
Running head: SOFTWARE-DEFINED RADIOS 1

Studies in Software-Defined Radio System Implementation

Harold A. Haldren, III

A Senior Thesis submitted in partial fulfillment

of the requirements for graduation

in the Honors Program

Liberty University

Spring 2014

SOFTWARE-DEFINED RADIOS 2

Acceptance of Senior Honors Thesis

This Senior Honors Thesis is accepted in partial

fulfillment of the requirements for graduation from the

Honors Program of Liberty University.

Kyung Bae, Ph.D.

Thesis Chair

Carl Pettiford, Ph.D.

Committee Member

Monty Kester, Ed.D.

Committee Member

Brenda Ayres, Ph.D.

Honors Director

Date

SOFTWARE-DEFINED RADIOS 3

Abstract

Over the past decade, software-defined radios (SDRs) have an increasingly prevalent

aspect of wireless communication systems. Different than traditional hardware radios

which implement radio protocols using static electrical circuit, SDRs implement

significant aspects of physical radio protocol using software programs running on a host

processor. Because they use software to implement most of the radio functionality, SDRs

are much more easily modified, edited, and upgraded than their hardware-defined

counterparts. Consequently, researchers and developers have been developing previously

hardware-defined radio systems within software. Thus, communication standards can be

tested under different conditions or swapped out entirely by simply changing some code.

Additionally, developers hope to implement more advanced functionality with SDRs

such as cognitive radios that can sense the conditions of the environment and change

parameters or protocol accordingly. This paper will outline the major aspects of SDRs

including their explanation, advantages, and architecture.

 As SDRs have become more commonplace, many companies and organizations

have developed hardware front-ends and software packages to help develop software

radios. The most prominent hardware front-ends to date have been the USRP hardware

boards. Additionally, many software packages exist for SDR development, including the

open source GNU Radio and OSSIE and the closed source Simulink and Labview SDR

packages. Using these development tools, researchers have developed many of the most

relevant radio standards. This paper will explain the major hardware and software

development tools for creating SDRs, and it will explain some of the most important

SDR projects that have been implemented to date.

SOFTWARE-DEFINED RADIOS 4

Studies in Software Defined Radio System Implementation

Introduction

Radios are essential parts of everyday human communications, whether people

realize it or not. When most people think of radios, they think of the AM/FM radios in

their cars, hand-held two-way radios, or CB radios. However, radios are much more

prevalent in society than most realize. For instance, the Wi-Fi adapters within a computer

or smart-device are radios and Bluetooth earpieces used to talk on the phone are radios.

In general, a radio is any device that transmits or receives information wirelessly through

the use of electromagnetic waves known as radio waves.

Classically, radios have been made from pieces of hardware designed for use in

one specific radio. These radios can be referred to as hardware-defined radios because the

radio is completely dependent on the hardware such as electrical circuits and electronic

devices. However, software-defined radios, developed in the past few years, are a new

type of radio in which the type of radio is determined by a piece of software. These

software-defined radios (SDRs) or software radios are a developing technology with

many advantages that make them attractive to researchers and radio developers alike.

Background on Software-Defined Radios

The Need for Software-Defined Radios

In the past few decades, the field of wireless communications has been

developing and advancing at a rapid pace. Nearly all new electronic devices implement

some sort of wireless communications, be it in the form of Wi-Fi, Bluetooth, or cellular

technologies like CDMA or LTE. Each of these different radio systems has its own

SOFTWARE-DEFINED RADIOS 5

specific protocols. Consequently, these different radio systems had to be implemented

using hardware configurations.

Hardware radios use physical components which are not easily modified.

Consequently, this static nature gives hardware radios several limitations. First, needing

different hardware setups for each radio technology can use significant amounts of space,

especially if a particular setup needs several different radio technologies. Second,

implementing separate hardware protocols becomes expensive to systems needing to use

many different radio standards (Tribble, 2008). Cellular phone technology provides a key

example of this phenomenon. In cellular phone technology, entire nations and regions

have attempted to standardize the radio protocol; however, cell phones still need to

support old standards still in use and alternate standards in different regions so a single

phone can operate in many locations. Current hardware limitations cause cell phones to

have separate physical systems for each communication standard which increases both

the size and cost of cell phones. Third, hardware radios are not easily updated when new

technology is developed (Tribble). Radio technology and protocols are constantly

evolving to become faster and more advanced. Thus, a protocol used today could be

obsolete in just a few years. Under hardware-based radio schemes, systems would be

unusable whenever a new protocol is developed. Because of the limitations inherent in

static hardware radio systems, a different kind of radio system has been developed within

the past few years.

To solve the hardware problem, engineers decided to implement parts of the radio

using software rather than hardware. Using software rather than hardware to implement

some stages of a radio system enables a radio to be more easily configured, modified, and

SOFTWARE-DEFINED RADIOS 6

developed for multiple systems (Tribble, 2008). This new form of radio implementation

came to be known as software defined radio (SDR) or software radio. The goal of SDRs

is to implement fully functional radios in one system that previously needed multiple

systems.

The migration from hardware-defined radios to software-defined radios

corresponds with the move from analog radio systems to digital radio system. In the past,

the rise of microprocessors enabled communications engineers to develop a new way to

transmit information from one place to another. These digital communication systems

provided some key benefits over the existing analog communication systems. Despite the

advantages, however, both analog and digital communication systems still exist today.

Analog systems are still useful for some applications and digital systems will never be

able to completely replace analog systems. Similarly, the advantages of software radios

may allow them to overtake hardware radios in many situations throughout the coming

years; however, the simplicity and dependability of hardware radios will ensure these

radios continue to exist, as well. Just as radio systems once went through a phase of

converting from analog to digital, radio systems today and in the future are increasingly

becoming software defined rather than hardware defined.

Explanation of Software-Defined Radios

Before the advantages of software radios can be understood, the differences

between software and hardware radios must first be explained. While software has been

used to process digital signals nearly since the advent of computers, the type of radios

now understood to be software-defined radios have only existed for a couple decades.

More specifically, the term “software radio” is commonly attributed to Joe Mitola in

SOFTWARE-DEFINED RADIOS 7

1991 when he referred to radios which are reprogrammable and reconfigurable (Reed,

2002). This definition means that a single piece of hardware would have the ability to

perform different functions and adhere to different protocols at different times. Mitola’s

definition, while adequate when it was first created, it is too broad of a definition to be

used today.

Since Mitola’s introduction of SDRs, many researchers and organizations have

disagreed over what makes a radio software-defined. One such entity, the Wireless

Innovation Forum (formerly the SDR Forum) defines a SDR as “Radio in which some or

all of the physical layer functions are software defined” (The Wireless Innovation Forum,

2012, para. 3). Once again, this definition is somewhat vague. Consequently, Dr. Jeffery

Reed suggests a working definition of a SDR is “a radio that is substantially defined in

software and whose physical layer behavior can be significantly altered through changes

to its software” (Reed, 2002, p. 2). Another somewhat similar definition proposed by

Enrico Buracchini suggests, “Software radio is an emerging technology, thought to build

flexible radio systems, multiservice, multistandard, multiband, reconfigurable and

reprogrammable by software” (Buracchini, 2000, p. 138). These more specific definitions

of software radios allow one to understand the difference between purely hardware radios

and software-defined radios.

Examining Reed and Buracchini’s definitions, one can see that software-defined

radios are much more than simply radios which use software. Software-defined radios

must be able to change the physical functionality of the radio through software. For

example, a digital radio which uses a digital signal processor (DSP) on a computer to

manipulate a signal is not necessarily a SDR. In this example, the communication signal

SOFTWARE-DEFINED RADIOS 8

is processed through software, but the software does not necessarily have the ability to

change the communication standard being used. Thus, while both types of radios make

use of hardware components, a software radio has the ability to change the physical

communication standard being used, while a hardware radio does not.

Advantages of Software-Defined Radios

The ability of SDRs to change its physical behavior provides it with several

advantages over its hardware-defined counterpart. Primarily, SDRs can be easily modify

and implement different physical layer radio protocols unlike hardware radios. By merely

editing some code, the designer can change the functionality of a radio system without

having to physically change a hardware configuration (Dickens, Dunn, & Laneman,

2008). This adaptability is useful for several reasons. For one, a SDR system can be

quickly changed to support different hardware protocols. This could eventually be used in

a system like cellular phones that need to support several different radio protocols.

Instead of needing a separate module for each protocol, it would merely need one

hardware module with different software installed for each necessary radio protocol.

Additionally, developers would be able to quickly edit and update their radio system by

changing code rather than having to develop and replace hardware modules. This

modification functionality could decrease the physical complexity, size, and cost of radio

networks by having one device perform multiple functions (Dickens, Dunn, & Laneman).

 A second advantage of SDRs is that they could be cheaper than dedicated

hardware radios in some respects. With hardware radios, any time a radio system needs to

be updated or edited, a completely new circuit board must be created which can cost a lot

of money if a company has a lot of radios on the market. On the other hand, SDRs would

SOFTWARE-DEFINED RADIOS 9

merely need a software update to have additional or improved functionality (Dickens,

Dunn, & Laneman, 2008). Companies would benefit from having the ability to quickly

change designs by changing some lines of code rather than changing physical

components. This reduces cost by eliminating the need for new physical components

when upgrading radio units. The lower cost of SDR devices in comparison to hardware-

defined radio devices when changing radio systems could drive more consumers and

developers to use SDRs in the future.

The ease of testing and implementation of communication standards presents a

third advantage of SDRs over hardware-defined radios. First of all, when a new wireless

communications protocol is being developed, many tests are needed to determine the

standards and specifications of the protocol. With hardware radio systems, new circuits

must be designed and created for every test. Then, when changes need to be made, new

hardware needs to be purchased. Conversely, with SDR systems, testing and

implementation would be simpler, cheaper, and quicker. When testing, code could be

changed to test a new specification. This would allow researchers and developers a very

good test-bed for wireless communication systems.

In addition to overcoming some of the limitations of hardware radios, SDRs have

potential for functionality not implementable with hardware radios. For example, a

cognitive radio is able to analyze the wireless spectrum in an area and adjust its

parameters to allow more efficient use of the wireless spectrum to take place in the area.

Hardware radios, unable to change their physical protocol, have no hope in ever being

able to implement cognitive radios. Consequently, the idea of a fully-realized cognitive

SOFTWARE-DEFINED RADIOS 10

radio has developed in conjunction with research into software radios. In fact, creating

fully-functional and robust cognitive radios is one of the main goals of SDR research.

Architecture of Software-Defined Radios

 All SDR systems retain some overarching, basic distinguishing characteristics. As

the name suggests, software radios are known for their use of software, but all

communication systems – either software or hardware – must have some sort of hardware

front-end to send and received electric signals. In addition to this front-end hardware, all

software radio systems have some sort of reprogrammable general purpose processor

which handles the signal processing for the system. It is this general purpose processor

that differentiates software radios from hardware radios. In a hardware-defined radio, the

processing unit would not be easily changeable. All software radios possess both front-

end hardware and a reprogrammable processing unit, but different SDR systems differ in

implementation of this basic setup. In fact, some modern software radio front-ends do not

have the intermediate frequency mixer stages seen in the architectures to be explained. As

such, many different pieces of software have been created for users to develop SDRs.

Specific implementations of SDR front-end hardware and software packages will be

discussed in more detail in a later section.

As a modular design, SDRs are limited by the restrictions of their components.

More precisely, SDRs cannot have better performance than its most limited component

will allow. All stages in the SDR architecture depend on the other stages, making it

essential that a SDR system has no significant flaws. Unfortunately, one of the most

limited parts of SDRs is the front end hardware. Currently, versatile radio frequency (RF)

front ends that can handle a variety of signals, frequencies, channels, physical media, and

SOFTWARE-DEFINED RADIOS 11

bandwidths are difficult to create (Reed, 2002). Consequently, the research and

development of SDRs over the past decade has benefited from hardware improvements in

addition to software improvements. Even so, a SDR designer must be aware of its

potential hardware limitations and adjust the system accordingly.

The front-end hardware designs of modern SDR receivers and transmitters can be

broken down into two main categories: superheterodyne and homodyne. Radio signals

are sent through the air at high frequencies known as radio frequencies (RF). However,

hardware limitations make these high frequency signals difficult to process (Buracchini,

2000). For many years, SDRs were mainly developed using a superheterodyne scheme,

but in recent years as processors have become more powerful, homodyne transceivers

have become more common. Thus, some software radio transceivers have the processor

send and receive the signal at an intermediate frequency (IF) lower than the RF on which

the signal is sent through the air. A superheterodyne transceiver must step up or step

down the frequency of the signal outside of the digital signal processor (Cruz, Carvalho,

& Remley, 2010). Conversely, in a homodyne transceiver, also known as a direct

conversion transceiver, the RF signal is sent and received by the processor with no IF

conversion (Cruz, Carvalho, & Remley). The differences between these architectures will

be outlined in the sections that follow.

Receiver Architecture

Superheterodyne architecture. As previously stated, an ideal SDR has both a

front-end hardware and a reprogrammable processor. When the receiver’s front-end

hardware contains stages that convert the received RF signal down to a lower IF signal, it

is referred to as a superheterodyne receiver. In this kind of receiver, the digital signal

SOFTWARE-DEFINED RADIOS 12

processor receives the IF signal rather than the RF signal directly. A diagram of an ideal

superheterodyne SDR receiver can be seen in Figure 1 (Buracchini, 2000).

In this representation, an ideal SDR requires some sort of antennae or an entirely

flexible RF front end which could handle any kind of modulation and frequency range.

This front-end is comprised of the four blocks on the left side of Figure 1. Because of

technology limitations, however, physical antennas are not yet capable of supporting all

frequency ranges. Creating antennas supporting a large range of frequencies, known as

wideband antennas, is a very difficult and ongoing problem of its own. Consequently,

ideal SDRs do not currently exist and may never be created because of limitations of

physics. Despite the fact that software radios will always be limited by their physical

hardware, the ideal SDR seen in Figure 1 provides a good example of the components of

a general SDR system.

RF

Receiver

Antenna

RF BPF

LNA

Mixer IF BPF

ADC DSP

Figure 1: SDR Superheterodyne Receiver Architecture

 The first component of the front-end hardware, some type of antennae is needed

to receive the signal. The antenna physically receives the electromagnetic signal from the

air. Ideally, it should be as wide-band as possible so a large frequency range is supported.

Supporting a large frequency range allows the software radio to be able to change

protocol specifications, such as changing frequency band, without the need for a separate

SOFTWARE-DEFINED RADIOS

antenna. Thus, a wide-band antenna increases the robustness and versatility of its

software radio system.

After a received signal is obtained by the antenna, it travels to the next component

of a SDR: the band-pass filter (BPF)

by filtering out unwanted frequency bands.

filter around the desired frequency band with the center frequency defining the middle of

the frequency band. To understand how the BPF works, refer to

2010). The BPF takes an input of the unrestricted signal from the antenna. By combining

the functionality of both a high

sent above and below the desired frequency

the pass-band which includes the part of the signal where information is stored. However

the signal still has electromagnetic noise in the same frequency band as the filtered

signal. This noise is unavoidable a

Figure 2: Band-pass Filter

DEFINED RADIOS

band antenna increases the robustness and versatility of its

received signal is obtained by the antenna, it travels to the next component

pass filter (BPF). The BPF is used to help extract the desired signal

by filtering out unwanted frequency bands. It performs this functionality by placing a

lter around the desired frequency band with the center frequency defining the middle of

the frequency band. To understand how the BPF works, refer to Figure 2

. The BPF takes an input of the unrestricted signal from the antenna. By combining

the functionality of both a high-pass and low-pass filter, the BPF blocks signals being

sent above and below the desired frequency range. After filtering, the BPF only leaves

band which includes the part of the signal where information is stored. However

the signal still has electromagnetic noise in the same frequency band as the filtered

signal. This noise is unavoidable and must be processed out at later point in the process.

pass Filter

13

band antenna increases the robustness and versatility of its

received signal is obtained by the antenna, it travels to the next component

. The BPF is used to help extract the desired signal

It performs this functionality by placing a

lter around the desired frequency band with the center frequency defining the middle of

 (SpinningSpark,

. The BPF takes an input of the unrestricted signal from the antenna. By combining

pass filter, the BPF blocks signals being

range. After filtering, the BPF only leaves

band which includes the part of the signal where information is stored. However,

the signal still has electromagnetic noise in the same frequency band as the filtered

nd must be processed out at later point in the process.

SOFTWARE-DEFINED RADIOS 14

 After leaving the BPF, the signal passes to the low noise amplifier (LNA). The

LNA amplifies the very low power signal captured from the antennae, so that it can be

processed more easily into a digital signal. When a signal is sent wirelessly over long

distances, the power or strength of the signal degrades heavily. When finally received by

the antenna, the signal is often so low in power that it would be very difficult to process.

Thus, the LNA is necessary for the rest of the signal processing system.

The mixer receives the signal that had been amplified by the LNA. The job of the

mixer is to take the high frequency received signal down to a lower, more manageable

frequency through a process called demodulation (Reed, 2002). This stage of the receiver

is what makes the receiver a superheterodyne receiver rather than a homodyne receiver.

When sent through the air, the transmitted signal is attached to a high frequency carrier

signal through the process of modulation (Cass, 2006). The purpose of this high

frequency carrier signal is to increase the ease of transmitting the signal over long

distances and to transmit the signal over a legally allow frequency range. However,

before the received signal can be processed by a computer, it must be brought back down

to a lower frequency through the use of the mixer.

After being demodulated by the mixer, the signal passes through another BPF.

This band-pass filter blocks all frequencies outside of the signal’s new intermediate

frequency. Note this BPF differs from the previous BPF by the center frequency on

which it focuses. While the RF BPF passes frequencies around the received signal’s

carrier frequency, the IF BPF passes frequencies around the new intermediate center

frequency after leaving the mixer. By doing this, the filter allows only the desired signal

to be further transmitted to the next stage in the SDR receiver.

SOFTWARE-DEFINED RADIOS

Subsequently, the signal travels to

the signal. When the signal is travelling through the air, it exists a

the form of electromagnetic waves. However, computers c

it can only process digital signals. Hence, before being sent to the processor, the signal

must be converted from an analog signal to a digital

transmitted analog signal into a digital

quantizing, by taking samples of the signal at the sampling

those samples by a finite number of binary digits (bits)

Figure 3 shows the analog signal being sampled at discrete time intervals

side of Figure 3 displays the

the amplitude of the signal

and amplitude, the signal can easily be represented by a stream of bits within a computer.

These bits represent the received signal within the computer’

Figure 3: ADC Sampling and Quantization

Finally, the signal

the LNA. The DSP is completely reprogrammable and is what makes the system a

software radio. This special

communication system protoc

DEFINED RADIOS

Subsequently, the signal travels to the analog to digital converter (ADC) receives

the signal. When the signal is travelling through the air, it exists as a continuous signal in

the form of electromagnetic waves. However, computers cannot process an analog signal;

it can only process digital signals. Hence, before being sent to the processor, the signal

must be converted from an analog signal to a digital signal. The ADC converts the

transmitted analog signal into a digital signal, a process known as sampling and

king samples of the signal at the sampling frequency and representing

those samples by a finite number of binary digits (bits) (Tuttlebee, 1999). The left side of

shows the analog signal being sampled at discrete time intervals

displays the quantized version of the signal after discretely representing

the amplitude of the signal (Adamek, 2010). After being represented discretely in ti

and amplitude, the signal can easily be represented by a stream of bits within a computer.

These bits represent the received signal within the computer’s processor.

: ADC Sampling and Quantization

signal is processed by the digital signal processor (DSP)

The DSP is completely reprogrammable and is what makes the system a

special DSP has significant control over the lower layers of the

communication system protocol. More importantly, the DSP performs the final

15

the analog to digital converter (ADC) receives

s a continuous signal in

annot process an analog signal;

it can only process digital signals. Hence, before being sent to the processor, the signal

The ADC converts the

, a process known as sampling and

and representing

. The left side of

shows the analog signal being sampled at discrete time intervals and the right

quantized version of the signal after discretely representing

After being represented discretely in time

and amplitude, the signal can easily be represented by a stream of bits within a computer.

s processor.

is processed by the digital signal processor (DSP) after leaving

The DSP is completely reprogrammable and is what makes the system a

ficant control over the lower layers of the

More importantly, the DSP performs the final

SOFTWARE-DEFINED RADIOS 16

demodulation of the signal from its IF signal to its natural baseband signal. Additionally,

it performs the usual DSP tasks of decoding and understanding the received signal. It can

be implemented on many different pieces of hardware, such as a field programmable gate

array (FPGA) or even a general purpose computer processor.

Homodyne architecture. The architecture of a homodyne or direct conversion

SDR receiver is very similar to its superheterodyne counterpart. In fact, the receiver is

merely missing the several stages of the superheterodyne receiver that convert the RF

signal down to an IF signal. Thus, in this direct conversion receiver, the digital signal

processor receives the RF signal that was sent through the air and has to digitally perform

demodulation of this signal down to baseband. Figure 4 displays an overview of the

homodyne receiver architecture (Buracchini, 2000).

RF

Receiver

Antenna

RF BPF

LNA ADC DSP

Figure 4: SDR Homodyne Receiver Architecture

 The blocks the homodyne receiver in Figure 4 shares with the superheterodyne

receiver in Figure 1 function in roughly the same way. Just like in the superheterodyne

receiver, the RF signal is received by an antenna, preferably a wideband antenna. Then,

undesired frequencies are filtered out by the BPF. After that, the LNA amplifies the very

low power received signal. In the superheterodyne receiver, the signal would then be

mixed down to an IF, but in this homodyne receiver, the signal proceeds directly to the

SOFTWARE-DEFINED RADIOS 17

ADC to be digitized. Finally, the DSP receives the signal where it must be digitally

demodulated down from an RF signal to a baseband signal.

Transmitter Architecture

Superheterodyne architecture. Just like an SDR receiver, a superheterodyne

SDR transmitter consists of both front-end hardware and software on a general purpose

processor. In fact, some SDR front-end hardware components can be used for both the

receiver and transmitter. Figure 5 displays an example of a general superheterodyne SDR

transmitter setup. This setup, similar to the superheterodyne SDR receiver, encloses an

antenna, power amplifier (PA), radio frequency band pass filter (RF BPF), mixer,

intermediate frequency band pass filter (IF BPF), digital to analog converter (DAC), and

digital signal processor (DSP) (Cruz, Carvalho, & Remley, 2010). A general setup of an

SDR superheterodyne transmitter is shown in Figure 5 (Buracchini, 2000).

RF

Transmitter

Antenna

RF BPF Mixer IF BPF

DAC DSPPA

Figure 5: SDR Superheterodyne Transmitter Architecture

 Converse to the signal flow through the SDR receiver, the SDR transmitter signal

passes from the right side to the left side of Figure 5. The digital signal processor

generates the signal to be sent into the air. The DSP could consist of any number of

different types of processors, including a general purpose central processing unit (CPU)

within a computer. Software running on the computer defines the signal and its

communication protocol, which can be changed by manipulating the software.

SOFTWARE-DEFINED RADIOS 18

Additionally, the DSP performs initial modulation of the signal, taking it from a baseband

signal to a higher frequency IF signal. The versatility of SDRs results from the pliability

of the software running on the DSP.

 After being created by the DSP, the signal is received by the digital to analog

converter (DAC). The SDR receiver architecture contained an analog to digital converter

(ADC) which converted the received analog signal into a digital signal for processing

inside the computer. Conversely, the DAC in the SDR transmitter converts the created

digital signal from the processor into analog signal that can be sent over the air

(Tuttlebee, 1999).

 Next, the analog signal flows through an intermediate frequency band-pass filter

(IF BPF). This BPF works in the exact same way as the BPF in the SDR receiver, and an

SDR front-end hardware module may use the same filter for both functions. When

generated by the DSP, the signal is sent to the DAC at an intermediate frequency. Then,

the IF BPF cleans up the signal by removing any noise that may have been generated at

unwanted frequencies.

 Just as the SDR receiver demodulates the received high frequency signal down to

an intermediate frequency, the SDR transmitter modulates the IF signal up to a high

frequency RF signal. The mixer performs the modulation operation by attaching, or

mixing, the IF signal to a RF carrier signal. For several reasons, the modulation of the

signal to a higher frequency is necessary. For example, higher frequency signals are

easier to transmit over long distances. Also, the Federal Communications Commission

(FCC) regulates who can use different frequency bands in different locations around the

United States. Thus, the signal must be modulated to a frequency band that the

SOFTWARE-DEFINED RADIOS 19

transmitter is legally allowed to use. The frequency band on which the signal is being

sent can be edited through software in an SDR system. While restricted by physical

hardware limitations, SDRs are unique in their ability to change the transmitted signal’s

frequency through the use of software.

 Once again, the signal passes through another BPF after being modulated to a

higher frequency. This BPF, like all other BPFs, only passes signals which are within the

desired frequency range and suppresses all others. As the signal is about to be amplified

and sent into the air, sending undesired noise from other frequency ranges into the air

could cause problems for other wireless communication systems. Transmitting

information over more than the allotted frequency range can disrupt communications

within those frequencies and may also be illegal. Thus, the performance of the RF BPF is

essential to the functionality of the SDR transmitter.

 Right before transmission over the air through the antenna, the signal must be

amplified by a power amplifier (PA). The PA uses a series of electrical circuits to

dramatically increase the power of the transmitted signal (Cruz, Carvalho, & Remley,

2010). When within the DSP and in previous stages, the signal resides at very low power

levels. Digital circuits require low signals to increase efficient and to not destroy sensitive

components. As the signal degrades in strength very quickly through the air, it must leave

the transmitter at a very high power to compensate for in-air losses.

 The final stage of the SDR transmitter architecture, the antenna, physically sends

the signal into the air. To make the SDR robust, the antenna must be as wideband as

possible or be able to transmit over a wide range of frequencies. Wideband antennas

allow SDRs to change communication protocols from one frequency band to another with

SOFTWARE-DEFINED RADIOS 20

much ease. Otherwise, a developer would need to change antennas for communication

systems using different frequencies. Consequently, the RF antenna performs one of the

most important functions in any SDR system.

Homodyne architecture. Just like SDR receivers, SDR transmitters can exist in a

homodyne architecture in addition to a superheterodyne architecture. The general

architecture is simpler than the superheterodyne transmitter, as it is simply missing the IF

to RF conversion stages. However, the DSP of the homodyne transmitter must be more

powerful to perform modulation from baseband all the way to a RF, rather than from

baseband to an IF. Figure 6 provides a visual representation of the homodyne transmitter

architecture (Buracchini, 2000).

RF

Transmitter

Antenna

RF BPF

DAC DSPPA

Figure 6: SDR Homodyne Transmitter Architecture

 When compared to the SDR superheterodyne transmitter, the stages of the

homodyne receiver perform in a very similar manner. Once again, the DSP generates the

signal to be sent over the air. However, the homodyne DSP outputs a digital signal that

has already been modulated to an RF signal rather than an IF signal in the case of the

superheterodyne transmitter. Next, the digital signal is converted to an analog signal by

the DAC. After that, the signal passes through the RF BPF to remove unwanted signals

SOFTWARE-DEFINED RADIOS 21

from being transmitted into the air. Then, just before transmission, the signal is amplified

by the PA. Finally, the amplified signal is transmitted into the air through the antenna.

Software-Defined Radio Development Systems

 While all SDR systems follow the basic receiver and transmitter structure

previously discussed, actual software radio systems differ in their implementation

structure. In particular, SDR systems can exist as a combination of proprietary and open

source hardware and software. More specifically, SDR systems can be developed in one

of three primary ways: developing proprietary software for different hardware platforms,

creating a standard hardware platform, or using compilers to enable the same code to

work on multiple hardware systems (Buracchini, 2000).

 As previously explained, software radio systems consist of a hardware front-end

and software for processing. Consequently, the development of SDR systems is often

split between those working on hardware front-ends and the software to develop SDRs.

In many cases, one hardware unit will be compatible with multiple SDR development

software packages. However, the SDR software packages are often created specifically

for use with a particular front-end hardware module. The proceeding sections will outline

the major SDR hardware units and software packages.

Software-Defined Radio Hardware

Universal software radio peripheral. One of the most popular SDR front-end

hardware modules, the Universal Software Radio Peripheral (USRP), is a software radio

platform developed and sold by Ettus Research, LLC under the parent company of

National Instruments (Cass, 2006). Its main goal is to enable users to create their own

SDRs, and it is used predominantly by researchers and universities. The key advantages

SOFTWARE-DEFINED RADIOS 22

of the USRP are its versatility, large development community, and high amount of

associated software (Dickens, Dunn, & Laneman, 2008).

 In general, the USRP hardware unit consists of an antenna connected to an radio

frequency (RF) front end, analog to digital converter (ADC), digital to analog converter

(DAC), and a field programmable gate array (FPGA) (Cass, 2006). Then, the USRP

connects to a host compute via either a USB or Gigabit Ethernet connection, depending

on the USRP model (Tucker & Tagliarini, 2009). The USRP is compatible with nearly all

modern operating systems (OS) including Window, Mac OS X, and many distributions of

UNIX. Thus far, UNIX distributions have been by far the most commonly used OS used

with the USRP, primarily because of Linux’s open source nature. To communicate with

the host computer, the USRP board works with the USRP Hardware Driver (UHD).

 More precisely, the USRP is not merely one product but is actually a family of

products. Each of these USRP boards differs in terms of features offered and supported.

Currently, Ettus Research produces four main lines of USRP boards. First, the high end

hardware boards, the USRP X Series, are some of the most robust and fastest software

radio front-ends in existence (Ettus Research, 2014). Second, the most widely used USRP

boards are part of the USRP Networked Series (N Series). The USRP N Series boards are

relatively robust and connect to a host computer using a high speed Gigabit Ethernet

connection (Ettus Research, 2014). Third, the USRP Bus Series consists merely of a

single circuit board without a protective casing like the other USRP models. It is

primarily for use in low cost, small form factor software radio designs (Ettus Research).

The fourth and final USRP line, known as the USRP Embedded Series, is made up of

both a hardware front-end and a built-in processer. Instead of connecting to a host

SOFTWARE-DEFINED RADIOS 23

computer, the Embedded Series boards host an on-board Linux operating system (Ettus

Research).

Despite their differences, each USRP model contains some major basic features.

Primarily, each model consists of a basic motherboard and a removable daughterboard

(Ferreira, Diniz, Veiga, & Carneiro, 2012). The daughterboard performs RF front end

functions and can be interchanged to allow receiving and transmitting (RX and TX) at

different frequencies. However, the daughterboards currently on the market are wideband

enough that one daughterboard can suffice for many different radio protocols. After being

processed by the daughterboard, the signal moves to the motherboard where an ADC

changes the analog signal into a digital signal. It also contains an FPGA to provide some

DSP functions, but the bulk of the digital processing is done on the host processor which

is connected via a USB or Gigabit Ethernet cable.

 From the connection to the computer, the USRP device communicates with the

host computer using the USRP Hardware Driver (UHD). Additionally, it has support for

all major platforms: Windows, UNIX, and Mac OS X. Moreover, the UHD works with

many third-party software platforms such as GNU Radio, Labview, Simulink, and

OpenBTS. Because the UHD is universal across all USRP boards, applications written

for one USRP board is compatible with all other USRP models. This versatility increases

the usefulness and robustness of the USRP platform, since developers do not have to

worry about the many different USRP models when designing radios. Consequently,

researchers have gravitated to the USRP as a good development system for new radio

protocol when developing with a large array of researchers.

SOFTWARE-DEFINED RADIOS 24

FlexRadio systems. While the USRP is one of the most widely used SDR

hardware units for academic and research use, the FlexRadio System is one of the most

popular SDR units for amateur, home, and personal use. FlexRadio sells a variety of SDR

hardware units, ranging in low-end, cost efficient models to expensive high-performance

models (FlexRadio Systems, 2011). These radios are all designed for use with modern

Microsoft Windows operating systems (FlexRadio Systems). Finally, all FlexRadios are

designed for use with the FlexRadio PowerSDR software radio development system.

 Unlike some other SDR hardware units, FlexRadio systems are limited to

standard amateur radio frequency bands. The FCC regulates who can use different radio

frequency bands, and in order to comply with these regulations, FlexRadio manufacturers

have to limit their radios’ operating range. Therefore, FlexRadio systems would not be

ideal for use in developing and testing communication standards which can exist on a

much wider frequency range than those possible with the FlexRadio systems. It should be

noted, however, that FlexRadio systems were not designed for research and scientific use,

so its frequency band limitation was a design choice.

FUNcube dongle. The FUNcube Dongle is a low-cost, SDR receiver primarily

created for educational and amateur purposes. Consisting of a very small USB dongle,

the FUNcube allows users access to a limited frequency band between 150 kHz and 1.9

GHz (FUNcube Dongle, 2013). The FUNcube Dongle is simple in that it can begin

working within minutes and can work with several different software radio packages,

including GNU Radio. In addition to the USB connection to a computer, the FUNcube

Dongle has a SMA connection to the desired external antenna (FUNcube Dongle). While

SOFTWARE-DEFINED RADIOS 25

not very robust, the FUNcube Dongle provides simple and cheap SDR capabilities in a

small form factor.

Software-Defined Radio Software

GNU radio. One of the most used software packages for creating SDRs, GNU

Radio is an open source software platform used to design and implement software radios

(Dhar, George, Malani, & Steenkiste, 2006). It runs on desktop computers, mainly on

distributions of the Linux operating system, to process and analyze signals in a SDR.

GNU Radio is specifically designed and maintained for use with the USRP platform,

interacting with the UHD to communicate with the USRP board. However, GNU Radio

is also compatible with many other hardware front-ends.

GNU Radio works by breaking down digital signal processing into blocks and

connections between those blocks. More specifically, GNU Radio describes its

functionality as implementing “the signal processing runtime and processing blocks to

implement software radios” (GNU Radio, 2011). The signal processing library of GNU

Radio provides signal processing blocks for modulation, demodulation, filtering, I/O

operations such as file access and audio output, and for communicating with the USRP

board (Dhar, George, Malani, & Steenkiste, 2006). These blocks all have declared inputs

and outputs, and connections are defined between inputs and outputs of different blocks

to create a signal processing flow. GNU Radio can be used to write application to both

receive data and transmit data using the connected USRP platform.

GNU Radio applications are primarily created using the Python and C++

programming languages. GNU Radio signal processing blocks are written primarily in

C++ for high speed applications, while the blocks are connected together using Python

SOFTWARE-DEFINED RADIOS 26

(Marwanto, Sarijari, Fisal, Yusof, & Rashid, 2009). The blocks of GNU Radio are

connected to form a flow graph through which the signal flows on a systems level (Dhar,

George, Malani, & Steenkiste, 2006). The flow graphs can either be represented through

just source code by an executable Python script or through a graphic user interface known

as GNU Radio Companion (GRC).

 Blocks usually operate on continuous streams of data, and every GNU Radio

system has at least one input stream known as a source and at least one output stream

known as a sink. Sources and sinks are special blocks which only produce or consume

data, respectively (Dhar, George, Malani, & Steenkiste, 2006). Sources include blocks

that receive data from USRP RX ports and blocks that read from file descriptors (Dhar,

George, Malani, & Steenkiste). Some sinks include blocks that send data to USRP TX

ports and block that write to file descriptors (Dhar, George, Malani, & Steenkiste). In

general, anything that a block outputs is known as an item, and these items can be real

samples, complex samples, integers, etc. Each block operates on its input stream to

produce an output stream, which may or may not be of the same data type. The blocks

work together to form a SDR system.

This flow graph can be visualized on the computer by using the GNU Radio

Companion (GRC), which is a graphical user interface (GUI) for generating and

visualizing flow graphs. The blocks each serve a single function to increase the

modularity of the SDR system and are connected together to form a total system. The

blocks are connected together by ports defined by the user (Dhar, George, Malani, &

Steenkiste, 2006). The first block, the source, does not have an input port, because it

produces the input signal. Likewise, the last block, the sink, does not have an output port,

SOFTWARE-DEFINED RADIOS 27

as the last block contains data that gets recorded. Each block has different parameters

which the user can set, including sample rate, gain, frequencies, etc. depending on the

block.

 GNU Radio has an extensive library of built-in signal processing blocks and

example programs but also allows users to develop their own blocks and radio systems

(Dhar, George, Malani, & Steenkiste, 2006). When developing an SDR system with

GNU Radio, users have access to many signal processing blocks that come standard with

GNU Radio. In addition to the built-in blocks, users can develop their own blocks, known

as out-of-tree modules, to implement more advanced functionality. Because of the open

source nature of GNU Radio, when new blocks and flow graphs are created, they are

often placed online for others to view and use. The extensive development community

using GNU Radio in combination with the robustness of the program has made GNU

Radio a favorite for academic researchers and software radio developers.

MATLAB and Simulink. MATLAB and Simulink have a free to download

package that enables use with the Ettus Research USRP front-ends (Tabassam, Ali,

Kalsait, & Suleman, 2011). Requiring the Communication Systems Toolbox, a separate

paid pack in addition to owning MATLAB and Simulink, the USRP development

package allows user to create and test SDRs with a USRP front-end (Mathworks, 2014).

Simulink communicates with the USRP through the use of the UHD, which is the main

driver for USRP devices. As MATLAB and Simulink are available for all major

operating systems, this software package can be used to create SDRs using a Microsoft

Windows, Mac OS X, or Linux based computer. For those who are already experienced

SOFTWARE-DEFINED RADIOS 28

using MATLAB and Simulink, the USRP support could make this a good development

platform for software radios.

Labview. Another major software radio development kit for use with the USRP

system is Labview, developed by National Instruments. Labview is a widely used paid

program for designing systems using a kind of visual programming language. To connect

with the USRP, Labview has a freely downloadable software add-on that communicates

with the USRP using the UHD (National Instruments, 2011). Similar to the other GUIs

for use with the USRP, such as GNU Radio and Simulink, Labview provides the ability

to program the USRP through a signal flow graph (Welch & Shearman, 2012). Thus, for

those familiar with using Labview, developing SDRs using the USRP hardware platform

can be quite simple.

OSSIE. Developed by researchers at Virginia Tech, the Open Source SCA

Implementation::Embedded (OSSIE) is a SDR development program primarily for use

with the USRP platform (OSSIE, 2013). OSSIE provides a GUI that runs exclusively on

Linux operating systems. Originally, OSSIE was developed to be modeled after the JTRS

Software Communications Architecture, which was to be the software radio architecture

standard for the United States military (Li, Jha, & Raghunathan, 2012). While built-in

modules are available for signal processing, users can create their own signal processing

modules through programming with C++. With highly customizable flow graphs and a

GUI somewhat similar to GNU Radio Companion, OSSIE has become one of the

premiere software radio development packages used by researchers and developers.

FlexRadio PowerSDR. Designed for use primarily with FlexRadio’s own

hardware modules, the FlexRadio PowerSDR system offers amateurs a graphic interface

SOFTWARE-DEFINED RADIOS 29

for creating their own software radios (FlexRadio Systems, 2011). As it is used mainly by

FlexRadio systems, PowerSDR is a software package developed by FlexRadio.

Additionally, FlexRadio encourages software radio experimentation and development by

offering users the ability to view and edit the program’s source code (FlexRadio

Systems). However, programming experience is not necessary to operate the FlexRadio

PowerSDR software, as its fully-functional graphic user interface (GUI) can provide most

software radio functions. FlexRadio PowerSDR is a Microsoft Windows based software

package that allows users to customize the digital signal processing of their software

radio (FlexRadio Systems). The PowerSDR software allows the user to specify all

aspects of the signal processing within the host computer, including modulating and

demodulation, frequency bands to be used, etc.

The State of Software Radio Technology

Current State

 Up to this point, SDRs have primarily been used by researchers and developers

for designing and testing communication systems. The primary motivations for this focus

on SDR’s immense potential. While the government has explored and used SDRs for

military use, they have not yet fully adopted SDRs into their communication systems.

Additionally, many users have explored using SDRs in amateur radio networks to easily

communicate through a variety of methods. However, developing SDR systems can be

too technical and too expensive for the average consumer, so widespread SDR adoption

has yet to occur with cheaper and simpler radio configurations readily available. Many of

these limitations are only current problems that researchers hope to solve in the future.

SOFTWARE-DEFINED RADIOS 30

 One of the most challenging complications with SDR systems thus far has

involved the latency and low throughput of systems processing information in a general-

purpose computer. As the processing hardware used in SDR systems is general purpose

in nature, it will always be less efficient than its hardware-defined counterpart. To create

a robust and dynamic system that can recreate many different kinds of radio systems, a

large amount of both hardware and software overhead must be implemented.

An example of the latency problem occurs in the Universal Software Radio

Peripheral used with GNU Radio. As several different systems must be connected

together with busses in a USRP/GNU Radio system, it experiences some bottlenecking in

different components that produces latency (Truong, Suh, & Yu, 2013). In fact, Truong,

Suh, & Yu identified, “Latency on GNU Radio/USRP platforms can be divided into three

components: (i) latency introduced in GNU Radio and OS kernel, (ii) latency at

communication bus between host computer and USRP, and (iii) latency at USRP

hardware” (p. 307). Latency in USRP/GNU Radio systems has inhibited some modern

communication protocols, such as 802.11a/g/n, from being implemented. To combat this,

researchers have explored options such as implementing time-critical components

entirely within dedicated hardware or even within an FPGA on the front-end hardware

module (Puschmann, Kalil, & Mitschele-Thiel, 2012). These solutions are non-ideal, as

they undermine the flexibility and robustness inherent in SDRs. More recently, however,

some researchers have found workarounds for implementing time-critical mechanisms

through careful programming, such as the carrier sense multiple access (CSMA)

mechanism developed by Puschmann, et al. for the USRP.

SOFTWARE-DEFINED RADIOS 31

As SDR systems still have significant problems implementing high data-rate,

time-critical applications, only the highest-end SDR systems are being used

commercially. As such, software radios have been used in radio base-stations which have

the space and money to afford expensive, high-end processors. The added benefit of

using SDRs in base-stations is that companies would not have to spend a lot of time and

money to upgrade communication protocols in these base-stations. Rather than needing

new equipment each time an improvement in the radio technology is introduced, the

company would simply have to change some source code. Consequently, companies

could keep up with current technology even faster.

Future State

 While some consumer-based SDR systems currently exist, most are not easy

enough to use for the average consumer. Therefore, the future of SDR adoption lies in

making them robust and easy to use for non-technical users. Then, many developers are

working to make simple, cheap, and small software radios that can be easily modified and

used by consumers. This is not the ultimate goal of software radio systems, however, as

researchers hope SDRs can provide advanced functionality impossible in classical

hardware radios.

 One of the main goals of software radios is create a new, advanced radio system

known as cognitive radio. As previously mentioned, cognitive radios are “smart” in that

they can observer their environment and change themselves accordingly. Joseph Mitola

(1999) provides an even clearer picture of cognitive radios in his doctoral dissertation

when he states, “Such a radio should be aware of the communications needs of its user,

the overall context of anticipated communications events, and the degree of success

SOFTWARE-DEFINED RADIOS 32

towards communications goals offered by alternative courses of action” (p. 39). From

this, one can see that cognitive radios must have the ability to physically alter their

configuration based on communications context. Since hardware radios are essentially

static, the only hope for cognitive radios is in the development of more efficient and

smarter SDRs. Researchers at Virginia Tech, especially, have been working on creating

cognitive radios through SDRs (MacKenzie, et al., 2009). So far, they have made some

important developments toward cognitive radios, but the research community still has

significant challenges to overcome before cognitive radios will become fully-realized.

 The benefits of a cognitive radio system can be readily seen. Primarily, cognitive

radios could allow frequency bands to be allocated dynamically instead of statically.

Classically, RF bands have been sold or given out by governments to different entities to

use so that industries and governments can send wireless communications without

interference (MacKenzie, et al., 2009). While this model has worked, it is very

inefficient, as many frequency bands sit unused for long periods of time. However,

cognitive radios give hope for dynamic spectrum access (DSA), which would allow

radios to either make sure a frequency band is free before using it or negotiate for a

frequency band from some sort of frequency broker (MacKenzie, et al.). This solution

would lead to much more efficient use of the frequency spectrum and would alleviate

some of the frequency crowding problem experienced today.

 Another future goal of software radios centers on the creation of an ideal, fully

software-based transceiver. An ideal software receiver would be able to directly sample

the received RF signal to convert it to a digital signal. Additionally, a fully software

transceiver would need to be able to implement a software-defined antenna that could

SOFTWARE-DEFINED RADIOS 33

change its frequency range through software manipulation. The direct conversion

transceiver has been very difficult to implement, because very high sampling rates are

needed by the analog to digital converter. Significant work on developing a direct-

sampling receiver has been done by Akos, Stockmaster, Tsui, and Caschera (1999).

In addition to developing robust direct-conversion transceivers, software radios of

the future will also ideally have software-defined antennas. A software-defined antenna

works by being reconfigurable within software. Unfortunately, software antennas only

currently exist in rudimentary forms and still have many barriers to overcome before

becoming a viable antenna option. However, researchers have demonstrated some basic

software antenna functionality which gives them hope for the future of software-defined

antennas (Grau, Romeu, Jofre, & De Flaviis, 2008). Reconfigurable antennas could help

software radio systems dramatically. By focusing on a particular frequency band, a SDR

system with a software antenna could more easily extract the received signal with

minimal noise and outside interference. Thus, software-defined antennas will be an

important technological element of future SDRs.

Software-Defined Radio Example Implementations

 Since software radios have been introduced, researchers have developed many

fully-functional SDR systems that can replace traditional hardware radios. Some of these

implantations are quite basic, such as AM and FM receivers, and serve as a good

educational and entertainment tool for those new to SDRs. Other SDR implementations

have recreated communication protocols in software that were originally only creatable

using hardware. Additionally, some SDR researchers have developed wireless test-beds

for new communication protocols. Robust and changeable protocol test-beds were not

SOFTWARE-DEFINED RADIOS 34

previously possible because of the inherently static nature of hardware radios. Finally,

many SDR developers are focusing on developing cognitive radios which have the ability

to understand their surroundings and make protocol changes on the fly. An overview of

several of these SDR implementations will be included in the following sections.

IEEE 802.11a/g/p

 One of the most important SDR implementations thus far has been the IEEE

802.11a/g/p receiver, which is the basis for Wi-Fi communications used today.

Developed using GNU Radio and the USRP board, this SDR receiver was one of the first

orthogonal frequency division multiplexing (OFDM) based systems developed within

software (Bloessl, Segata, Sommer, & Dressler, 2013). Specifically, this system

implements both the physical and MAC layers of IEEE 802.11a/g/p (Bloessl, Segata,

Sommer, & Dressler). The ability to implement a Wi-Fi standard within software

provides a significant milestone for SDRs in general, as Wi-Fi is one of the most well-

known and researched wireless communication systems. In the end, this system could be

used to test the lower layers of IEEE 802.11a/g/p under different conditions and lay the

groundwork for future SDR protocol development.

GPS Receiver

 A non-real time global positioning system (GPS) receiver has been developed

using the USRP with GNU Radio (Thompson, Clem, Renninger, & Loos, 2012). In this

implementation, the GPS receiver uses an extra hardware module external to the USRP to

step down the very high frequency GPS signal to a lower intermediate frequency

(Thompson, Clem, Renninger, & Loos). Some other basic SDR GPS systems have been

implemented, but the choice was made for this system to not operate in real time for

SOFTWARE-DEFINED RADIOS 35

simplicity of processing and so different GPS receiver algorithms could be tested

(Thompson, Clem, Renninger, & Loos). While the GPS does not operate in real time,

developing a GPS system is a significant development for the SDR community.

OpenBTS

 OpenBTS is an open source GSM SDR emulator developed with the USRP and

GNU Radio (Pace & Loscri, 2012). GSM is a well-known cellular voice communication

standard. The OpenBTS project has been collaboratively developed by many researchers

over the internet. It allows GSM compatible cellular phones to access the GSM network

by making the USRP into a GSM access point. Then, the voice is sent through a voice

over IP (VoIP) network (Pace & Loscri). The end goal of this project is to provide a low-

cost cellular network that can be deployed in remote areas (OpenBTS, 2013).

Conclusions

 Software-defined radios offer extensive advantages and features that have

attracted researchers over the past few years. Because of their modularity, versatility, and

digital nature, many new radio systems are being developed within software rather than

hardware. Consisting of a versatile front-end hardware module, the signal processing of

SDRs is often conducted within a general purpose processor with a computer. Likewise,

some of the most accepted SDR units thus far have been Ettus Research’s USRP board

and GNU Radio software system, because of the open source nature, large development

community, and ease of customization. As front-end hardware and general purpose CPUs

continue to become more robust, developers will continue to implement more advanced

software radios. As such, SDRs will become an even more important and influential part

of society in the years to come.

SOFTWARE-DEFINED RADIOS 36

References

Adamek, P. (2010, July 6). File: Sampled.signal.svg. Retrieved from Wikimedia

Commons: http://en.wikipedia.org/wiki/File:Sampled.signal.svg

Akos, D. M., Stockmaster, M., Tsui, J. B., & Caschera, J. (1999, July). Direct bandpass

sampling of mulitple distinct RF signals. IEEE Transactions on Communications,

47(7), 983-988.

Bloessl, B., Segata, M., Sommer, C., & Dressler, F. (2013). Decoding IEEE 802.11a/g/p

OFDM in software using GNU Radio. 19th ACM International Conference on

Mobile Computing and Networking (MobiCom 2013), Demo Session (pp. 159-

161). Miami: ACM. doi:10.1145/2500423.2505300

Buracchini, E. (2000, September). The software radio concept. IEEE Communications

Magazine, pp. 138-143.

Cass, S. (2006, October). Hardware for your software radio. IEEE Spectrum, pp. 53-56.

Corgan, J. (2013). GNU Radio: Core concepts. (GNU Radio) Retrieved May 4, 2013,

from

http://gnuradio.org/redmine/projects/gnuradio/wiki/TutorialsCoreConcepts#So-

what-does-GNU-Radio-do

Cruz, P., Carvalho, N. B., & Remley, K. A. (2010, June). Designing and testing software-

defined radios. IEEE Microwave Magazine, pp. 83-94.

Dhar, R., George, G., Malani, A., & Steenkiste, P. (2006). Supporting integrated MAC

and PHY software development for the USRP SDR. 1st IEEE Workshop on

Networking Technologies for Software Defined Radio Networks (pp. 68-77).

IEEE.

SOFTWARE-DEFINED RADIOS 37

Dickens, M. L., Dunn, B. P., & Laneman, J. N. (2008, August). Design and

implementation of a portable software radio. IEEE Communications Magazine,

pp. 58-66.

Ettus Research. (2014). USRP bus series. Retrieved from Ettus Research:

https://www.ettus.com/product/category/USRP-Bus-Series

Ettus Research. (2014). USRP embedded series. Retrieved from Ettus Research:

https://www.ettus.com/product/category/USRP-Embedded-Series

Ettus Research. (2014). USRP networked series. Retrieved from Ettus Research.

Ettus Research. (2014). USRP x series. Retrieved from Ettus Research:

https://www.ettus.com/product/category/USRP-X-Series

Ferreira, P. V., Diniz, P., Veiga, A., & Carneiro, M. (2012). Frequency response

acquisition of a digital radio transceiver using USRP module and GNU Radio

software. Fourth International Conference on Computational Intelligence,

Modelling and Simulation (pp. 243-248). IEEE Computer Society.

FlexRadio Systems. (2011, August 1). Frequently asked questions. Retrieved from

FlexRadio Systems: http://www.flexradio.com/Products.aspx?topic=faq

FlexRadio Systems. (2013). FlexRadio PowerSDR features and capabilities. Retrieved

from FlexRadio Systems:

http://www.flexradio.com/Products.aspx?topic=PowerSDRv2

FUNcube Dongle. (2013, December). Funcube dongle. Retrieved from FUNcube

Dongle: http://www.funcubedongle.com/

GNU Radio. (2011). GNU Radio overview. (GNU Radio) Retrieved May 4, 2013, from

http://gnuradio.org/redmine/projects/gnuradio

SOFTWARE-DEFINED RADIOS 38

Grau, A., Romeu, J., Jofre, L., & De Flaviis, F. (2008). A software defined MEMS-

reconfigurable PIXEL-antenna for narrowband MIMO systems. NASA/ESA

Conference on Adaptive Hardware and Systems (pp. 141-146). Noordwijk: IEEE

Computer Society. doi:10.1109/AHS.2008.74

Li, C., Jha, N. K., & Raghunathan, A. (2012, March). Secure reconfiguration of software-

defined radio. ACM Transactions on Embedded Computing Systems, 11(1), 10-22.

MacKenzie, A. B., Reed, J. H., Athanas, P., Bostian, C. W., Buehrer, R. M., DaSilva, L.

A., . . . da Silva, C. R. (2009, April). Cognitive radio and networking research at

Virginia Tech. Proceedings of the IEEE, 97(4), 660-688.

doi:10.1109/JPROC.2009.2013022

Marwanto, A., Sarijari, M. A., Fisal, N., Yusof, S., & Rashid, R. A. (2009). Experimental

study of OFDM implementation utilizing GNU Radio and USRP - SDR. 9th

Malaysia International Conference on Communications (pp. 132-135). Kuala

Lumpur, Malaysia: IEEE.

Mathworks. (2014). USRP support package from communications system toolbox.

Retrieved from Mathworks: http://www.mathworks.com/hardware-

support/usrp.html

Mitola, J. (1999, August). Cognitive radio: Model-based competence for software radios.

Royal Institute of Technology.

National Instruments. (2011, September). NI-USRP 1.0. Retrieved from National

Instruments: http://www.ni.com/download/ni-usrp-1.0/2679/en/

OpenBTS. (2013). What is OpenBTS? Retrieved from OpenBTS: http://openbts.org/

SOFTWARE-DEFINED RADIOS 39

OSSIE. (2013). About open source SCA implementation: Embedded (OSSIE). Retrieved

from OSSIE: http://ossie.wireless.vt.edu/trac/wiki/About

Pace, P., & Loscri, V. (2012). OpenBTS: A step forward in the cognitive direction. 2012

21st International Conference on Computer Communications and Networks

(ICCCN) (pp. 1-6). Munich: IEEE.

Puschmann, A., Kalil, M. A., & Mitschele-Thiel, A. (2012). A flexible CSMA based

MAC protocol for software defined radios. Frequenz, 66, 261-268.

doi:10.1515/freq-2012-0048

Reed, J. H. (2002). Software radio: A modern approach to radio engineering. Upper

Saddle River, NJ: Prentice Hall.

SpinningSpark. (2010, July 2). Passband schematic 3. Retrieved from Wikimedia

Commons: http://en.wikipedia.org/wiki/File:Passband_schematic3.png

Tabassam, A. A., Ali, F. A., Kalsait, S., & Suleman, M. U. (2011). Building software-

defined radios in MATLAB Simulink: A step toward cognitive radios. 2011

UKSim 13th International Conference on Modelling and Simulation (pp. 492-

497). IEEE Computer Society.

Thompson, E. A., Clem, N., Renninger, I., & Loos, T. (2012). Software-defined GPS

receiver on USRP platform. Journal of Network and Computer Applications, 35,

1352-1360.

Tribble, A. C. (2008). The software defined radio: Fact and fiction. 2008 IEEE Radio and

Wireless Symposium (pp. 5-8). Orlando, FL: IEEE.

SOFTWARE-DEFINED RADIOS 40

Truong, N. B., Suh, Y.-J., & Yu, C. (2013). Latency analysis in GNU Radio/USRP-based

software radio platforms. IEEE Military Communications Conference (pp. 305-

310). San Diego: IEEE. doi:10.1109/MILCOM.2013.60

Tucker, D. C., & Tagliarini, G. A. (2009). Prototyping with GNU Radio and the USRP -

where to begin. IEEE Southeastcon 2009 (pp. 50-54). Atlanta, GA: IEEE.

Tuttlebee, W. H. (1999, April). Software-defined radio: Facets of a developing

technology. IEEE Personal Communications, pp. 38-44.

Welch, T. B., & Shearman, S. (2012). Teaching software defined radio using the USRP

and Labview. IEEE International Conference on Acoustics, Speech and Signal

Processing (pp. 2789-2792). IEEE.

