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ABSTRACT 

 Organic semiconductors are growing in applications for use in modern 

technology.
1
 The main interest in these molecules can be attributed to their low cost 

(compared to silicon) and their ability to be used on flexible substrates. There are four 

features that make a good organic semiconductor. First, the molecule should be 

conjugated, having alternating single and double bonds (lone electron pairs act similarly 

to double bonds). Secondly, the molecule should be planar, or flat, in shape. Thirdly, the 

molecule should have a narrow band gap to increase the overall conductivity. Lastly, the 

molecule should be soluble to ease application. 3,4:3’,4’-Bisbenzothiophene (BBT) 1 is a 

fairly unexplored molecule that is known to have semiconducting applications. BBT is 

conjugated and planar, but its band gap is large and it is highly insoluble. The aim of this 

research was to synthesize a malononitrile substituted BBT molecule in order to increase 

solubility and decrease the band gap. Theoretical modeling supports that this molecule 

will be highly conjugated, will be mostly planar, will have a narrow band gap, and will 

have increased solubility as a result of a high dipole moment. 
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INTRODUCTION 

Organic Semiconductor Application and Properties. Organic semiconductors 

are growing in application.
1
 Although most of them are still being adjusted for use, 

organic semiconductors promise a more economic substitution for silicon in technology 

such as solar panels. Organic semiconductors also have the potential to allow the 

replacement of glass in liquid crystal displays, and have applications as fluorescence 

indicators and organic dyes.
2, 3

 The main attraction to these materials is due to their cost 

efficiency (in comparison to inorganic semiconductors like silicon) and their ability to be 

used on flexible substrates.
1
 Further applications lie in increasing cell proliferation in 

vitro with thin films.
4
 Organic field effect transistors (OFETs) also utilize organic 

semiconductors, but photooxidation is a problem.
5
 Most of the technologies listed are still 

in experimental development, however, radio frequency identification (RFID) tags used 

in grocery stores and department stores currently utilize organic semiconductors.
6
  

 There are four molecular requirements that build a good organic semiconductor: 

1. Planarity 

2. Conjugation 

3. Narrow band gap 

4. Solubility. 

Organic semiconductor molecules should be planar, or flat, in shape.
7
 The purpose 

behind this property is discussed more below. When a molecule contains a double bond, 

that bond forms a pi bond which has a highest occupied molecular orbital (HOMO) and a 

lowest unoccupied molecular orbital (LUMO).
8
 The organic semiconductor molecule 

should be conjugated, having a maximum number of alternating single and double bonds, 
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because this allows the electrons to move easily from the HOMO to the LUMO along the 

molecule generating semiconductivity.
7-9

 Lone pairs on atoms also contribute to the 

conjugation of a molecule similarly to a double bond. If a molecule is not planar, the 

distance between HOMO and LUMO increases, so the electrons cannot jump from the 

HOMO to the LUMO as easily, which decreases its conductivity.
9
 The band gap is an 

energy measurement between the HOMO and LUMO. A narrow band gap in organic 

semiconductor molecules is necessary because it also corresponds to the ease of electron 

movement. Organic semiconductor molecules need to be soluble because they can then 

be applied as thin films from a solution rather than through sublimation, which makes 

application easier. 

Literature Review. Past research on organic semiconductors covers a wide range 

of areas including research in improving OFETs, thin film printing, and, especially, 

achieving a chemical structure that improves a semiconductor’s function. The structure is 

important because it is essential to the conductivity of the molecule.
7
 When derivatives of 

2,6-dibromoanthracene-9,10-dione 2 (see Figure 1) were synthesized, it was found that 

larger donor-acceptor pi spacers, like alkenes or alkynes, that interrupt bond conjugation 

decrease the efficiency of the semiconductor.
9
 Molecules with either linear conjugation 3, 

cross conjugation 4, or broken conjugation 5 were evaluated for conductivity in a 

different study, and it was found that the linearly conjugated molecule had the highest 

conducting capabilities, followed by the broken conjugation, and then the cross 

conjugation.
7
 From the results of the latter two experiments, it can be concluded that 

consistent conjugation and linear form are the most efficient structures for organic 

semiconductors.
7, 9
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Figure 1. Structures of various molecules. These molecules are mentioned in the text. In 

molecule number 8, the R groups are equal to CONHC6H13.
5
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Semiconductors have also shown better properties when band gaps are narrow.
1
 

This was achieved in research performed on thin layer printing that aimed to make it 

high-speed, low in cost, and highly flexible. Thin film transistors act as an on/off switch 

for individual pixels in active-matrix liquid-crystal displays (LCDs).
2
 This type of screen 

is used in most technology, ranging from cell phones to laptop screens. The current 

problem with these screens is that the only material compatible with current 

semiconductors is glass, making this technology extremely fragile and somewhat heavy. 

The crystalline packing of organic molecules works well for liquid crystal screens. 

Organic semiconductors are also known for their flexibility, yet they are still lightweight 

and sturdy. In the near future, thin films could be used with plastic, instead of glass, 

making the screens flexible and lightweight. The application of organic semiconductors 

in this area is predicted to be wide ranging once it is perfected. In the experiment, the 

shelf-life of the semiconductors was also a concern, but it was found that when the 

molecule had a higher molecular weight (and therefore close pi-pi stacking) the shelf-life 

of the product increased and the molecule was a better field-effector transistor (FET).
1
  

FETs and OFETs are devices used to control one electrical signal with a different 

signal.
10, 11

 OFETs utilize organic semiconductors, but Liang found that when exposed to 

air and light, the semiconducting properties of compounds like pentacene 6 and tetracene 

7 decrease because photooxidation causes instability.
5
 Photooxidation occurs when a 

molecule becomes oxidized, or broken down by the removal of an electron, in the 

presence of light. The photooxidation observed in the study was attributed to hydrogen 

bonding with the oxygens available on tetracenediamide 8. This reactive possibility 

should be apprehended when designing organic semiconductors. 
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Human neural cells can be grown on organic semiconductors when they are used 

as thin films.
4
 When a pentacene thin film was used, it was found that thicker film (up to 

fifteen monolayers—the upper limit-- where the proliferation began to decline) as well as 

longer incubation increased the cell proliferation (in vitro). Thin films are also used for 

applications with photovoltaic (PV) cells.
12

 PV cells are able to convert sunlight into 

electricity.
13

 Inorganic PV cells utilize silicon, but there is potential for organic 

semiconductors working in organic PV (OPV) cells.
14

 This would save cost in solar 

panels and related technology because thin film manufacturing costs are much lower than 

the cost of current inorganic methods.
15

 PV cells work through sunlight exciting 

electrons, which creates a current as a result of the electric field, direction, and 

momentum provided by the light.  

3,4:3’,4’-Bisbenzothiophene Properties. 3,4:3’,4’-Bisbenzothiphene (BBT) 1 

was first published in research in 1979 by Fred Wudl who synthesized this molecule as 

well as a few derivatives.
16

 It was not investigated again until 2006 and still remains 

fairly unexplored. There are currently two patents on BBT by Christopher T. Brown 

(2012) and Jianmin Shi (2008). Both patents claim synthesis of BBT and many 

derivatives. Both researchers promote that the compound works well as an organic light 

emitting diode (OLED), as an OFET, and as an OPV.
6, 17

 Shi also lists that BBT can be 

used for thin film LCDs, electrophoretic display (similar to LCD), RFID tags, dyes, and 

sensor devices.
6
  

BBT is mainly researched for its applications as an organic semiconductor. Qian 

researched heteroarenes in search of a high-performing organic semiconductor.
18

 The 

researchers’ main focus was to develop NN’-diisopropylphyenyl-1,6,7,12-perylene-
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3,4:9,10-tetracarboxylbisimide (PBI)  which features a BBT core in its structure 9. This 

molecule was very twisted, so a Stille reaction was performed which created PBI with a 

BBT base 4 and flattened out the molecule. Crystal analysis of the achieved molecule 

revealed inversion symmetry and unique hydrogen bonding ribbons.
18

  

In this current research, BBT and some of its derivatives have been fluorescent in 

certain solvents. Luisier worked with 3,4:3’,4’-bibenzo-[b]thiophene-2,2’-disulfonate 10 

when seeking a caffeine indicator because of its sulfur content (which makes it more 

polarizable) and the π-stacking on its surface.
19

 It was found that the presence of caffeine 

caused a change in fluorescence from purple to yellow-green. Its success as an indicator 

was attributed to the caffeine interacting with π-stacking. The researchers developed a 

test strip with the BBT derivative that was able to distinguish between caffeinated and 

decaffeinated coffee with a color change visible to the naked eye. 

Garcίa performed a theoretical analysis on electron and hole transport 

capabilities for several thiophene containing molecules, one of which had a BBT core 

11.
20

 The thiophene containing molecules were compared to an alkoxy-triphenylene 

derivative 12 because this molecule is one normally used for liquid crystal discotic 

systems. The researchers wanted to test the possibility of using a sulfur containing 

molecule in discotic systems. Discotic systems rely on pi stacking between the molecules 

which self-align into columns. This allows pi-pi interaction and liquid crystalline 

formation. The BBT based molecule showed a narrower band gap and increased electron 

mobility, but the tetra-thiophene molecule exhibited the largest improvement in electron 

transport. It was concluded that thiophene rings 13 increase the distance between discs. 

Overall, the use of these molecules for electron transport was not recommended.  
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BBT is a popular starting point for building organic semiconductors. It is both 

planar and conjugated. However, its calculated band gap was found to be 3.52eV, which 

is large, and it is insoluble. BBT’s semiconducting properties are as follows: 

1. Planar 

2. Conjugated 

3. Large band gap 

4. Insoluble. 

It possesses some of the qualities of an organic semiconductor, however, it lacks others. 

BBT is made up of two basic subunit molecules: anthracene and thiophene. 

Anthracene Properties. Anthracene 14 is often the foundational structure of 

organic semiconductors because of its conjugation and planarity. It has great pi-pi 

stacking ability and is shorter than tetracene and pentacene.
21

 Anthracene is also the base 

molecule of BBT. More specifically, BBT is made from an anthraquinone. Possibilities 

for adding to and modifying anthracene are broad. 

Thiophene Properties. Thiophene 13 is the other foundational molecule of BBT. 

BBT contains two thiophene rings on either side of the anthracene. Similarly to 

anthracene, thiophene molecules perform pi-pi stacking well and are a common piece of 

successful organic semiconductors.
22

 It is also aromatic, which contributes to the pi 

conjugation of the molecule containing it. 

Much research aims to use thiophene alone in semiconductor design. One article, 

already discussed, used thiophene in a fluorescent indicator of caffeine.
19

 Jiang 

performed research on perylene 15 to look at its derivatives’ OFET and crystallinity 

properties.
23

 Specifically, the research focused on synthesizing dithioperylene 16, which 
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has a BBT core. Dithioperylene exhibited good thermal and chemical stability, and was 

found to be very compact. The extra sulfur atom introduced in the synthesis allowed for 

ordered packing and symmetry in the molecule. Garcίa experimented with 

polythiophenes and recognized their pi stacking capabilities in discotic systems.
20

 

Importance of Sulfur Content. Sulfur is often found in organic semiconductors 

because it makes molecules more polarizable which contributes to solubility.
19

 Within 

BBT, the lone pair of the sulfur atom is what makes the molecule aromatic and continues 

the conjugation. 

Importance of Nitrile (CN) Presence. Nitrile groups are often used in 

semiconductor structures because they contain a triple bond which forces a planar shape 

and adds to the conjugation. Nitrile addition also contributes to polarity, and therefore 

solubility. Opatkiewicz used nitrile groups in place of amines to terminate monolayers.
24

 

Self-assembling monolayers add to the molecular packing structure of organic 

semiconductors. It was found that the nitrile containing molecules made higher quality 

devices (like thin film transistors) and that the molecules were more accurate at self-

assembly into monolayers. These properties make nitrile groups a favorable side group 

for organic semiconductors.  

Fluorescence and dye capabilities. Fluorescence is useful because it opens up 

the possibility of organic semiconductors being used as fluorescent tags or probes. 

Bruchez reported using semiconductor nanocrystals as fluorescent probes on mouse 

fibroblasts.
3
 It was particularly noted that the excitation spectrum, or the range of 

wavelengths that can excite the electrons, of the fluorescence was very broad which 

allowed for wide-ranging applications.  
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Organic semiconductors also may be used as a dye. Conjugation as well as 

nitrogen content benefit dye capabilities. The dyes used with dye-sensitized solar cells 

are often not organic semiconductors. Semiconductors are needed for the application of 

these cells, though.
12

 Westermark indicates that usually dyes are absorbed into 

semiconductors. If a semiconductor were designed that could be used both for the dye 

and the semiconducting, it would save the need of bridging the two for application.  

The Proposed Research. BBT possesses two of the four requirements of a 

semiconducting molecule (see Table 1). It is planar and it is conjugated, however, it has a 

large band gap and it is quite insoluble. The main goals of this research group have been 

to increase solubility, narrow the HOMO/LUMO band gap, and investigate fluorescence 

by modifying the BBT molecule. A peer is currently working on the synthesis of a 

different BBT derivative. In the current research, malononitrile groups will be added to 

BBT in hopes of increasing its solubility and semiconducting capabilities 20 (see Scheme 

1). The further conjugation will help to narrow the band gap and the malononitrile group, 

which has an extremely high dipole moment, is expected to increase solubility. 

Throughout the work of the research group, many intermediate and product molecules 

have fluoresced at various wavelengths. If the product of this experiment fluoresces, its 

application as a fluorescence indicator and as a fluorescent dye will be investigated as 

well.  

Computational Modeling. Computational modeling is used to theoretically 

predict properties of molecules. Figure 2 A shows the relative band gap of BBT 

compared to the estimated HOMO-LUMO band gap for the goal molecule. These values 

were calculated theoretically using density functional theory (DFT) on a computer. 
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Requirements BBT Proposed compound 

      

1. Planar � � 

      

2. Conjugated � � 

      

3. Narrow Band Gap � � 

      

4. Soluble � � 

      

Table 1. Requirements of a good organic semiconductor. The table displays the four main 

properties a good organic semiconductor possesses. BBT is planar and conjugated, but it has a 

large band gap and is insoluble. The proposed compound, 1,5-dimalononitrilebisbenzothiophene, 

twists slightly out of plane (by 4.34°), but it still has a narrow band gap, it extends the 

conjugation (compared to BBT), and it has a greater dipole moment than BBT, supporting that it 

will be more soluble in water. 

 

Unlike density functional based tight binding (DFTB), DFT can be used to more 

accurately predict the band gaps of sulfur containing molecules.
25

 Adding the 

malononitrile groups, through increased conjugation, will significantly narrow the band 

gap from 3.52eV to 2.25eV, according to this model, supporting that this molecule should 

improve semiconductivity (in comparison to BBT). The gap is also shifted into a more 

favorable energy level for the electrodes required for function.  

In order to estimate the level of planarity of the desired molecule, the 

malononitrile substituted BBT molecule was modeled using the computational software 

SPARTAN 08 (see Figure 2 B). The addition of the malononitrile substituents will likely 

cause the molecule to turn out of plane by 4.34°. The molecule was designed with two 

extra carbons in between BBT and the malononitrile in order to attempt to avoid twisting.  
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Scheme 1. The synthesis of Bisbenzothiophene (BBT) with malononitrile side groups. Part A of 

the synthesis is completely reported in literature by Shi.
6
 The reaction starts with 1,5-

Dichloroanthraquinone and exists as a diacid in the intermediate. This piece of the synthesis will 

yield BBT. Part B of the synthesis involves two reactions on this molecule that have never been 

reported in literature. The first step uses the Vilsmeier reaction to substitute BBT with aldehyde 

groups. The second step utilizes the Knoevenagel condensation to replace the aldehyde groups 

with malononitrile groups. The two reactions have been reported on thiophene, but not on BBT. 
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Figure 2. Computational analysis of 1,5-dimalononitrilebisbenzothiophene using DFT and 

SPARTAN 08. A) DFT calculations showing the HOMO to LUMO gap difference between BBT 

(left) and 1,5-dimalononitrilebisbenzothiophene (right). The new molecule is expected to narrow 

the band gap from 3.52eV to 2.25eV. It also moves the energy into a different range which will 

be much more conducive to the electrodes used for semiconducting function. B) SPARTAN 08 

molecular modeling of 1,5-dimalononitrilebisbenzothiophene. This model reveals that the 

malononitrile groups will most likely twist slightly out of plane by a total of 4.34°. C) The 

SPARTAN 08 polarity modeling of the malononitrile substituted BBT. The red areas on the ends 

of the molecule reveal polarity hot spots which should increase solubility. 
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However, the malononitrile groups are still very large substituents. The twisting is 

probably a result of the large side groups trying to avoid Van der Waals strain. Van der 

Waals strain is the repulsion between molecules resulting from large electron clouds. The 

negative charge of each cloud repulses the other. In this case, the nitrile group (CN) is too 

close to the thiophene ring to comfortably be planar. It could also be that the molecule 

has steric hindrance. Similarly, this arises from the molecules being too nearby each 

other. While the goal molecule is out of plain, it is not an extremely twisted molecule and 

it could still work well as an organic semiconductor. This is supported by the fact that the 

band gap did decrease compared to BBT, even though BBT is more planar.   

Solubility is also an important aim of the current research because current 

application requires sublimation which can be time consuming. Sublimation is the direct 

conversion of a solid to a gas. In order to sublime, there must be heat and very low 

pressure (vacuum conditions). To collect the sublimed product, the gas is condensed and 

collected as a solid. BBT and other organic semiconductors would be much easier to 

utilize if they could simply be dissolved in solvent. The addition of malononitrile groups 

to BBT is expected to increase solubility because this substituent has a very large dipole 

moment of 3.57D. SPARTAN 08 was used to model the polarity of the desired molecule 

(see Figure 2 C). The red areas in this figure correspond to the locations of high polarity 

in the molecule. Polarity depends on the dipole moments interacting in a molecule. BBT 

has an overall estimated dipole of zero. Contrarily, the estimated dipole of 1,5-

dimalononitrilebisbenzothiophene is 1.36D. This supports the synthesis of the latter 

molecule for the purpose of increasing solubility. 
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Proposed Synthesis. BBT synthesis is defined in literature, but the last two 

reactions (Scheme 1 B) have not been reported in literature. However, BBT is expected to 

react similarly to thiophene since they have the same active sites, and the two reactions 

have been performed on thiophene. 

BBT will be synthesized by reacting a 1,5-Dichloroanthraquinone 17 with 

thioglycolic acid (manganese dioxide, 18-Crown-6, and tert-butyl potassium oxide) in 

ethanol (see Scheme 1 Part A).
6
 HCl will then be added to make a diacid intermediate 18 

(1,5-dithiocarboxilic acid BBT) to BBT. The intermediate structure features cross 

conjugation which was discovered to have weaker conductivity than the linear 

conjugation seen in BBT.
7
 BBT will be produced when the diacid is reacted with acetic 

anhydride. In order to use BBT further, it is presently sublimed from insoluble impurities. 

This makes application particularly difficult. A Vilsmeier reaction will be performed on 

the BBT next in order to attach aldehyde groups onto the BBT molecule 19 (see Scheme 

1 Part B).
26

 DMF and POCl3 react to form an immonium cation intermediate. Then, the 

charged DMF undergoes nucleophilic substitution with BBT. The product is obtained 

upon hydrolysis of the immonium salt. Malononitrile groups will then replace the 

aldehyde groups on the BBT 20 molecule using a Knoevenagel condensation.
27

 This 

condensation only requires malonontrile and water to react. It works by first forming an 

enol intermediate which reacts with the aldehyde of the substrate. The product undergoes 

base-induced elimination. If these goals are met, ease of application and efficiency will 

be increased. 1,5-dimalononitrilebisbenzothiophene 20 is predicted to possess the 

following semiconductor properties: 

1. Fairly planar 
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2. Extended conjugation 

3. Narrow band gap 

4. Soluble. 

 

METHODS 

 Reagents. The reagents used in this experiment are as follows: 1,5-

dichloroanthraquinone (Lot #: A010847201), potassium tert-butoxide (Lot #: A0321985), 

and dimethylformamide (DMF; Lot #: 1134969) from Acros Organics; 200 proof ethanol 

from Quantum Chemical Corporation; thioglycolic acid (Lot #: MKBH0417V) and 

phosphorus oxychloride (Lot #: 29797HJ) from Sigma-Aldrich; manganese dioxide (Lot 

#: 723291) and acetic anhydride (Lot #: 113625) from Fisher; 18-crown-6 (Lot #: 

1710TD) from Aldrich; argon gas from Arcet; diethyl ether (Lot #: X37477) from J.T. 

Baker; thiophene (Lot #: MPYFMHK) from TCI. 

1,5-Dithiocarboxylic Acid Anthraquinone 18. This procedure was performed in 

proportional quantities to the research of Shi (see Figure 1 A).
6
 8.31g (30.0mmol) of 1,5-

dichloroanthraquinone 17 were added to a 500mL round bottom flask (RBF). Then, 

50mL of 200 proof ethanol were added and stirred. After that, 5mL (72.0mmol) of 

thioglycolic acid were added with 25mL more of ethanol. Then, 448mg (5.00mmol) of 

manganese dioxide were added followed by 11.0mg of 18-Crown-6. Next, 18.1g 

(161mmol) of potassium tert-butoxide were added with 120mL of ethanol.  

A reflux apparatus was set up and a balloon filled with Argon gas was used to 

close the system. The reaction was then allowed to run for 4.5 hours in a 73°C water 

bath. During this reaction, the mixture changed from light yellow to a dark orange-brown 
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color. The mixture was allowed to cool, then 650mL of water were added to the product 

and the mixture was vacuum filtered.  

60.0mL (159mmol) of 2M HCl were added to the filtered solution. The mixture 

turned from dark orange-brown to bright yellow-orange as the HCl was stirred into it. It 

was filtered and washed with water until the pH reached pH 5. The solid was then 

washed with ice cold ethanol (95%) and allowed to dry for 24 hours. The dry product was 

collected and weighed (6.12g; 52.6% yield). 

3,4:3’,4’-Bisbenzothiophene (BBT) 1. 5.82g (16.0mmol) of the solid diacid 

product 18 were mixed with 200mL of acetic anhydride, which made the mixture a deep 

orange, and refluxed for 2 hours. The product was black, but its solution fluoresced bright 

green-yellow at 365nm (see Figure 3). The mixture was cooled, then filtered to collect the 

solid products (1.00g). The filtrate was then distilled until half of the initial liquid had 

been distilled off. The remaining liquid was then filtered again and the black, solid 

product was collected (1.60g). This was allowed to settle in a refrigerator and black, solid 

product was collected again as previously described (1.40g). The liquid product 

fluoresced yellow at 365nm and, when in acetone, fluoresced purple at 254nm. The total 

amount of solids collected was 3.00g (63.3% yield). This process was repeated to attain 

more BBT. 

 The products were sublimed to prepare for the next reaction. This was first 

attempted using an Erlenmeyer flask over a heating plate and attaching it to a vacuum, 

but the heat was too uncontrolled and the product melted. In order to encourage the BBT 

to rise and condense during sublimation, a new apparatus was set up that incorporated a 

minute pathway of air on the opposite end of the vacuum attachment site. This method 
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worked better than the first, but still did not ease the collection process. A legitimate 

sublimation apparatus was utilized for the next attempt, but the vacuum was not strong 

enough, so the method using a pathway of air was utilized for all future attempts. 

1,5-Diformylbisbenzothiophene 19. A Vilsmeier reaction was performed in 

order to attach two aldehyde groups to BBT.
28

 125mg (0.0500mmol) of sublimed BBT 

were first combined with 1.00mL of DMF (11.0mmol) and 100µL (1.00mmol) of 

phosphorus oxychloride at room temperature for one week (see Figure 2 B).
26a

 The 

mixture changed in color from orange-brown to slightly green. Some of the mixture was 

aliquoted into 2mL of water and the pH was brought up to 6 using 1M NaOH. The 

aliquot was then filtered, solids were collected, and a small amount was dissolved in 

acetone. Thin layer chromatography (TLC) with dichloromethane was used to determine 

the presence of product (see Figure 4). The remaining BBT mixture was heated at 100°C 

for 3 hours, then the aliquot procedure was repeated. Infared spectroscopy (IR) was 

performed on the second sample, but it revealed no difference between BBT and the 

product collected (see Figure 5 A). 

In an attempt to force the reaction, 100µL more of phosphorus oxychloride were 

then added to the left over BBT mixture. The mixture heated up by itself with this 

addition, but the aliquot procedure was repeated and TLC showed no new results. The 

remaining solids from the three aliquots were combined. The remainder of the BBT 

mixture was mixed with water, brought to pH 6, and filtered.  

2-Formylthiophene. In order to further evaluate the reaction conditions of the 

synthesis of 1,5-diformylbisbenzothiophene, the Vilsmeier reaction was performed on  
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Figure 3. The observed fluorescence in the synthesis of Bisbenzothiphene (BBT). The image on 

the left displays BBT dissolved in acetone. This was apparent at 365nm (a long wavelength). The 

right picture exhibits the fluorescence of BBT that arose after the addition of acetic anhydride. 

This was captured at 254nm (a short wavelength). Fluorescence demonstrates the ability of the 

molecule to absorb and reemit light. These fluorescent molecules have applications in biological 

fluorescent probes and tags.
3
 

 

thiophene as reported in literature.
29

 3.86mL (50.0mmol) of thiophene were mixed with 

4.80mL (150mmolmol) DMF and 16.0mL 1,2-dichloroethane (a solvent) in an ice bath.  

 The mixture was allowed to chill, then 5.80mL (60.0mmol) of phosphorus 

oxychloride were added. The ice was removed and the mixture became cloudy. After it 

had reached room temperature, it was placed in a hot water bath and refluxed for 2 hours. 

The mixture turned yellow about 10 minutes after heat was added, then turned a  
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Figure 4. The Thin Layer Chromatography (TLC) data of the Vilsmeier reactions. TLC is a 

method used to separate components of a substance or to compare two substances to find identity. 

In this case, TLC was used to verify that the Vilsmeier reaction produced a new product.
30

 The 

left image shows the TLC data for bisbenzothiophene (“BBT”) and the attempted Vilsmeier 

reaction to make 1,5-diformylbisbenzothiophene (“BBT CHO”) in dichloromethane. The TLC is 

in regular lighting and the results have been outlined using ultraviolet (UV) light. There is an 

apparent difference between BBT and the attempted Vilsmeier product in the lower outlined 

spots. The Vilsmeier product revealed a small pink spot that was not existent in the BBT analysis. 

This supports that there is a difference between BBT and the Vilsmeier product. However, the 

infared spectroscopy (IR) data reveals no difference between the two molecules. The right image 

shows the TLC data for thiophene (“thio”) and 2-formylthiophene (“ald”) in dichloromethane. 

The TLC is under UV light (365nm) and there is an apparent difference (the dark spot) between 

thiophene and 2-formylthiophene. This difference was seen in IR analysis as well. 
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A  

B  

Figure 5. Infared spectroscopy (IR) data for Vilsmeier reaction results. IR is utilized to determine 

molecular identity by using infared light.
31

 The peaks on the graph indicate where certain 

functional groups of a molecule are absorbed by the infared light. The Y-axis is the percentage of 

transmission, and the X-axis is the frequency. After IR has been completed, values are compared 

with known data for functional groups to determine the identity of the molecule. A) The IR data 

for Bisbenzothiophene (BBT) (blue) and the attempted 1,5-diformylbisbenzothiophene (pink). 

Because the two lines are identical, it is supported that the Vilsmeier reaction did not synthesize a 

new product. B) The IR data for thiophene (red) and 2-formylthiophene (black). This spectrum 

supports that 2-formylthiophene was successfully synthesized. The thiophene and 2-

formylthiophene have very different spectrums and 2-formylthiophene contains a strong peak at 

1656cm
-1

 which is lower than the absorbance normally associated with conjugated aldehydes, but 

is expected to result from the high conjugation and aromaticity of thiophene. 
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red/brown color after 10 more minutes. After the reflux had run for an hour, the mixture 

was completely black. It appeared green as it was poured onto ice. 40.0g of sodium 

acetate dissolved in 70.0mL of water and 4.00g of pure sodium acetate were added to the 

mixture to neutralize it. 30.0mL of diethyl ether were used to extract the aqueous phase 

from the organic phase three times. The combined organic phases were washed with 

20.0mL of saturated sodium bicarbonate two times, then washed with water. The mixture 

was dried over magnesium sulfate. TLC with dichloromethane was used to distinguish 

between thiophene and 2-formylthiophene (see Figure 4). Then the magnesium sulfate 

was filtered off and the mixture was distilled. The product was collected at 157°C and 

was deep yellow in color. IR was run on the product to confirm the outcome of the 

reaction (see Figure 5 B). 

 

RESULTS AND DISCUSSION 

Fluorescence. During the experiment, BBT (before being sublimed) fluoresced 

when dissolved in acetic anhydride and when dissolved in acetone (see Figure 3). A neon 

yellow-green color was observed in the acetic anhydride. However, when in acetone, the 

BBT fluoresced purple. The final products will also be monitored for fluorescence and 

their potential use as a fluorescent probe or indicator will be considered. 

BBT Synthesis and Analysis. The BBT synthesis was completely reported in 

literature. It was successfully repeated in this research as a precursor for new chemistry. 

IR analysis was performed and was consistent with the known spectrum of BBT (see 

Figure 5 A).  
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1,5-Diformylbisbenzothiophene Synthesis and Analysis. The Vilsmeier 

reaction was conducted in order to achieve the aldehyde precursor for placing 

malononitrile groups onto BBT.
26

 The first attempt showed a slight variation from BBT 

in TLC analysis (see Figure 4), however, upon inspection with IR, it was found that the 

reaction did not alter BBT (see Figure 5 A). The TLC (in dichloromethane) revealed a 

spot for the Vilsmeier product that was not present for BBT. IR of the Vilsmeier product 

was run against BBT and the same peaks were present on the spectrum. 

 It is unclear as to why the Vilsmeier reaction was unsuccessful. It is possible that 

the chemicals used were too old and unreactive, but when extra reagents were added, the 

mixture heated up indicating some sort of reaction. There was also a color change present 

in the first attempt of the reaction, supporting the presence of a reaction. It could be that 

only a very small portion of the reagent was converted to product. TLC is a more 

sensitive procedure than IR, so a very small yield of product could account for the 

different conclusions drawn from the TLC and the IR. The protocol claimed a high yield, 

though, and the reaction was done in small aliquots with excess reagents making this 

unlikely.  

2-Formylthiophene Synthesis and Analysis. The synthesis of 2-

formylthiophene was performed in order to test the method reported in literature before 

trying to synthesize 1,5-diformylbisbenzothiophene again.
29

 The Vilsmeier reaction used 

here was a little different than the one originally performed to make the BBT derivative. 

TLC analysis revealed a difference in thiophene and the product, 2-formylthiophene (see 

Figure 4). The Vilsmeier product contained a spot on the TLC plate that was not present 

in the TLC of thiophene. IR analysis also revealed a difference between the two. Figure 5 
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B shows the IR spectrum of thiophene and 2-formylthiophene. The product, 2-

formylthiophene, is represented by the black line and has a peak at 1656cm
-1

. The 

absorbance associated with conjugated aldehydes is 1710-1685cm
-1.

 
32

 However, 

thiophene is highly conjugated and aromatic which could lower the absorbance further. 

This supports that the synthesis of 2-formylthiophene was successful and this method will 

be performed on BBT to synthesize 1,5-diformylbisbenzothiophene in the future.  

 

CONCLUSIONS 

Main Goals. There were four main goals of this experiment: 

1. Synthesize BBT 

2. Synthesize 1,5-diformylbisbenzothiophene 

3. Synthesize 1,5-dimalononitrilebisbenzothiophene 

4. Measure spectroscopic properties. 

This Current Research. The first goal of this current research has been 

completed. BBT was synthesized and verified according to what is known by the research 

group. The second goal of the current research has been attempted and is underway. It is 

the first step that has not been reported in literature and is new chemistry. The first effort 

for the synthesis of 1,5-diformylbisbenzothiophene was unsuccessful. However, a slightly 

different Vilsmeier reaction method utilizing 1,2-dichloroethane and multiple wash steps 

was performed successfully on thiophene, so this will be attempted on BBT in the future. 

The third goal will be attempted by first performing the Knoevenagel condensation on a 

simpler molecule (thiophene). The reaction will then be performed on 1,5-
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diformylbisbenzothiophene to achieve 1,5-dimalononitrilebisbenzothiophene. At that 

point, the spectroscopic data (goal 4) will be attainable. 

Future Research Focus. Based on the theoretical data for 1,5-

dimalononitrilebisbenzothiophene, this molecule will be a good starting point for future 

research. Modifying BBT with groups similar, but smaller than, the malononitrile side 

chain may be beneficial to the band gap. Smaller side groups could make the molecule 

more planar and therefore narrow the band gap further. The target molecule could also be 

extended to explore further solubility. However, any additions would probably twist the 

molecule further out of plane. It would be interesting to study the molecular packing of 

1,5-dimalononitrilebisbenzothiophene, as well. The procedure outlined in this research 

could also be performed on a monothiophene derivative of BBT to relate to the current 

research. The molecule would be asymmetrical and could provide an interesting 

comparison. Once 1,5-dimalononitrilebisbenzothiophene is developed and characterized, 

its spectroscopic properties will be known and further research will be planned. 
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