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Abstract 

Advances in neuroprosthetics in recent years have made an enormous impact on the 

quality of life for many people with disabilities, helping them regain the functionality of 

damaged or impaired abilities. One of the main hurdles to regaining full functionality 

regarding neuroprosthetics is the integration between the neural prosthetic device and the 

method in which the neural prosthetic device is controlled or manipulated to function 

correctly and efficiently. One of the most promising methods for integrating neural 

prosthetics to an efficient method of control is through Brian-computer Interfacing (BCI). 

With this method, the neuroprosthetic device is integrated into the human brain through 

the use of a specialized computer, which allows for users of neuroprosthetic devices to 

control the devices in the same way that they would control a normally working human 

function- with their mind. There are both invasive and non-invasive methods to 

implement Brain-computer Interfacing, both of which involve the process of acquiring a 

brain signal, processing the signal, and finally providing a usable device output. There are 

several examples of integration between Brain-computer Interfacing and neural 

prosthetics that are currently being researched. Many challenges must be overcome 

before a widespread clinical application of integration between Brain-computer Interfaces 

and neural prosthetics becomes a reality, but current research continues to provide 

promising advancement toward making this technology available as a means for people 

to regain lost functionality. 
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Utilizing Brain-computer Interfacing to Control Neuroprosthetic Devices 

 Neural prostheses, devices used to replace nonfunctioning motor, sensory, or 

cognitive abilities, date back all the way to 1957, when the first known cochlear implant 

was invented (Arafat, 2015). Since that time, significant advancements have been made 

in both the medical and engineering realms of neuroprosthetics. Neural prostheses now 

have the ability to allow individuals to overcome many disabilities in areas including 

visual, auditory, and motor functions, and have even expanded into the field of mental 

disabilities, showing promise in many applications including alleviating symptoms of 

brain trauma, speech deficiency, and Alzheimer’s (Arafat, 2015). However, a more recent 

advancement in the field of neuroprosthetics is the Brain-computer Interface (BCI). 

Research began on BCIs in 1977, when the Pentagon’s Defense Advanced Research 

Projects Agency (DARPA), along with the University of California, began to research 

and develop a method of communication based entirely on neural activity that has been 

generated by the brain, without the use of normal output pathways, which are peripheral 

nerves and muscles (He, 2005).  

While BCI technology has the potential to be applied to a plethora of different 

external devices, several extremely beneficial applications for BCIs in neuroprosthetics 

are also in development. For example, by combining the abilities of a BCI and neural 

prostheses, both the ability to regain functionality, and the ability to control that function 

can be returned to someone with a disability. It is also possible for Brain-computer 

Interfaces to be used to efficiently and conveniently control neural prostheses, thereby 

effectively replacing nonfunctioning motor, sensory, or cognitive abilities in a disabled 

individual (Rupp et al., 2014). 
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 In order to integrate neuroprosthetic and BCI technologies, both technologies 

must first be discussed separately. Neural prostheses all fall into two broad categories: 

external and implanted. These two categories have distinguishing features that will 

impact the integration between these neural prosthetics and a BCI. BCIs also fall into 

three similarly broad categories: Invasive, Non-invasive, and Partially Invasive. These 

categories indicate how the signal is obtained from the brain, which also has a significant 

impact on how BCIs can be integrated with neural prosthetics. The most prominent BCI 

platforms involve signal acquisition methods that fall into one of these three categories. 

The integration between BCIs and neural prostheses is currently in the development 

phase, but there have been numerous successes thus far. Nonetheless, the integration 

between these two technologies has many problems and limitations that must be 

overcome before clinical applications of the technology will be possible. Even so, the 

future biomedical applications of this technology have the potential to revolutionize the 

medical field. 

Neural Prostheses 

Neural prostheses are either implanted or external devices that are used to assist in 

the restoration of functions that have been lost as a result of neurological damage by 

electrically stimulating neurons (Shenoy et al., 2012). Numerous different neural 

prostheses have been used for a variety of different functions, but they can be divided 

into two broad categories: external and internal neuroprosthetic devices. External 

neuroprosthetic devices utilize surface electrodes, which are attached to skin in close 

proximity to peripheral nerves, and stimulate these nerves with electrical pulses (Rupp et 

al., 2014). The stimulation of these nerves has many medical applications, including 
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physical therapy, where the stimulation of the nerves assists with retraining functionality 

in activities like walking, as well as pain relief (Rupp et al., 2014).  

External Neural Prostheses 

External neural prostheses can have the ability to restore functionality to 

paralyzed limbs by processing the electrical stimulation of nerves by the brain, as well as 

restore functionality to amputees by using the data obtained from the brain to produce 

movements and functionality in a prosthetic limb (Shenoy et al., 2012). This use is one of 

the most heavily linked applications of neural prostheses to Brain-computer Interfacing. 

External neural prostheses, although much more convenient than implanted 

neuroprosthetic devices face challenges of their own, mainly in data acquisition, which 

will be discussed in detail later in this paper (Patin, 2008). 

Implanted Neural Prostheses  

Implanted neuroprosthetic devices are generally much more difficult to use, since 

they are usually more complex, and must meet higher clinical standards, but they have 

equally impressive potential. Pacemakers, although not necessarily classified as neural 

prostheses by some definitions, are implanted electronic stimulators that have already 

made a huge impact in the medical community (Prochazka et al., 2001). Other examples 

of implanted neuroprosthetic devices include bladder-control implants which use radio-

frequency controlled stimulators to control the detrusor muscle of the bladder, cochlear 

implants, and even visual implants of the retina (Prochazka et al., 2001).  Implanted 

neural prostheses have many applications, and are currently widely used to improve the 

quality of life for people all over the world. However, implanted neural prostheses face 

several challenges that external neural prostheses do not.  
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First of all, implanted neuroprosthetic devices are required to be functional on a 

much smaller scale then external neuroprosthetic devices are, yet must also provide 

enough power to successfully transmit signals and  function, making power consumption 

a huge factor concerning implanted neuroprosthetic devices, since they are not easily 

accessible for recharging or battery replacement (Sajda et al., 2008). Bio-compatibility is 

another factor that must be considered, since an implanted neuroprosthetic device must 

be made from certain, specific materials to ensure that it is not rejected by the immune 

system (Leuthardt, 2012). Lastly, data transmission from these devices must be both 

robust and secure. Although wireless transmission of data allows for a larger amount of 

data to be processed and stored, it also allows for the signal to be intercepted and used for 

malicious purposes (Mohan et al.). Despite these many issues that implanted neural 

prostheses face, the possible benefits far outweigh the challenges. Neural prostheses are 

already a huge asset to the medical community, and advancements in neuroprosthetic 

technology hold a promising future for the use of these devices.  

Brain-computer Interfacing 

 While most methods of controlling neuroprosthetic devices require the use of the 

brain’s normal pathway of peripheral nerves in order to obtain the information needed to 

make the device function, BCIs do not. Instead, BCIs utilize the brainwaves themselves 

to process and analyze the data that determines which functions the user is trying to 

implement (Arafat, 2015). The data itself must be analyzed and processed using a 

computer system due to its complexity, hence the name Brain-computer Interface. This is 

extremely helpful, especially in cases where the periphery nerves do not function 

properly, as in cases of paralysis, amputees, and people who are “locked-in,” with full 
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awareness, but no control over their bodies (Arafat, 2015). There are three different 

methods by which the brains signals can be obtained: Non-invasive, Invasive, and 

Partially Invasive (or Semi Invasive) BCI’s (Arafat, 2015). 

Non-Invasive Brain Computer Interfaces 

Non-invasive BCIs are the external implementations of the method. This method 

involves analyzing electroencephalogram signals, which are gained by reading 

brainwaves using electrodes that are attached to the scalp (Grabianowski, 2007). While 

this method is the most convenient of the three methods, it does not provide the amount 

of detailed information that could be recorded by implanted electrodes in the cortex via 

Partially Invasive or Invasive BCIs (Arafat, 2015). The disadvantage of having less 

detailed data is due to low selectivity in the surface electrodes, cable problems, and the 

need to change electrode positions regularly to ensure that the proper signals are being 

captured (Pfurtscheller et al., 2008).  

Invasive Brain Computer Interfaces 

Invasive BCIs, also known as Direct BCIs, describe the method by which 

electrodes are implanted directly into the brain (Kristenson, 2015). While this method 

allows for a much higher level of brain signal detail to be obtained, even allowing for 

reading information on the activity of small clusters of neurons, or even single neurons, it 

can only be implemented through procedures in which sensors are implanted directly into 

the gray matter of the brain (Arafat, 2015). Also, as with implanted neural prostheses, 

Invasive Brain-computer Interfacing faces a variety of other difficulties including 

difficulties in power consumption, biocompatibility, and long-term data reliability 

(Grabianowski, 2007). Since this method allows for signals from individual clusters of 
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neurons in the brain to be measured by using micro-electrodes, it provides the clearest 

and therefore most desirable signal (Pedriera et al.).  

Partially Invasive Brain Computer Interfaces 

Partially Invasive BCIs involve electrodes being implanted within the skull but 

outside of the brain. This method can acquire much clearer brain signals than non-

invasive methods, but does not provide signal information as detailed as Invasive BCI 

techniques (Kristenson, 2015). However, partially invasive methods do not have the 

dilemma of biocompatibility that invasive BCI methods have, so the user’s body is much 

less likely to reject the sensors implanted via this technique (Kristenson, 2015). 

Integrating Brain-computer Interfacing with Neuroprosthetic Devices 

 The main challenge that neuroprosthetic devices face is proper functionality. In 

the case of many neural prostheses, certain parameters can be relatively easily 

preprogrammed into the device, such as pacemakers, which regulate a person’s heartbeat, 

or cochlear implants. However, some neural prostheses, such as prosthetic limbs, require 

integration with the brain in order to receive the information needed to direct the 

functions it carries out (Sajda et al., 2008). In order to effectively accomplish this, Brain-

computer Interfacing is a method that shows an incredible amount of potential, which is 

already being carried out on some levels.  

Although still in the early stages of research and development, many successes in 

the design and implementation of BCIs have already occurred, although most of the 

successes thus far have been confined to the laboratory. For instance, in 2002, researchers 

at Brown University were able to train monkeys to move the mouse on a computer screen 

using direct Brain-computer Interfacing, and in 2005, researchers were able to train 
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monkeys to feed themselves with a robotic arm using the same method (Arafat, 2015). A 

more recent example occurred in 2010, when BCIs were successfully used to allow 

people with Amyotrophic Lateral Sclerosis to browse the internet with their mind, and in 

2012, two long-term, tetraplegic stroke patients were able to control the reaching and 

grasping movements of a robotic hand using BCIs (Arafat, 2015).  Although there is still 

a lot of room for improvement, Brain-computer Interfacing shows a lot of promise, 

especially when integrated with neuroprosthetic devices. 

 Utilizing BCIs to control neural prostheses has the potential to change the lives of 

many individuals who have limited functionality in their nervous system. Future 

advancement in the integration between BCIs and neural prostheses holds potential in not 

only the medical field, but in military, social, and even space exploration applications 

(Arafat, 2015). Even in its current stages, it can be seen that Brain-computer Interfaces 

can be used to replace nonfunctioning motor, sensory, or cognitive abilities in a disabled 

individual through integration with neural prostheses fairly effectively, which points 

towards a promising future for this technology. In time, efficiently and conveniently 

controlled neural prostheses could make the ability to completely regain functionality in 

motor, sensory, or cognitive abilities in a disabled individual become a reality.  

The Utilization of BCIs 

 Integration between the human brain and a computer involves many hurdles that 

the user must overcome. Controlling a computer with one’s brain, at least up to this point, 

is not something that comes naturally to the user but rather involves a great deal of 

training to master (He, 2005). According to Dr. Wolpaw, Chief of the Laboratory of 

Nervous System Disorders at the New York State Department of Health, “most popular 
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and many scientific speculations about BCIs start from the ‘mind-reading’ or ‘wire-

tapping’ analogy, the assumption that the goal is simply to listen in on brain activity as 

reflected in electrophysiological signals and thereby determine a person’s wishes” 

(Wolpaw et al., 2002). However, Dr. Wolpaw et al. proceed to explain that this is not 

precisely how BCI’s function. Rather than simply reading signals that have been 

generated from the brain, a BCI must read the signal, and then alter the 

electrophysiological signal into electronic commands that can be used to dictate the 

reaction of the corresponding product that has been integrated into the BCI (Wolpaw et 

al., 2002). This is an incredibly sophisticated process, but in order for the human brain to 

operate the BCI correctly, it is imperative that feedback is provided to the brain. This 

feedback allows for alterations in brain activity to be made in order to improve and 

maintain functionality of the BCI. 

Miranda provides a figure that shows the process of a BCI providing instructions 

to a neuroprosthetic, and subsequently receiving proprioceptive feedback from that 

neuroprosthetic (see Appendix A) (2015). In the figure electrode arrays implanted into 

the primary motor cortex (M1) record signals that indicate motor intent, which are then 

decoded and used to control the movement of a prosthetic arm (Miranda, 2015). Sensors 

on the robotic arm detect information on touch by physical contact with external objects 

and/or proprioception by analyzing the movement and position of the prosthetic limb 

(Miranda, 2015). Outputs from these sensors are then converted to patterns of stimulus 

pulses that are delivered by the implanted electrode arrays to the primary somatosensory 

cortex (S1), or other sensory regions of the brain, completing the feedback loop 

(Miranda, 2015).  
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Due to the nature of BCIs, this means that the user must learn to control specific 

electrophysiological signals, rather than proper muscle control (Wolpaw, 2002). The 

result of this is that the ability to properly and effectively utilize BCIs is a skill that must 

be learned, and is not simply an inherent trait of BCIs. However, the adaptive ability of 

the BCI itself is also a possibility to consider when determining how to optimize the 

control that a user has over a BCI. With both the brain and the BCI adapting to improve 

the performance and the ability to efficiently control neural prostheses, training time and 

effort can be decreased significantly, but are still relevant factors when using BCIs 

(Wolpaw, 2002). 

 In order for practical functionality of these BCIs, Dr. Wolpaw et al. set forth four 

essential elements that are imperative to the success of the integration of a BCI with 

neural prostheses (2002). The first is signal acquisition, which is the method by which the 

BCI system records an input signal directly from the brain, as an electrophysiological 

signal. The second element is signal processing, where the signal obtained by the first 

element is converted from the raw electrophysiological signal into an electronic 

command that can be sent to a neuroprosthetic device. This signal is then used by the 

third element, the device output, to dictate the control of the device according to the 

directions provided by the BCI. The final element for successful integration of a BCI 

with neural prostheses is the operation protocol, which determines any alterations that 

need to be applied to the BCI, as well as its operating parameters (Wolpaw et al., 2002). 

Acquiring the Input Signal 

According to Dr. Leuthardt, a neurosurgeon and assistant professor in the 

Department of Biomedical Engineering and Department of Neurological Surgery at the 
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Washington University School of Medicine, signal acquisition involves the “real-time 

measurement of the electrophysiological state of the brain” (2012). The 

electrophysiological signals that the brain produces are measured by electrodes that are 

applied with either the Invasive or the Non-invasive Brain-computer Interfacing methods 

that were mentioned previously. These electrodes measure voltage changes in the brain, 

and are able to translate these changes into a signal that can be relayed to the BCI for 

signal processing (Leuthardt, 2012).   

Several prominent methods by which the electrophysiological signals that the 

brain produces can be read already exist, but there are also some newly emerging 

methods that could potentially prove to be equally effective methods. The first main 

method, electroencephalography (EEG), is the method used in non-invasive signal 

acquisition, reading voltage differences on the scalp to determine brain activity (Arafat, 

2015). BCI’s are able to use the EEGs to “detect thought-modulated changes in 

electrophysiological brain activity and transform those changes into control signals” 

(Muller-Putz et al., 2008).  

The other method is electrocorticography (ECoG), which is used to determine 

voltage changes in the brain during Invasive Brain-computer Interfacing (Arafat, 2015). 

ECoGs record voltage changes in the brain from inside the skull, and then transmit the 

data as a signal to the BCI. Similarly, field potentials use the Invasive Brain-computer 

Interfacing method to implant electrodes inside the parenchyma, which is the functional 

tissue that composes the brain, to measure brain activity (Patil et al., 2008). Lastly, 

microelectrodes, known as single units, can be used to measure the firing of individual 

neurons, and provide information on the brains electrical activity to the BCI in the form 
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of a signal based on the firing of that individual neuron. Single units are also a form of 

Invasive Brain-computer Interfacing (Leuthardt, 2012). However, the vast majority of 

signal acquisition for BCIs is conducted using EEGs and ECoGs. All of these BCI 

platforms, although functional, are still in the process of being developed further, and will 

be discussed later in further detail. 

Although signal acquisition currently depends almost exclusively on measuring 

voltage changes in the brain, several other methods exist that should theoretically also 

work as means to acquire a signal from the brain based on its activity. These methods 

include Magnetic Resonance Imagery (MRI), which can measure blood flow in the brain, 

Magnetoencephalography (MEG), which can measure alterations in magnetic fields 

within the brain, and Optical Signals (Arafat, 2015). Despite the fact that little research 

has been done regarding the use of these methods to provide signals for BCIs when 

compared to EEGs and ECoGs, these methods have the potential to be put into use as 

BCI development continues. 

Signal Processing 

 Dr. Leuthardt states that there are two essential functions that the signal 

processing element must perform in order to be effective. These two functions are known 

as feature extraction and signal translation BCI (2012). Dr. Leuthardt describes feature 

extraction as the discernment between specific features in the signal that was acquired via 

the signal acquisition stage of the BCI, and will extract any significant information that it 

identifies as being imbedded in the signal (2012). He also notes that the signals provided 

by the electrodes have several properties that feature extraction must take into 

consideration in order to be able to perform its function, which is to ensure the successful 
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capture of important data, as well preventing the capture of erroneous or irrelevant data 

(2012).  

Somerset discusses these critical properties in his book Intelligent and Biosensor. 

The first critical property of brain signals is that they have a poor signal to noise ratio, 

which can make it difficult to distinguish the difference between the actual signals from 

erroneous ones (2010). Secondly, brain signals have high dimensionality, which, 

according to Somerset, means that features of the signals are extracted from several 

channels and from several time segments before being concatenated into a single feature 

vector. Also, it is extremely important that the feature extraction function contains time 

information, since the signals are generally related to time-based variation in their 

patterns (Somerset, 2010). Feature extraction must also take into account the non-

stationary and non-linear nature of the brain signals. Finally, the limited amount of data 

that can be retrieved for training the system must be considered, since training is very 

demanding and time consuming for the user of the BCI. Keeping these factors in mind, 

the analysis of the information provided by electrodes can now be examined for feature 

extraction (Somerset, 2010). 

The conversion of the raw data that is provided by electrodes during the signal 

acquisition element of the BCI requires some fairly complex analyses. The plethora of 

analyses that must be run also depends upon the method by which signal acquisition 

occurred in the previous element (Somerset, 2010). For example, an EEG or ECoG signal 

may need to be analyzed by assessing the frequency power spectra of the signal, event-

related potentials, or cross-correlation coefficients, whereas when single units are utilized 

to acquire a signal from the brain, directional cosine tuning may be used as the method of 
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analyzing the signal (Somerset, 2010). Many different forms of analyses can be used for 

feature extraction, but the results of these analyses allow for the compacted information 

that is obtained during these analyses to be used in the next function inside this element: 

signal translation. Dr. Cichocki explains the signal processing method for a BCI 

developed by the Riken Brain Science Institute, specifically for controlling hand 

movements (2006). The figure provided by Cichocki shows the preprocessing of the 

brain signals, which translates the brain signals into a spectral matrix (see Appendix B). 

A feature matrix is then used in the feature extraction section of signal processing, and 

will process the extracted features in a classification system. The classification system 

will then decide on the action to be taken based on the extracted features (Cichocki, 

2006). 

 During the signal translation function of the signal processing element, a complex 

translational algorithm is responsible for relating the important features that have been 

extracted from the brain signal to output signals, which will control an output device 

(Schalk, 2010). Traditionally, signal translation has been accomplished through 

procedures that primarily use conventional classification/regression algorithms. Examples 

of these translation procedures include neural networks, linear discriminant analysis, 

support vector machines, and linear regression (Schalk, 2010). However, these methods 

cannot always allow for the non-stationary nature of brain signals.  

In order to compensate for the abrupt and unpredictable changes in brain signals, 

the signal translation algorithm may also include a whitening procedure, which “produces 

signals with zero mean and a defined variance such that the output device does not have 

to account for changes in brain signal characteristics that are not related to the task” 
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(Schalk, 2010, p. 28). Essentially the signal processing element of the BCI is responsible 

for extracting the features of the brain signal that accurately reflect the users intentions, 

through feature extraction, and translating those signal features into output signals that 

can be used to control an output device. 

Device Output 

 After the brain signal has been processed and converted into a form that is 

readable, it is sent to an output device. Numerous output devices currently have the 

potential to be used by the BCI network, ranging from computer screen cursors to robotic 

arms, or even controlling intrinsically physiological functions, such as moving a limb or 

bladder control (Leuthardt, 2012). The most common and well researched BCI output 

device is a computer cursor, which the BCI dictates the movement of on a computer 

screen. According to Thompson et al., who are developing a Multi-Purpose BCI Output 

Device (MBOD), which has the potential to interface between a BCI and multiple 

different output devices, four main design goals must be considered when creating a BCI 

output device (2012). 

 Device-controller compatibility. The first design goal for all BCIs is device-

controller compatibility. It is essential for the BCI to be able to integrate with the output 

device in order to ensure that the directions given by the BCI are able to quickly and 

seamlessly be related to the output device (Thompson et al., 2012). The four major 

categories that Thompson lays out in order to determine the root purpose of the device 

are augmentative and alternative communication (AAC), environmental control systems 

(ECS), computer access (CA) and movement (M), all of which require a unique 

integration with BCIs in order to ensure proper device-controller compatibility. 
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Throughout these different categories, the three most common types of input that an 

output device will accept are a switch, a mouse, or a keyboard, and each type of input 

requires a specific input from a BCI to function correctly (Thompson et al., 2012). 

However, as research on methods such as the MBOD continue, it may be possible for 

device-controller compatibility to encompass several types of devices, regardless of the 

type of input that the device requires. 

 Input device compatibility. The second design goal considers the opposite side 

of the spectrum from the previous design goal. Since a number of different BCIs are 

currently being developed idiosyncratically, there will certainly be differences in the 

types of output that these BCIs produce (Thompson et al., 2012). The most efficient way 

to do this would be to include a companion program that translates custom or alternative 

BCI inputs into a common framework that the device can utilize to implement the 

instructions given by the BCI. 

 Convenience. The device should be user friendly, allowing for simple integration 

between the output device and the BCI. Thompson et al. liken this to the modern “USB 

plug-and-play” devices, which facilitate in the discovery and installation of the device 

immediately upon its integration with a computer system (2012). Thompson et al. 

accomplish this by incorporating three features into his MBOD: drivers, power, and 

flexible output capabilities (2012). In essence, the ideal output device should be able to 

be easily integrated with the BCI to ensure an efficient and user-friendly product. 

However, while this is especially prevalent for the MBOD, most neuroprosthetic devices 

will be connected for long periods of time, making the necessity of reintegration with the 

BCI less relevant.  
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 Intuitive command structure. The final design goal, according to Thompson et 

al., involves incorporating an intuitive connection between the input device and the 

output device (2012). The switch, the continuous-output BCI modalities (e.g. a computer 

mouse), and a full keyboard modality are the three output modalities that Thompson 

incorporates into his MBOD, which allows for easier integration between multiple 

different output devices (Thompson et al., 2012). The importance that these differing 

modalities all be included in the command structure of the BCI can be easily seen in 

cases where the BCI will be utilizing different output devices, as with the MBOD. 

However, many neuroprosthetic devices involve a long-term connection, which does not 

need to incorporate multiple command structures. 

 The development of effective output devices is not a trivial matter, and requires a 

great deal of research and testing. The design used to ensure effective communication 

between the BCI and the output device is essential to the success of any BCI output 

device. Nevertheless, although the design of the output device is integral to the successful 

operation of the BCI, the burden does not fall solely on the output device to interpret the 

commands given by the BCI. 

BCI Operation Protocol 

 In order for the BCI to operate successfully, and to successfully transmit readable 

data to the output device, the BCI must abide by specific operation protocols. This means 

that the BCI must have a consistent methodology in the way that users interact with the 

BCI, and how the BCI processes that interaction (Leuthardt, 2012). This includes how 

users turn the BCI on or off, how they control the speed at which commands are 

implemented, the control of the kind of or speed at which feedback is provided, as well as 
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the various other governing factors of the BCI that the user controls. These interactions 

between users and BCIs are critical for real-world applications of the BCI (Leuthardt, 

2012). The protocols set in place are what allow the BCI to provide consistent results 

during the interaction between a BCI and its user. 

Brain Computer Interfacing Platforms 

 Currently there exist three general categories of BCI Platforms that have the 

potential to be used in clinical applications: Electroencephalography-based Systems, 

Electrocorticography-based Systems, and Intermediate Modality Systems (Leuthardt, 

2012). The categories are determined based on the source of the brain signal that controls 

the BCI. Since the specifics of EEGs and ECoGs have been discussed previously, this 

section will primarily focus on the progress in the development of these systems as a 

whole. 

Electroencephalography-Based Systems  

 As previously discussed, the non-invasive nature of the EEG makes it the most 

practical and convenient method by which to obtain a brain signal, which is the reason 

that it is one of the most commonly used systems to study BCI potential. A considerable 

amount of success with EEG-based systems has already been made, allowing for human 

control of a computer cursor in both two and three dimensional scenarios (McFarland et 

al., 2008). However, the limitations of the detail of the brain signals acquired by EEGs 

provide a serious limitation on the system as a whole. These limitations prevent the 

systems from acquiring specific details provided by the brain signals, such as position or 

velocity of a movement, which seriously inhibits the potential for EEG systems to be 

used in applications involving neuroprosthetic devices (Leuthardt, 2012). This system has 
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also proven to require a relatively long training period before users are able to effectively 

communicate with the BCI (Leuthardt, 2012). These combined limitations pose a serious 

problem to the future of EEG-based BCIs. 

Electrocorticography-Based Systems 

 ECoG-based systems have been gaining momentum in the scientific community 

as the most practical and robust option for clinical applications with a BCI (Leuthardt, 

2012). ECoGs have been previously discussed, being noted for the quality of brain signal 

that can be obtained using this method, although the invasive procedures in the form of 

subdural electrode implants required to implement ECoG technology detract from the 

appeal of this technology. The robustness of the signal provided by ECoG makes up for 

this detrimental quality however, overcoming challenges faced by EEG-based systems 

like prolonged user training, allowing users to achieve a high level of control in the span 

of only a few minutes (Leuthardt, 2012).  

A comparison of the signals acquired from EEG and ECoG methods, as well as 

those from implanted electrodes is provided by Buzsáki, Anastassiou, and Koch (see 

Appendix C) (2012). By comparing the signals, it is clear that ECoG signals provide the 

most distinct signal changes. Also, ECoG-based systems are able to obtain higher quality 

signals from the brain, even reading the high frequency gamma signals that EEG-based 

systems cannot read due to poor signal-to-noise ratio limitations (Leuthardt, 2012). 

Despite the invasive nature of ECoG-based BCI systems, the robustness of the signals 

provided by this system, coupled with the benefits that are provided to the BCI by the 

high quality brain signals that ECoG-based systems read, ensures that ECoG technology 
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will be continued to be researched, and could be the leading technology for BCI 

integration with neuroprosthetics in the future. 

Single Neuron-Based Systems 

 The third most prominent system being researched for its applications with BCI 

technology is the single neuron-based system, which implements the microelectrodes that 

measure voltage outputs from single neurons that were referenced earlier (Leuthardt, 

2012). This system would allow for the optimal amount of electrical information to be 

gained from the brain, since each neuron is individually monitored. The system would 

function via a network of these extremely small (approximately 20 microns in diameter) 

neuron monitors, which monitor the activity levels in neurons throughout the Parenchyma 

layer of the brain, and providing very detailed signals for the BCI to utilize (Leuthardt, 

2012).  

Due to the high level of detail, the single neuron-based system gives users very 

high-fidelity control of the BCI, providing the users with what is arguably the highest 

level of control for BCI applications (Leuthardt, 2012). However, this method of system 

faces several challenges that make it less effective than the ECoG-based system. The first 

major problem that the single neuron-based system faces is the potential dangers of 

implanting microelectrodes into the Parenchymal layer of the brain. According to Dr. 

Leuthardt, implantation of the microelectrodes into the Parenchymal layer could 

potentially cause neural or vascular damage in the area surrounding the implanted 

microelectrode (2012). Also, these microelectrode could very easily be rejected by the 

body’s immune system, resulting in neural cell death, or encapsulation of the 

microelectrodes in tissue, which could isolate it from the electrical signals of the intended 
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neuron, rendering the microelectrode useless (Leuthardt, 2012). Another drawback of 

single neuron-based systems is the difficulty of widespread implementation of the 

system. Construction of the system requires an intensive neural surgery to implant the 

microelectrodes, making the widespread clinical application of this technology 

implausible. 

Current BCI Integration with Neural Prosthetics  

 A great deal of progress has been made in the area of clinical applications of BCI 

integration with neuroprosthetic devices, but a lot of research and testing still needs to be 

done before many of these applications can become widely available to the public. BCI 

integration with neuroprosthetics must meet several goals to provide a functional and 

practical application of the technology in real life situations. First, the system must 

operate in a closed loop, functioning without need for information or power from an 

external system. Second, the system must have channels to relay information from the 

neuroprosthetic device back to the BCI, so that the feedback provides the BCI with 

relevant information. Next, the system must be robust, being able to function for long 

periods of time without major errors. Also, the BCI must be able to adapt to physical 

changes within the brain itself. Lastly, the system must be able to withstand 

environmental factors that the device could endure, such as water resistance (Rothschild, 

2010). With such rigorous requirements, it is easy to see why many of these applications 

are not in widespread clinical applications. However, the progress that has been made in 

many of most influential areas of neural prosthetics will now be discussed. 

 Although the most important successes in the integration of BCIs with 

neuroprosthetics have been confined to the laboratory, where the research was done on 
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able-bodied subjects rather than the target population of disabled subjects, these 

successes have immense potential. One such success is the InendiX BCI, which allows 

users to type messages, produce synthesized speech, or control some external devices 

(Shih et al., 2012). The impact that a commercialized version of this BCI could have on 

the disabled populace is huge, allowing for many people with communication disabilities 

to gain or regain that functionality.  

Visual Prosthetics  

 Visual Prosthetics are one of the highest priorities in the biomedical community, 

and there has been a great deal of research regarding a biomedical solution to blindness 

caused by retinal degeneration (Rothschild, 2010). The degeneration of photoreceptor 

cells in the retina is one of the main areas of research for visual prosthetics. These 

prosthetics have been applied in one of three possible solutions to photoreceptor 

dystrophy: prosthetic retinal implants, prosthetic optic nerve implants, and prosthetic 

visual cortex implants (Rothschild, 2010). Each method has potential drawbacks, either 

having non-ideal functionality replacement, difficult surgical implications or both.  

One current project that involves BCI integration with the visual neuroprosthetics, 

led by Daniel Palanker, a professor in the Department of Ophthalmology and Hansen 

Experimental Physics Laboratory at Stanford University, involves using a “pocket” 

computer that is wirelessly connected to photovoltaic subretinal prosthesis (Saunders et 

al., 2014). This computer processes images from a miniature camera that has been 

mounted onto goggles, and transmits them to the subretinally implanted photodiode 

array. These then convert the light into electrical pulses that stimulate nearby inner retinal 

neurons, and transmit a visual image to the brain (Saunders et al., 2014). Although a great 
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deal of progress still needs to be made before clinical applications of visual prostheses 

become widespread, projects such as these provide concrete evidence that a cure to 

blindness within the grasp of the biomedical community.  

Auditory Prosthetics  

 The most commonly used auditory prosthetic is the cochlear implant, which 

functions by stimulating the Sensory Epithelium of the Basilar Membrane to produce 

auditory stimuli (Rothschild, 2010). Most auditory prosthesis function independently 

from BCIs, since prosthesis such as the cochlear implant are capable of functioning 

without the need of a computer to process information and relay it to the brain. However, 

several projects are in development in which a BCI implements auditory prosthetics to 

provide feedback to the brain when other neuroprosthetic devices are being used 

(Rothschild, 2010). Although auditory neuroprosthetics are not very prevalent in the field 

of BCI integration with neuroprosthetics, they still have potential to provide a substantial 

impact on BCI technology and methodology. 

Replacement Limb Prosthetics  

 The most popular target audience of BCI integration with neuroprosthetics is 

undoubtedly replacement limb prosthetics. The majority of current research is done with 

the end goal of helping either those who have lost limbs, or those who have non-

functioning limbs. Due to this, replacement limb prosthetics and their integration with 

BCIs is some of the most advanced technology in the field. In fact, BCI integration with 

replacement limb prosthetics has progressed to the point that a non-invasive hybrid FES 

orthosis for restoration of hand and elbow function was developed, providing a 

satisfactory amount of functionality with brain signals provided by EEGs, which is a far 
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more desirable method than invasive BCIs (Rohm et al., 2013). In 2005, the first 

Tetraplegic BrainGate BCI was implemented, allowing a man to control a prosthetic arm 

directly with his mind (Arafat, 2015). Since then, much advancement has been made in 

the field, such as wireless interaction between a BCI and the prosthetic limb (Arafat, 

2015). Some of the most current research on BCI integration with neuroprosthetics 

involves improving the accuracy of BCI signal processing and decreasing the time and 

effort needed to learn to use BCIs through the use of both visual and proprioceptive 

feedback (Ramos-Murguialday et al., 2012). Since neuroprosthetic devices that function 

as limb replacements and are controlled by BCIs are already in clinical trials, the primary 

goal of research in this area is now focused on increasing the efficiency and effectivity of 

these devices. 

Problems and Limitations of BCI Integration with Neural prosthetics  

 Several problems may be encountered when attempting to integrate BCIs with 

neural prosthetics, and many limitations that current BCI technology faces when 

integrating with neural prosthetics. The main issues that need to be addressed before BCI 

integration with neural prosthetics can be widely disseminated among the target 

population, the disabled, includes problems with signal acquisition and accuracy, 

difficulties in the user interaction with the BCI, biocompatibility issues, and system 

robustness. 

 The first problem that will be addressed is the difficulty in acquiring accurate and 

detailed brain signals, and converting those signals into the proper command for the BCI 

to transmit to the neuroprosthetic device. As discussed previously, the different method 

of signal acquisition all have their benefits and drawbacks. However, none of the signal 
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acquisition methods have the level of detail that is ideal for translating the brain signals 

into commands by the BCI (Grabianowski, 2007). Although the current technology 

allows for enough detail for the BCI interaction with neuroprosthetic devices to function, 

most clinical applications only result in about 60% to 75% accuracy in signal translation 

(Mak et al., 2009). In order to have effectively functioning BCI integration with 

neuroprosthetics, so that it can be applied on a large scale, a more accurate translation 

from brain signal to device command needs to be developed. 

 The next difficulty of BCI integration with neural prosthetics is the aspect of user 

interaction. Currently, the process of learning to use BCIs, especially non-invasive BCIs, 

is both difficult and extended. Use of BCIs is reported to cause fatigue to the users, who 

must concentrate for prolonged periods of time when using BCIs that have been 

integrated with neuroprosthetics (Mak et al., 2009). Before BCIs become widely 

implemented, the method in which BCIs are controlled needs to become more natural, 

and require less concentration from users. 

 Another problem, which is exclusive to invasive BCIs, is the issue of 

biocompatibility. Since a continued presence of electrodes in the brain promotes the 

formation of a sheath around the electrode that is composed partly of reactive astrocytes 

and microglia, which could lead to neural cell death and tissue resistance, which would 

electrically isolates the device from the surrounding neural tissue, the electrodes for 

invasive BCIs need to be created from biocompatible material (Leuthardt, 2012). 

Although some functional biomaterials already exist, there is still ongoing research to 

find biomaterials that are better suited for BCI applications (Leuthardt, 2012).  
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 The last issue that will be discussed that BCIs must overcome before widespread 

application of BCI integration with neural prosthetics becomes possible is system 

robustness. Current technology requires that a BCI be robust. For invasive BCIs, it is 

essential that any implanted electrode or neuroprosthetic be functional for long periods of 

time for it to be an effective solution. Also, due to the complexity of the computing, 

current technology requires that a fully functioning mobile BCI contain a minimum of ten 

pounds of equipment, but as computers continue the trend of becoming both smaller and 

more powerful, this problem should be remedied in the relatively near future (Mak et al., 

2009). 

The Future of BCIs   

 As scientists, engineers, and researchers continue the development of BCIs, the 

enormous potential of these systems will become increasingly evident. Researchers like 

Dr. Ibriham Arafat predict that by the year 2030, bionic ears, bionic eyes, and prosthetic 

limbs will be completely functional on a large scale, and will be controlled through some 

variation of BCI, giving many disabled people the ability to function completely 

normally (2015). More conservative predictions, however, have noted that BCIs 

technology is still in its infancy, and since it target audience is a relatively small segment 

of the population, it is unlikely to attract the commercial interest that would be needed to 

quickly advance BCI technology in the medical field (Mak et al, 2009). Nonetheless, 

outside of the medical field, BCIs have vast potential in the commercial field, and 

predictions of BCI integration in both entertainment and communication technologies do 

create a potential for massive advancement in BCI technology (Arafat, 2015). In this 

case, the advancement in BCI technology could then be integrated with medical 
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applications, essentially allowing commercial uses of BCI technology to fund the 

research needed to advance BCIs in the medical field. 

Conclusion  

 Brain-computer Interfacing is some of the most exciting technology that is 

currently being developed, and the integration of these BCIs into neuroprosthetic devices 

has potential to revolutionize the medical field. Although BCI technology, especially in 

regards to its application with neuroprosthetic devices, is still entrenched in the research 

phase of its development, this technology has the potential to have an enormous impact in 

the future medical field. Neuroprosthetic technology is also rapidly progressing through 

research, as the cortical physiology that underpins the way a human brain encodes 

intentions is beginning to be understood (Leuthardt, 2012). The amalgamation of these 

two technologies results in an exciting prospect in which future prosthetic devices, 

whether they are visual prosthetics, auditory prosthetics, or prosthetic limbs, will function 

exactly like their natural human counterparts. Although this technology has many 

challenges that must be overcome before a widespread clinical application of BCI 

integration with neural prosthetics becomes a reality, current research is steadily 

progressing towards a future in which disabled people have the ability to completely 

regain lost functionality. 
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Appendix A 

Idealized bidirectional Brain–computer Interface for closed-loop prosthetic control from 

Bensmaia et al. (2014).  

http://www.nature.com/nrn/journal/v15/n5/full/nrn3724.html 
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Appendix B 

Diagram an EEG-BCI classification method for imaginary hands movements developed 

by the Riken Brain Science Institute from Cichocki (2006). 

http://www.brain.riken.jp/bsi-news/bsinews34/no34/research1e.html 
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Appendix C 

A comparison of a macroscopic recording via electroencephalography, a mesoscopic 

recording through electrocorticography, and implantable electrode signals from Buzsáki 

et al. (2012).  

http://www.nature.com/nrn/journal/v13/n6/full/nrn3241.html 
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