. They exceeded in reading by ranking second with economic
disadvantages students and fifth with disabled students. The math participants ranked second overall, second with economic disadvantaged, and first with disabled students. The findings from this study were also supported by Rosenthal and Jacobsen (1968) who suggested that when teachers value their students’ abilities, they create a climate of success.

Self-concept of ability post-treatment was overall lower than other subscales of teacher motivation, with treatment group 5.14 (0.12) being slightly lower that the control group 5.35 (0.13). The participants in this study could have already had high levels of self-concept of ability, but the questions is, have they peaked at their performance, therefore, not indicating a statistically significant difference between the two groups.

However, because of the short 16-week study and limited training, the instructional leaders and the teachers may not have had enough time to understand the purpose of the walkthroughs and the effects of the meaningful conversations about improving instruction. It takes time for teachers and administrators to understand and apply the concept of walkthroughs as a strategy to improve teaching and learning. Creating effective walkthroughs can be difficult. According to Lemons and Helsing (2009) it took time for principals to build their sense of efficacy as an instructional leader.

H04: There is no statistically significant difference in PE scores between teachers who receive walkthroughs and teachers who do not receive walkthroughs, while controlling for pretest PE scores was accepted. Instructional leader expectations (PE) is the aspect of teacher motivation dealing with a teacher’s beliefs about what the instructional leader expects of them and how much the instructional leader values student achievement. The quantitatively definition of PE is the sum of responses to questions 1, 5, 12, and 16 on the TMDQ (Lester & Bishop, 2000). The results for the variable PE scale indicated that the treatment group had an adjusted
mean of 6.21 (0.14) and control group had an adjusted mean of 6.45 (0.13), F-value 1.38, and $p > 0.05$.

The walkthrough treatment did not improve teacher’s beliefs of the principal expectations when controlling baseline beliefs. Instructional leader expectation is the aspect of teacher motivation dealing with a teacher’s beliefs about what the instructional leader expects of them, and how much the instructional leader values student achievement. The expectancy theory explains that when individuals feel frustrated and unhappy, they will not have maximum performance, which can affect job performance and individual needs (Ugah, & Arua, 2011). This theory is classified as a process theory of motivation, because of the emphasis it has on individual perceptions of the environment and following connections arising as a consequence of personal expectation (Isaac, Zerbe, & Pitt, 2001). This theory appears to be an equitably valid model for explaining behavioral causes in the work setting. The expectancy theory states that leaders need to know their people well and need to be consistently conscientious (Vroom, 1964).

Downey, Steffy, English, Frase, and Poston (2004) stated that change is hard but possible, if teachers are given appropriate steps and commitments. Teachers need to know what is expected of them.

The Ariani (2013) study found a link between employee attitude, behavior, and performance and suggested that these traits are some of the best predictors for relationships in the organization. Argyris (1964) discovered that work attitude drives employee behaviors and performance. Price (2012) found that principals’ relationships with their teachers affected teachers’ satisfaction, cohesion, and commitment levels. Fullan (2001) stated that principals are critical component in educational innovations and teachers attitudes. This study did not find statistically significant difference between the two groups, but the participants’ performance
support the findings of Argyris (1964), Price, and Fullan which claim attitude toward principal improves performance. Overall, the participant’s performance has improved over the past four years.

This study did not show a statistical difference between the two groups. All participants in this study were high performers. It seemed that their beliefs about their principal did not make a difference in their work performance. That could be because they are at their maximum performance. According to DuBois, Sackett, Zedeck and Fogli (1993), Sackett (2007), and Sackett, Zedeck. And Fogli, (1988), maximum performance in gained when people know they are being monitored. The participants in this study were monitored quarterly with benchmark data and state data. The collected data ranked each school and each teacher.

The researcher also thinks that high performance could have been because of their colleague’s expectancy. Benchmark and state data are given to school principals and teachers. Teachers see where they rank compared to school and state. This theory is supported by Vroom’s (1964) expectancy theory which explains that individual workers seem to adjust their own motivational levels when he or she is accepted by their colleagues and knows that exceptional output is expected.

H05: There is no statistically significant difference in FU scores between those who receive walkthroughs and those who do not receive walkthroughs, while controlling for pretest FU scores was accepted. Future utility (FU) is the belief teachers about how the impact of student achievement on the teachers themselves. The quantitative definition of FU is the sum of the responses to questions 3, 7, 10, and 14 on the TMDQ (Lester & Bishop, 2000). The results for the variable FU scale indicated that the treatment group had an adjusted mean of 5.51 (0.23) and control group had an adjusted mean of 5.77 (0.22), F-value 0.65, and $p > 0.05$.
The walkthrough treatment did not improve teachers’ beliefs about the future utility of their efforts when controlling for baseline beliefs about future utility. Future utility is the belief teachers hold about the benefit they receive as a result of student achievement. The participants in this study were high performers, but at a proficient level. There is no benefit from the district or state for the participants to perform at the advanced level. The participants have a high level of accountability to ensure students have a high-quality education and a high degree of achievement at the proficient level. Because of this, Fennema and Nelson, (2013) suggested that teachers are teaching less and testing more. He also stated that school administrators were spending a lot of time preparing for the test, calculating numbers, and tracking student performance. The researcher thinks that high expectations of meeting state scores have affected future utility of the belief teachers hold about the benefit they receive as a result of student achievement. The researcher thinks teachers are striving to meet the minimal proficient scores. At this time, there is no benefit for teachers who have high advance scores compared to proficient scores. The researcher thinks this is supports the data not showing any statistically significant difference in FU scores between those who receive walkthroughs and those who do not receive walkthroughs.

Conclusions

This study was conducted to explore the effects of classroom walkthroughs on middle school teacher motivation. The general theoretical literature on walkthroughs and teacher motivation is inconclusive. This study sought to answer the five questions.

1. Is there a statistically significant difference in (overall) teacher motivation scores between teachers who receive the walkthrough with conferences (treatment) and teachers who do
not receive the walkthrough with conferences (control group), while controlling for pre-test
(overall) teacher motivation scores?

2. Is there a statistically significant difference in attitude toward principal’s (AP) scores
between teachers who receive the walkthrough with conferences (treatment) and teachers who do
not receive the walkthrough with conferences (control), while controlling for (AP) pre-test
scores?

3. Is there a statistically significant difference in self-concept (SC) of ability scores
between teachers who receive the walkthrough with conferences (treatment) and teachers who do
not receive the walkthrough with conferences (control), while controlling for (SC) pre-test
scores?

4. Is there a statistically significant difference in beliefs about the principal’s value and
expectations (PE) between teachers who receive the walkthrough with conferences (treatment)
and teachers who do not receive the walkthrough with conferences (control), while controlling
for (PE) pre-test scores?

5. Is there a statistically significant difference in the teacher’s beliefs about the future
utility (FU) of their efforts between those who receive the walkthrough with conferences
(treatment) and those who do not receive the walkthrough with conferences (control), while
controlling for (FU) pre-test scores?

This study was not successful in answering the sought-after answers. The data did not
find any statistically significant difference between the two groups on classroom walkthroughs
and motivation on middle school teachers. With that in mind, this study did attempt to bring
together existing literature by discussing key conceptual variables that likely influenced the
outcome.
Isaac et al. (2001) suggested that when leaders applied the expectancy theory and interacted with followers, a motivational environment would be created. This study did not support Isaac et al. (2001) suggestion about the expectancy theory. One factor that could have affected this study was the length of the study. This study lasted for a short 16 weeks, and according to Lemons and Helsing (2009) it takes approximately two years to see change with walkthroughs. Lemons and Helsing assessed two school districts that implemented walkthroughs and found that it took two years before walkthroughs could be effective. Lemons and Helsing suggested that it took time for principals to understand how teachers implemented particular strategies before they could help others. Furthermore, Lemons and Helsing found that the teachers who had intense anxiety and stress in the beginning were not having the same problems at the end of the second year. Therefore, allowing for constructive conversations between instructional leaders and teachers and between teachers and teachers could build stronger relationships.

In addition to limited time, the participants were exposed to verbal praise from school leaders, parents, community, and local and regional media because of their success on the state test. According to Cameron and Pierce (1994) and McKay (1992) verbal praise can enhance intrinsic motivation. The Okereke and Ugwuegbulam (2014) study found that teachers who had received verbal praise had higher motivation compared to teachers who did not receive verbal praise. The study also found that females responded to verbal praise more than males. Of the participants in this study, 81% were females. Henserlong and Lepper (2002) suggested that verbal praise was beneficial in motivating teachers to increase their performance. The walkthrough treatment did not make a difference in the teachers’ behavior, but it could have been because the participants already had high levels of motivations due to an abundance of verbal
praise. The Shanab, Peterson, Dargahi and Deroian. (1981) study found that when positive verbal feedback was given, participants spent more time on task. This is evident with the high state SOL test scores in reading and math from the participants in this study. Verbal praise could have been a factor for their motivation and performance, therefore, not seeing any significant results in the study.

On the other hand, the participants could have been at maximum performance, therefore, not showing any effect from the treatment. According to DuBois et al., (1993), Sackett (2007), and Sackett et al., (1988), maximum performance is gained when people know they are being monitored. The participants in this study were monitored quarterly with benchmark data and state data. The collected data ranked each school and each teacher based on test scores. If this is the case, then high maximum performance was an effect from monitoring, which could have affected teacher motivation before the study was conducted. Evidence and literature from this study supports a maximum performance and motivational theory (DuBois et al., 1993: Sackett 2007; Sackett et al., 1988). The walkthrough treatment could have been affected because of prior variables.

The participants in this study were from six different schools, but in the same school district. All participants were high performers. Literature has shown that verbal praise and being monitored can increase maximum performance and motivation (DuBois et al., 1993; Henderlong & Lepper, 2002; Sackett, 2007; Sackett et al., 1988). The researcher also thinks that high performance could have been caused by colleague’s expectancy. This theory is supported by Vroom’s (1964) expectancy theory which explains that individual workers seem to adjust their own motivational levels when they are accepted by their colleagues and know that exceptional output is expected. Benchmark and state data are given to school principals and
teachers. Teachers saw where they ranked compared to schools, other teachers, and state. Instructional leaders in this study discussed with the participants where they ranked. It is possible that all participants were motivated to do their best because they did not want to look like a failure among their colleagues. If this is the case, the walkthrough treatment would not affect the participants. This theory is supported by the Nelson (2003) study.

The Nelson (2013) study suggested that teachers are teaching less and testing more. He also stated that school administrators were spending a lot of time preparing test, calculating numbers, and tracking student performance. He suggested that teachers were drilling taught skill or facts to prepare for upcoming test in order to make necessary state scores instead of teaching higher order skills. The researcher thinks that high expectations of meeting state scores have affected future utility of the belief teachers hold about the benefit they receive as a result of student achievement. I think teachers are striving to meet the minimal proficient scores. When test scores are ranked in the district, the only thing evaluated was the proficient rate. At this time, there is no benefit for teachers who have high advance scores compared to proficient scores. I think this is supports the data not showing any statistically significant difference between those who receive walkthroughs and those who do not receive walkthroughs for future utility.

Marzano, Pickering, and Pollock (2001) found that properly implemented, instructional strategies could result in percentile gains of 29 to 45 points in student achievement. The affect-effort theory suggests that if the teacher has a positive expectation on student learning, then student learning will increase (Rosenthal, 1994). Matthews (1979) suggested that attitudes toward the superior, perceptions of superior, value on performance, and perceived future utility of performance can influence desired outcomes. Teachers’ attitudes are very important to the
The achievement of in-depth curricular innovation and school reform (“Motivating Teachers,” 2009). The research is very clear that teacher’s beliefs can affect student’s performance.

Literature has shown that teacher evaluations and value-added models are not effective in improving student and teacher performance (Stout, Kachur, & Edwards, 2013). However, teacher quality is a major factor in improving students’ outcomes (Padgham & Chatto, 2013). Instructional leaders are expected to be the driving force for school improvement (Fullan, 2009). It is known that before instructional leaders can make necessary changes in schools, they need to know what is going on in the classrooms. Padgham and Ghatto (2013) suggested that instructional leaders start using walkthroughs to collect data and focus more on instructional feedback. However, there is limited research that shows the effectiveness of walkthroughs, and, moreover, the definition or procedure of an effective walkthrough is not clear. The research that exists shows that walkthroughs can be effective when appropriate improvement strategies, such as peer coaching, mentoring, data-driven decision-making, and group analysis of students’ work are used (Stout et al., 2013).

Motivated teachers make a difference in student performance (Muller & Hanfstingl, 2011); however, it is unclear how instructional leaders can motivate teachers. Today, school principals are expected to be instructional leaders; therefore, they are using or talking about walkthroughs to help them better understand staff concerns by collecting data and focusing on instructional improvement and staff development training (Pitler & Goodwin, 2008). The question that needs to be answered is whether or not walkthroughs affect teachers’ motivation. However, there is a shortage in literature that shows how walkthroughs affect teacher motivation. In this study, we examined the effects of walkthroughs on teacher motivation, and based on the data findings, there was no statistical significance between the treatment and control groups. The
reason for this could have been first, that this study was conducted during the first semester. Teachers may have been busy preparing for the benchmark test, and may not have been focused on school improvement. Instead, they may have been teaching skills that were going to be tested on the benchmark. Second, this study was conducted only for a brief, 16-week period. This was not enough time for the instructional leader and teachers to build the necessary rapport needed to have highly effective conservations. Third, the instructional leaders and teachers may have needed more time for training regarding the purpose of walkthroughs. Fourth, teachers’ motivation could have been affected by being exposed to verbal praise before the study began. The participants could have reached their maximum performance because of being monitored with benchmark and state test scores. Another factor could have been colleagues motivating each other. No one wanted to be below county average. This study has brought to light many factors that can effect teacher motivation and performance, therefore, requiring more research.

Implications

Existing literature has focused on the use of walkthroughs as an instructional tool leaders can use for school improvement. However, there is limited research that shows the effectiveness of walkthroughs (Stout et al., 2013). Stout et al. (2013) stated that classroom walkthroughs can provide the instructional leader a view of what the curriculum and instructions look like in the classroom. Fullan (2009) and Marzano (2010) suggested that principals can use walkthroughs to improve teacher and student performance. In addition, Muller and Hanfstenigl (2011) suggested that motivated teachers make a difference in student performance. This study looked to see if classroom walkthroughs with highly conversations improved teacher motivation. This study did not support Fullan and Marzano findings. This study indicated that other variables could impact teacher motivation and performance. With knowing this, instructional leaders need to be
mindful that other factors such as, verbal praise and monitoring can affect motivation and performance. Therefore, theoretical cases on walkthroughs and teacher motivation need to be revisited in order to further understand the dynamics of the effects of walkthroughs and how they can be more beneficial.

Although there was no significant difference between the control group and treatment group, the study indicated that there is room for improvement. Before this study began, all participating instructional leaders received the book, *The Three Minute Classroom Walkthrough* by Downey et al. (2004). Participating instructional leaders were able to use learned skills from the book, gained a better understanding of how to perform an effective walkthrough, and learned what to look for during the two to three minute classroom visits. They also got a better understanding of how to conduct meaningful conversations after the walkthrough to improve academics. However, the instructional leaders did not have enough time to perfect their skills and successfully implement them with the walkthroughs. It is important to know that this study was for 16 weeks since Stout et al. (2013) found that effective walkthroughs can help teachers with curriculum alignment, better communication, and identify professional development needs that can improve overall school performance. Lemons and Helsing (2009) suggest a longer study before a positive effect can be found. They suggested that it took at least two years before instructional leaders started seeing effects from walkthroughs. This study did not show that walkthroughs had any significance in teacher motivation between the control group and treatment group; however, there is a need for future research. It is possible that motivation levels could have increased if the instructional leader had more time and added verbal praise during the walkthrough.
Rossi (2007) suggested that teachers were more apt to share about best practices, meaningful data, and were better informed when their instructional leaders had meaningful conversations after a walkthrough. Researchers suggested that teachers, leadership teams, and administrators can make a difference when walkthroughs focused on coaching teachers as practitioners and examining students’ academic behavior instead of focusing on programs (Stout et al., 2013). On the other hand, David (2008) and Valli and Buese (2007) found in their studies that walkthroughs could have a negative effect and could raise teacher anxiety levels, and teachers felt like they were under-the-gun instead of seeing the actions as a tool for teacher and student improvement. To help reduce teacher anxiety the instructional leader needs to make sure they have clearly communicated with the staff the purpose of the walkthrough. This study will add to the limited body of literature on classroom walkthrough and teacher motivation, and provided suggestions for future studies.

Limitations

One of the limitations of this study was that the sample was limited to 68 teachers from six public schools. Gall et al. (2003) suggested that when the sample size is increased, there is a smaller chance of accepting the null hypothesis. The sample was also restricted to English and math teachers in Grades 5 through 8. Fifty-five were female (81%) and the majority were Caucasian (99%; n = 67). In this convenience sample, males and other ethnic groups were underrepresented, while females and Caucasian participants were overrepresented. Although the convenience sample was not diverse, Gall et al. (2003) stated that it is better to use convenience sampling than to not conduct a study at all.

Another area of concern was that the participants were given the same survey at the pretest and posttest time points, in a short 16-week period, which could have created posttest
sensitization. However, Gall et al. suggested that experimentation may be dependent upon the administration of the posttest. Further, the six schools that participated in this study were very successful on state testing, suggesting that the teachers could have had a high level of motivation before the treatment (Perry, 2015).

This study focused on instructional improvements and less on building relationships. According to Tschannen (2014) trust between teachers and leaders is a key component in enhancing student learning and achievement. It is hard to build a strong relationship in 16 weeks.

All participants in this study were high performers on state test. The TMDQ questionnaire might not have had the ability to gauge teachers’ motivation, since the questionnaire ranged on a scale from one to seven. According to Banks (2011), the ceiling effect could have prevented the examiner the ability to gauge maximum effect. The ceiling effect, which is observed when participants obtain very high scores on a particular test, does not allowed for higher levels of performance. Because of this, the participants score could been underestimated.

Recommendations for Future Research

This study needs to be repeated with a larger and more diverse population. This study was limited with a small convenience sample and did not represent a diverse teaching population. This sample consisted of primarily white middle-class females who had male instructional leaders. Further, this study was conducted in rural Southwest Virginia. This study needs to be repeated in other areas. Finally, future studies should expand the sample of teachers to other content areas and grade levels. Gall et al. (2003) suggested that when the sample size is increased there is a less chance of accepting the null hypothesis.
This study was conducted for 16 weeks. It is recommended that this study be repeated for at least one school year, as 16 weeks is not enough time to build a relationship needed for change. Leaders can help improve instructional change by building relationships in the school community (Bryk, 2010). The relationship between the principals’ leadership and teachers’ performance occurs through principals’ influence on teachers (Duyar et al., 2013). Further, Lemons and Helsing (2009) stated that it took the Alexander Public Schools and the Baxter Schools two years using walkthroughs with meaningful conversations before they saw desired changes. To help develop the relationships, instructional leaders need to put more time into the conversations.

It will also be important to replicate this study with lower performing schools. The six schools that participated in this study met all Annual Measurable Objectives, according to the state of Virginia’s accountability rating based on the standards of learning for the 2014–2015 school year (Perry, 2015). Muller and Hanfstingl (2011) suggested that teacher motivation is an important facet of learning environments and has an influence on students’ learning, and this group of teachers could have already had high motivation before the study.

This study focused on walkthroughs and conversations, but there needs to be more a more focus on conversations. A qualitative study needs to be done to define conversations goals, frequency, and duration.
REFERENCES

http://dx.doi.org/10.1111/j.1365-2648.2007.04339.x

http://dx.doi.org/10.1177/003172171209300603

Education and Careers, 87(7), 20–23. Retrieved from
https://www.acteonline.org/techniques/#.VfRO__SGNS0

http://dx.doi.org/10.1037/h0048473

http://dx.doi.org/10.1080/00933104.1978.10506023

Attitude measurement. (pp. 235–253). Chicago, IL: Rand McNally.

http://dx.doi.org/10.1037/0033-2909.128.5.774

http://dx.doi.org/10.1037/h0033093.

http://dx.doi.org/10.3102/00028312038003499

http://dx.doi.org/10.1037/0022-0663.80.4.437

http://dx.doi.org/10.1111/1467-9280.00438

http://dx.doi.org/10.3102/01623737026003237

http://dx.doi.org/10.1177/1741143211432412

http://dx.doi.org/10.1177/1094670509353043

Semantic Differential Scaling: A How to Do it Guide

Semantic differential methods of scaling are a recently introduced method of attitude assessment. In 1967, Osgood, Suci and Tannenbaum introduced the method in their book "The Measurement of Meaning." Although the original purpose of semantic differential was not necessarily the assessment of attitudes, the procedure was well adapted for attitude assessment.

A semantic scale is composed of polar opposite adjectives separated by a five to seven point rating scale, like this:

Bad ___ ___ ___ ___ ___ Good

To utilize the scale, the subject would be given an attitude referent. The attitude referent would be perhaps an object or event in the subject's environment, for example, the referent "mother." The subject's task would be to rate the referent "mother" on the seven point scale from bad to good. If the subject selected the middle space then it is advanced that the evaluation would be neutral. However, if the subject selected one of the spaces closer to the "good" end of the scale, then his/her evaluation was seen as a positive endorsement of the referent "mother". Conversely, selection closer to the "bad" end of the scale was seen as a negative endorsement. If you assigned numerical values of 1 through 7 to the various spaces on the scales, then a neutral score would become a 4, a very positive endorsement a 7, and a very negative endorsement a 1.

To utilize these types of scales to measure an attitude it is proposed that a number of semantic scales be utilized. For example, we might assess a subject's attitude toward "mother" by using the following semantic scales:

Please rate your Mother
Bad ___ ___ ___ ___ ___ Good
Unfriendly __ __ __ __ __ __ Friendly
Sad ___ ___ ___ ___ ___ Happy
Cruel ___ ___ ___ ___ ___ Kind
Dirty ___ ___ ___ ___ ___ Clean
Foolish ___ ___ ___ ___ ___ Wise

The score on our attitude toward mother scale would be calculated by adding up the numerical values of the scales endorsed. The maximum score would be 42 and the minimum 6. To guard against the subjects developing some type of response bias (responding to all scales with the same ratings, leaving the impression that the subject may not have read the individual scales) the polarity of some of the scales could be reversed.

Osgood, et al had their subject rate various attitudinal referents on a large number of semantic scales. These data were then analyzed by factor analytic procedures to determine possible common factors which could be identified in the collection of semantic scales. (Very simply, factor analysis identifies clusters of scales.) His analysis indicated that the majority of the semantic scales tended to fall into three principle factors. These principle factors were evaluation, potency, and activity. I have selected from the list of semantic scales presented in their book those scales which appear to load highest on each of the three factors.
Critique of the Semantic Differential Scaling Process

Our critique of the semantic differential scaling process will focus on 7 characteristics: zero point, equality of units, unidimensionality of items, unidimensionality of scale, reliability, content validity, and ease of application.

In terms of a zero point, semantic differential methods provide a well-defined zero. The zero point is a number of scales used times 4 (the neutral point of a given scale). In terms of our five point compliance index, ranging from 1 - no compliance to 5 - very good compliance, I would rate semantic differentials as a 4.

The second criteria was equality of units. On this characteristic our semantic scaling process does not fare as well. Although there is some evidence that some of the scales contribute uniquely to the underlying factors, there is no conclusive proof that the contribution is equivalent across semantic scales. Therefore, on our five point compliance index I would have to give semantic differential scaling a 2.

In terms of unidimensionality of items, the semantic differential scaling process performs satisfactorily. Each of the semantic scales represents a continuum anchored by polar opposite adjectives and appearing to assess one content. In terms of our compliance ratings, I would have to give semantic differential methods a 4.

With respect to unidimensionality of scale, semantic differentials can pose some interesting problems. If the attitude score is developed by considering the three factor components of evaluation, potency and activity, then there is good unidimensionality. However, if a total attitude score is generated by combining the three factor components then we would have poor unidimensionality. Overall I rate semantic differentials as a 3 on our compliance index.

Like Thurstone scaling, semantic differential processes does not include a built-in method of assessing reliability. Therefore, on our compliance scale I would have to give semantic differential scaling a 1 for reliability.
Appendix B

Permission to use TMDQ Instrumentation

To Whom It May Concern:

I am a doctoral student at Liberty University. I would like to use the Teacher Motivation Diagnostic Questionnaire to assess teacher motivation, but have not been able to get in contact with the author, Kenneth M. Matthews, 1985 to gain permission to use the tool. NASSP Bulletin published this tool in VOL 66, Number 458, and page 26.

It is my understanding that I can gain permission from NASPP.

Would you please confirm through e-mail if permission is granted?

Thank you,

Karen Dickenson
Permission to use TMDQ Instrumentation

Dear Karen,

Thank you for your request. You can consider this email as permission to reprint the material as detailed below in your upcoming dissertation. Please note that this permission does not cover any 3rd party material that may be found within the work. We do ask that you properly credit the original source, the NASSP Bulletin. Please contact us for any further usage of the material.

Best regards,

Michelle Binur

Rights Assistant
SAGE Publications Inc.
Michelle.Binur@sagepub.com

www.sagepub.com
Los Angeles | London | New Delhi
Singapore | Washington DC
The natural home for authors, editors & societies
Appendix C

TEACHER’S INSTRUCTIONS FOR COMPLETING QUESTIONNAIRE (TMDQ)

• Each fifth through eighth grade language arts and math teachers in your school is to receive an identical packet.

• Each packet contains:
 1. Introductory letter.
 2. Teacher Motivational Diagnostic Questionnaire (TMDQ) – 16 questions; each coded with ++school number to track the rate of return, principals will not see responses

• Please respond to each of the 16 questions by filing in the circle, which represents most closely the answer that best represents your current opinion.

• Note that the scale range low to high, strong to weak, small to large, bad to good changes directions on the survey.

• Your opinion is valuable for each question.

• Principals may request the final data if they wish to see the results, but will not be able to identify any individual.

• NO INDIVIDUAL RESPONSES WILL BE REPORTED AND NO INDIVIDUAL WILL BE IDENTIFIED.

THANK YOU AGAIN FOR YOUR ASSISTANCE! YOU HAVE BEEN AN ASSET TO THIS RESEARCH!
Appendix D

Principal’s Letter

Dear Principal,

I am conducting a doctoral study to determine the motivation levels of teachers with language arts and math teachers in grades 5-8.

Please have your fifth through eighth grade language arts and math teachers complete the enclosed Teacher Motivation Diagnostic Questionnaire (TMDQ) for me. This should take no more than five to ten of your teachers’ time and could easily be distributed by you with no additional explanation.
I have selected only 70 teachers in the division so it is very important that your teachers participate. If you cannot participate in this study, please let me know as soon as possible, so I can try to find a replacement.

I foresee no risks to you or your teachers if your teachers complete this questionnaire. ALL RESPONSES ON THIS QUESTIONNAIRE WILL BE ANONYMOUS. Each questionnaire contains a school number for tracking the rate of return. NO individual responses will be identified and no scores will be reported for individual schools.

If you have any questions about the research being conducted, please feel free to contact me at (276) 220-8150, (Cell) or (276) 762-0267 (Home). Thank you very much for your time and consideration. Please let me know if you would like to receive a copy of the results of my study.

Sincerely,

Karen Dickenson
PRINCIPAL’S INSTRUCTIONS

- Please have each reading and language arts teachers in grades 5-8 come to the library
- I will explain the purpose of the TMDQ survey
- All surveys will have school Identification number and 1 for pretest or 2 for posttest.
- Each participating teacher will be given a survey to complete
- I will collect all surveys after teaches have complete them

Thank you for your support,

Karen

June, 2014
Appendix F

Teachers’ Letter

July, 2014

Dear Fifth and Eighth Grade Language Arts and Math Teachers,

I am conducting a doctoral study to determine the motivation levels of fifth and eighth grade language arts teachers on instructional walkthroughs.

Please take the time to complete the enclosed *Teacher Motivation Diagnostic Questionnaire (TMDQ)* for me. I anticipate your time for completing this survey to be no more than five to ten minutes. I have selected a total of 64 teachers in the school division.

I foresee no risks to you if you complete this questionnaire. ALL RESPONSES ON THIS QUESTIONNAIRE WILL BE ANONYMOUS. Each questionnaire contains a school number for tracking the rate of return. NO individual responses will be identified and no scores will be reported for individual schools.

If you have any questions about the research being conducted, please feel free to contact me at (276) 220-8150 (Cell) or (276) 762-0267 (Home). Thank you very much for your time and consideration. Please let me know if you would like to receive a copy of the results of my study.

Sincerely,

Karen Dickenson
Appendix G

Division Superintendent Permission to Conduct the Study

Wise County Public Schools
Office of the Superintendent

June 6, 2014

Dear Mrs. Dickman,

As Superintendent, I grant permission for you to conduct your study, The Effect of Classroom Wellbeing on Middle School Teacher Motivation, during the 2014-2015 school year. As I understand it, your quantitative study will focus on teachers' perceptions regarding the classroom walk-through process in our district and will include the need for interviewing administrators and teachers taking a critical question survey at a pretest and a posttest.

You have permission to contact participants via letter, e-mail, and in person, as well as conduct survey questionnaires at the school locations. These locations should be mutually decided between you, the administrators, and participants you have selected as part of your study.

Sincerely,

Jeff Perry,
Superintendent of Schools
Appendix H

IRB Approval
November 5,

Karen N.
IRB Exemption 1981.110514 The Effect of Classroom Walkthroughs on Middle School Teacher M

Dear

The Liberty University Institutional Review Board has reviewed your application in accordance with the Office for Human Research Protections (OHRP) and Food and Drug Administration (FDA) regulations and finds your study to be exempt from further IRB review. This means you may begin your research with the data safeguarding methods mentioned in your approved application, and that no further IRB oversight is req

Your study falls under exemption category , which identifies specific situations in which human participants research is exempt from the policy set forth in 45 CFR 46:

Research involving the use of educational tests (cognitive, diagnostic, aptitude, achievement), survey procedures, procedures or observation of public behavior, unless:

i) information obtained is recorded in such a manner that human subjects can be identified, directly or through identifiers linked to the subjects; and (ii) any disclosure of the human subjects’ responses outside research could reasonably place the subjects at risk of criminal or civil liability or be damaging to the subjects' financial standing, employability, or reputation.

Please note that this exemption only applies to your current research application, and that any changes to your protocol must be reported to the Liberty IRB for verification of continued exemption status. You may t these changes by submitting a change in protocol form or a new application to the IRB and referencing the above IRB Exemption number.

If you have any questions about this exemption, or need assistance in determining whether possible changes to your ocol would change your exemption status, please email us at irb@liberty.e

Since

Ferna Garzon,
Professor, IRB Counsel

\[Liberty \] \quad \textit{Training Champions for Christ since 1971}
Appendix I

CONSENT FORM FOR PRINCIPAL

The Effect of Classroom Walkthroughs on Middle School Teacher Motivation

Karen Dickenson
Liberty University
School of Education

You are invited to be in a research study of The Effects of Walkthroughs on Teacher Motivation to Improve Classroom Instruction and Student Performance. You were selected as a possible participant because this study has targeted reading and math teachers in grades five through eight. I ask that you read this form and ask any questions you may have before agreeing to be in the study.

I, Karen Dickenson, a doctoral candidate at Liberty University am conducting this study.

Background Information:
The purpose of this study is to explore the implementation of walkthroughs in a middle school and the affect it has on teacher motivation compared to teachers who do not receive walkthroughs in attitudes toward the principal, self-concept of ability, beliefs of principal’s value and expectation, and belief about future utility of efforts.

Procedures:
If you agree to be in this study, I would ask you to do the following things:
1. Read Carolyn Downey’s book The Three Minute Classroom Walkthrough over the summer.
2. Do 5 walkthroughs with conferences with the treatment group during the first semester.

Risks and Benefits of being in the Study:
The risks are minimal and are no more than the participant would encounter in everyday life. If the researcher notices any risks to participants, the researcher will terminate the study.

You will not benefit directly from this study nor receive payment for your involvement. It is hoped that the findings will assist other schools’ administrators and teachers in implementing walkthroughs at their sites.

Confidentiality:
The records of this study will be kept private. In any sort of report I might publish, I will not include any information that will make it possible to identify a subject. Research records will be stored securely and only the researcher will have access to the records. All of the print materials pertaining to the study will be kept in a locked closet, and all electronic data will be stored in computer files behind a fire wall and on an external hard drive. Only the lead investigator and the dissertation committee members who are directly involved with the project will have access to
those records. When the project is finished and results are reported, no individual will be identified in any way.
It is possible that the Institutional Review Board (IRB) may view this study’s collected data for auditing purposes. The IRB is responsible for the oversight of the protection of human subjects involved in research

Voluntary Nature of the Study:

Participation in this study is voluntary. Your decision whether or not to participate will not affect your current or future relations with Liberty University or Wise County School System. If you decide to participate, you are free to not answer any question or withdraw at any time without affecting those relationships.

Contacts and Questions:

I, Karen Dickenson, will be the researcher conducting this study. You may ask any questions you have now. If you have questions later, **you are encouraged** to contact me at kndickenson@wise.k12.va.us, (276) 220-8150 ©, (276) 762-0267 (H) or Dr. Reason at Liberty University @ 800) 424-9595.

If you have any questions or concerns regarding this study and would like to talk to someone other than the researcher **you are encouraged** to contact the Institutional Review Board, 1971 University Blvd, Suite 1837, Lynchburg, VA 24515 or email at irb@liberty.edu

Please notify me (Karen Dickenson) if you would like a copy of this information to keep for your records.

Statement of Consent:

I have read and understood the above information. I have asked questions and have received answers. I consent to participate in the study.

(Note: DO NOT AGREE TO PARTICIPATE UNLESS IRB APPROVAL INFORMATION WITH CURRENT DATES HAS BEEN ADDED TO THIS DOCUMENT.)

Signature of Principal:___ Date: ______

Signature of Investigator: ______________________________________ Date: _____
Appendix J

Teacher’s Consent to participate in the Study

CONSENT FORM FOR TEACHER

The Effect of Classroom Walkthroughs on Middle School Teacher Motivation

Karen Dickenson
Liberty University
School of Education

You are invited to be in a research study of The Effects of Walkthroughs on Teacher Motivation to Improve Classroom Instruction and Student Performance. You were selected as a possible participant because this study has targeted reading and math teachers in grades five through eight. I ask that you read this form and ask any questions you may have before agreeing to be in the study.

I, Karen Dickenson, a doctoral candidate Liberty University am conducting this study.

Background Information:
The purpose of this study is to explore the implementation of walkthroughs in a middle school and the affect it has on teacher motivation compared to teachers who do not receive walkthroughs in attitudes toward the principal, self-concept of ability, beliefs of principal’s value and expectation, and belief about future utility of efforts.

Procedures:
Your name was chosen in a convenience sampling process from a list of staff members at this school.
If you agree to be in this study, I would ask you to do the following things:
1. Take the Teacher Motivational Diagnostic Questionnaire pretest before the study and a posttest after the study.

Risks and Benefits of being in the Study:
The risks are minimal and are no more than the participant would encounter in everyday life. If the researcher notices any risks to participants, the researcher will terminate the study.

You will not benefit directly from this study nor receive payment for your involvement. It is hoped that the findings will assist other schools’ administrators and teachers in implementing walkthroughs at their sites.

Confidentiality:
The records of this study will be kept private. In any sort of report I might publish, I will not include any information that will make it possible to identify a subject. Research records will be stored securely and only the researcher will have access to the records. All of the print materials
pertaining to the study will be kept in a locked closet, and all electronic data will be stored in computer files behind a fire wall and on an external hard drive. Only the lead investigator and the dissertation committee members who are directly involved with the project will have access to those records. When the project is finished and results are reported, no individual will be identified in any way.

It is possible that the Institutional Review Board (IRB) may view this study’s collected data for auditing purposes. The IRB is responsible for the oversight of the protection of human subjects involved in research

Voluntary Nature of the Study:

Participation in this study is voluntary. Your decision whether or not to participate will not affect your current or future relations with Liberty University or Wise County School System. If you decide to participate, you are free to not answer any question or withdraw at any time without affecting those relationships.

Contacts and Questions:

I, Karen Dickenson, will be the researcher conducting this study. You may ask any questions you have now. If you have questions later, you are encouraged to contact me at kn dickenson@wise.k12.va.us, (276) 220-8150 ©, (276) 762-0267 (H) or Dr. Reason at Liberty University @ 800) 424-9595.

If you have any questions or concerns regarding this study and would like to talk to someone other than the researcher you are encouraged to contact the Institutional Review Board, 1971 University Blvd, Suite 1837, Lynchburg, VA 24515 or email at irb@liberty.edu

Please notify me (Karen Dickenson) if you would like a copy of this information to keep for your records.

Statement of Consent:

I have read and understood the above information. I have asked questions and have received answers. I consent to participate in the study.

(NOTE: DO NOT AGREE TO PARTICIPATE UNLESS IRB APPROVAL INFORMATION WITH CURRENT DATES HAS BEEN ADDED TO THIS DOCUMENT.)

Signature of Teacher:_____________________________ Date: ______

Signature of Investigator: _________________________ Date: _____