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Abstract 

Over the past decade, software-defined radios (SDRs) have an increasingly prevalent 

aspect of wireless communication systems. Different than traditional hardware radios 

which implement radio protocols using static electrical circuit, SDRs implement 

significant aspects of physical radio protocol using software programs running on a host 

processor. Because they use software to implement most of the radio functionality, SDRs 

are much more easily modified, edited, and upgraded than their hardware-defined 

counterparts. Consequently, researchers and developers have been developing previously 

hardware-defined radio systems within software. Thus, communication standards can be 

tested under different conditions or swapped out entirely by simply changing some code. 

Additionally, developers hope to implement more advanced functionality with SDRs 

such as cognitive radios that can sense the conditions of the environment and change 

parameters or protocol accordingly. This paper will outline the major aspects of SDRs 

including their explanation, advantages, and architecture.  

 As SDRs have become more commonplace, many companies and organizations 

have developed hardware front-ends and software packages to help develop software 

radios. The most prominent hardware front-ends to date have been the USRP hardware 

boards. Additionally, many software packages exist for SDR development, including the 

open source GNU Radio and OSSIE and the closed source Simulink and Labview SDR 

packages. Using these development tools, researchers have developed many of the most 

relevant radio standards. This paper will explain the major hardware and software 

development tools for creating SDRs, and it will explain some of the most important 

SDR projects that have been implemented to date.   



SOFTWARE-DEFINED RADIOS 4 

Studies in Software Defined Radio System Implementation 

Introduction 

Radios are essential parts of everyday human communications, whether people 

realize it or not. When most people think of radios, they think of the AM/FM radios in 

their cars, hand-held two-way radios, or CB radios. However, radios are much more 

prevalent in society than most realize. For instance, the Wi-Fi adapters within a computer 

or smart-device are radios and Bluetooth earpieces used to talk on the phone are radios. 

In general, a radio is any device that transmits or receives information wirelessly through 

the use of electromagnetic waves known as radio waves.  

Classically, radios have been made from pieces of hardware designed for use in 

one specific radio. These radios can be referred to as hardware-defined radios because the 

radio is completely dependent on the hardware such as electrical circuits and electronic 

devices. However, software-defined radios, developed in the past few years, are a new 

type of radio in which the type of radio is determined by a piece of software. These 

software-defined radios (SDRs) or software radios are a developing technology with 

many advantages that make them attractive to researchers and radio developers alike.  

Background on Software-Defined Radios 

The Need for Software-Defined Radios 

In the past few decades, the field of wireless communications has been 

developing and advancing at a rapid pace. Nearly all new electronic devices implement 

some sort of wireless communications, be it in the form of Wi-Fi, Bluetooth, or cellular 

technologies like CDMA or LTE. Each of these different radio systems has its own 
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specific protocols. Consequently, these different radio systems had to be implemented 

using hardware configurations.  

Hardware radios use physical components which are not easily modified. 

Consequently, this static nature gives hardware radios several limitations. First, needing 

different hardware setups for each radio technology can use significant amounts of space, 

especially if a particular setup needs several different radio technologies. Second, 

implementing separate hardware protocols becomes expensive to systems needing to use 

many different radio standards (Tribble, 2008). Cellular phone technology provides a key 

example of this phenomenon. In cellular phone technology, entire nations and regions 

have attempted to standardize the radio protocol; however, cell phones still need to 

support old standards still in use and alternate standards in different regions so a single 

phone can operate in many locations. Current hardware limitations cause cell phones to 

have separate physical systems for each communication standard which increases both 

the size and cost of cell phones. Third, hardware radios are not easily updated when new 

technology is developed (Tribble). Radio technology and protocols are constantly 

evolving to become faster and more advanced. Thus, a protocol used today could be 

obsolete in just a few years. Under hardware-based radio schemes, systems would be 

unusable whenever a new protocol is developed. Because of the limitations inherent in 

static hardware radio systems, a different kind of radio system has been developed within 

the past few years. 

To solve the hardware problem, engineers decided to implement parts of the radio 

using software rather than hardware. Using software rather than hardware to implement 

some stages of a radio system enables a radio to be more easily configured, modified, and 
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developed for multiple systems (Tribble, 2008). This new form of radio implementation 

came to be known as software defined radio (SDR) or software radio. The goal of SDRs 

is to implement fully functional radios in one system that previously needed multiple 

systems.  

The migration from hardware-defined radios to software-defined radios 

corresponds with the move from analog radio systems to digital radio system. In the past, 

the rise of microprocessors enabled communications engineers to develop a new way to 

transmit information from one place to another. These digital communication systems 

provided some key benefits over the existing analog communication systems. Despite the 

advantages, however, both analog and digital communication systems still exist today. 

Analog systems are still useful for some applications and digital systems will never be 

able to completely replace analog systems. Similarly, the advantages of software radios 

may allow them to overtake hardware radios in many situations throughout the coming 

years; however, the simplicity and dependability of hardware radios will ensure these 

radios continue to exist, as well. Just as radio systems once went through a phase of 

converting from analog to digital, radio systems today and in the future are increasingly 

becoming software defined rather than hardware defined.  

Explanation of Software-Defined Radios 

Before the advantages of software radios can be understood, the differences 

between software and hardware radios must first be explained. While software has been 

used to process digital signals nearly since the advent of computers, the type of radios 

now understood to be software-defined radios have only existed for a couple decades.  

More specifically, the term “software radio” is commonly attributed to Joe Mitola in 
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1991 when he referred to radios which are reprogrammable and reconfigurable (Reed, 

2002). This definition means that a single piece of hardware would have the ability to 

perform different functions and adhere to different protocols at different times. Mitola’s 

definition, while adequate when it was first created, it is too broad of a definition to be 

used today.  

Since Mitola’s introduction of SDRs, many researchers and organizations have 

disagreed over what makes a radio software-defined. One such entity, the Wireless 

Innovation Forum (formerly the SDR Forum) defines a SDR as “Radio in which some or 

all of the physical layer functions are software defined” (The Wireless Innovation Forum, 

2012, para. 3). Once again, this definition is somewhat vague. Consequently, Dr. Jeffery 

Reed suggests a working definition of a SDR is “a radio that is substantially defined in 

software and whose physical layer behavior can be significantly altered through changes 

to its software” (Reed, 2002, p. 2). Another somewhat similar definition proposed by 

Enrico Buracchini suggests, “Software radio is an emerging technology, thought to build 

flexible radio systems, multiservice, multistandard, multiband, reconfigurable and 

reprogrammable by software” (Buracchini, 2000, p. 138). These more specific definitions 

of software radios allow one to understand the difference between purely hardware radios 

and software-defined radios.  

Examining Reed and Buracchini’s definitions, one can see that software-defined 

radios are much more than simply radios which use software. Software-defined radios 

must be able to change the physical functionality of the radio through software. For 

example, a digital radio which uses a digital signal processor (DSP) on a computer to 

manipulate a signal is not necessarily a SDR. In this example, the communication signal 
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is processed through software, but the software does not necessarily have the ability to 

change the communication standard being used. Thus, while both types of radios make 

use of hardware components, a software radio has the ability to change the physical 

communication standard being used, while a hardware radio does not.  

Advantages of Software-Defined Radios 

The ability of SDRs to change its physical behavior provides it with several 

advantages over its hardware-defined counterpart. Primarily, SDRs can be easily modify 

and implement different physical layer radio protocols unlike hardware radios. By merely 

editing some code, the designer can change the functionality of a radio system without 

having to physically change a hardware configuration (Dickens, Dunn, & Laneman, 

2008). This adaptability is useful for several reasons. For one, a SDR system can be 

quickly changed to support different hardware protocols. This could eventually be used in 

a system like cellular phones that need to support several different radio protocols. 

Instead of needing a separate module for each protocol, it would merely need one 

hardware module with different software installed for each necessary radio protocol. 

Additionally, developers would be able to quickly edit and update their radio system by 

changing code rather than having to develop and replace hardware modules. This 

modification functionality could decrease the physical complexity, size, and cost of radio 

networks by having one device perform multiple functions (Dickens, Dunn, & Laneman).  

 A second advantage of SDRs is that they could be cheaper than dedicated 

hardware radios in some respects. With hardware radios, any time a radio system needs to 

be updated or edited, a completely new circuit board must be created which can cost a lot 

of money if a company has a lot of radios on the market. On the other hand, SDRs would 
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merely need a software update to have additional or improved functionality (Dickens, 

Dunn, & Laneman, 2008). Companies would benefit from having the ability to quickly 

change designs by changing some lines of code rather than changing physical 

components. This reduces cost by eliminating the need for new physical components 

when upgrading radio units. The lower cost of SDR devices in comparison to hardware-

defined radio devices when changing radio systems could drive more consumers and 

developers to use SDRs in the future. 

The ease of testing and implementation of communication standards presents a 

third advantage of SDRs over hardware-defined radios. First of all, when a new wireless 

communications protocol is being developed, many tests are needed to determine the 

standards and specifications of the protocol. With hardware radio systems, new circuits 

must be designed and created for every test. Then, when changes need to be made, new 

hardware needs to be purchased. Conversely, with SDR systems, testing and 

implementation would be simpler, cheaper, and quicker. When testing, code could be 

changed to test a new specification. This would allow researchers and developers a very 

good test-bed for wireless communication systems.  

In addition to overcoming some of the limitations of hardware radios, SDRs have 

potential for functionality not implementable with hardware radios. For example, a 

cognitive radio is able to analyze the wireless spectrum in an area and adjust its 

parameters to allow more efficient use of the wireless spectrum to take place in the area. 

Hardware radios, unable to change their physical protocol, have no hope in ever being 

able to implement cognitive radios. Consequently, the idea of a fully-realized cognitive 
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radio has developed in conjunction with research into software radios. In fact, creating 

fully-functional and robust cognitive radios is one of the main goals of SDR research.  

Architecture of Software-Defined Radios 

 All SDR systems retain some overarching, basic distinguishing characteristics. As 

the name suggests, software radios are known for their use of software, but all 

communication systems – either software or hardware – must have some sort of hardware 

front-end to send and received electric signals. In addition to this front-end hardware, all 

software radio systems have some sort of reprogrammable general purpose processor 

which handles the signal processing for the system. It is this general purpose processor 

that differentiates software radios from hardware radios. In a hardware-defined radio, the 

processing unit would not be easily changeable. All software radios possess both front-

end hardware and a reprogrammable processing unit, but different SDR systems differ in 

implementation of this basic setup. In fact, some modern software radio front-ends do not 

have the intermediate frequency mixer stages seen in the architectures to be explained. As 

such, many different pieces of software have been created for users to develop SDRs. 

Specific implementations of SDR front-end hardware and software packages will be 

discussed in more detail in a later section. 

As a modular design, SDRs are limited by the restrictions of their components. 

More precisely, SDRs cannot have better performance than its most limited component 

will allow. All stages in the SDR architecture depend on the other stages, making it 

essential that a SDR system has no significant flaws. Unfortunately, one of the most 

limited parts of SDRs is the front end hardware. Currently, versatile radio frequency (RF) 

front ends that can handle a variety of signals, frequencies, channels, physical media, and 
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bandwidths are difficult to create (Reed, 2002). Consequently, the research and 

development of SDRs over the past decade has benefited from hardware improvements in 

addition to software improvements. Even so, a SDR designer must be aware of its 

potential hardware limitations and adjust the system accordingly.  

The front-end hardware designs of modern SDR receivers and transmitters can be 

broken down into two main categories: superheterodyne and homodyne. Radio signals 

are sent through the air at high frequencies known as radio frequencies (RF). However, 

hardware limitations make these high frequency signals difficult to process (Buracchini, 

2000). For many years, SDRs were mainly developed using a superheterodyne scheme, 

but in recent years as processors have become more powerful, homodyne transceivers 

have become more common. Thus, some software radio transceivers have the processor 

send and receive the signal at an intermediate frequency (IF) lower than the RF on which 

the signal is sent through the air. A superheterodyne transceiver must step up or step 

down the frequency of the signal outside of the digital signal processor (Cruz, Carvalho, 

& Remley, 2010). Conversely, in a homodyne transceiver, also known as a direct 

conversion transceiver, the RF signal is sent and received by the processor with no IF 

conversion (Cruz, Carvalho, & Remley). The differences between these architectures will 

be outlined in the sections that follow.  

Receiver Architecture 

Superheterodyne architecture. As previously stated, an ideal SDR has both a 

front-end hardware and a reprogrammable processor. When the receiver’s front-end 

hardware contains stages that convert the received RF signal down to a lower IF signal, it 

is referred to as a superheterodyne receiver. In this kind of receiver, the digital signal 



SOFTWARE-DEFINED RADIOS 12 

processor receives the IF signal rather than the RF signal directly. A diagram of an ideal 

superheterodyne SDR receiver can be seen in Figure 1 (Buracchini, 2000).  

In this representation, an ideal SDR requires some sort of antennae or an entirely 

flexible RF front end which could handle any kind of modulation and frequency range. 

This front-end is comprised of the four blocks on the left side of Figure 1. Because of 

technology limitations, however, physical antennas are not yet capable of supporting all 

frequency ranges. Creating antennas supporting a large range of frequencies, known as 

wideband antennas, is a very difficult and ongoing problem of its own. Consequently, 

ideal SDRs do not currently exist and may never be created because of limitations of 

physics. Despite the fact that software radios will always be limited by their physical 

hardware, the ideal SDR seen in Figure 1 provides a good example of the components of 

a general SDR system.  

RF

Receiver

Antenna

RF BPF

LNA

Mixer IF BPF

ADC DSP

  

Figure 1: SDR Superheterodyne Receiver Architecture 

  The first component of the front-end hardware, some type of antennae is needed 

to receive the signal. The antenna physically receives the electromagnetic signal from the 

air. Ideally, it should be as wide-band as possible so a large frequency range is supported. 

Supporting a large frequency range allows the software radio to be able to change 

protocol specifications, such as changing frequency band, without the need for a separate 
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antenna. Thus, a wide-band antenna increases the robustness and versatility of its 

software radio system.  

After a received signal is obtained by the antenna, it travels to the next component 

of a SDR: the band-pass filter (BPF)

by filtering out unwanted frequency bands. 
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 After leaving the BPF, the signal passes to the low noise amplifier (LNA). The 

LNA amplifies the very low power signal captured from the antennae, so that it can be 

processed more easily into a digital signal. When a signal is sent wirelessly over long 

distances, the power or strength of the signal degrades heavily. When finally received by 

the antenna, the signal is often so low in power that it would be very difficult to process. 

Thus, the LNA is necessary for the rest of the signal processing system.  

The mixer receives the signal that had been amplified by the LNA. The job of the 

mixer is to take the high frequency received signal down to a lower, more manageable 

frequency through a process called demodulation (Reed, 2002). This stage of the receiver 

is what makes the receiver a superheterodyne receiver rather than a homodyne receiver. 

When sent through the air, the transmitted signal is attached to a high frequency carrier 

signal through the process of modulation (Cass, 2006). The purpose of this high 

frequency carrier signal is to increase the ease of transmitting the signal over long 

distances and to transmit the signal over a legally allow frequency range. However, 

before the received signal can be processed by a computer, it must be brought back down 

to a lower frequency through the use of the mixer. 

After being demodulated by the mixer, the signal passes through another BPF. 

This band-pass filter blocks all frequencies outside of the signal’s new intermediate 

frequency. Note this BPF differs from the previous BPF by the center frequency on 

which it focuses. While the RF BPF passes frequencies around the received signal’s 

carrier frequency, the IF BPF passes frequencies around the new intermediate center 

frequency after leaving the mixer. By doing this, the filter allows only the desired signal 

to be further transmitted to the next stage in the SDR receiver.  
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Subsequently, the signal travels to 
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demodulation of the signal from its IF signal to its natural baseband signal. Additionally, 

it performs the usual DSP tasks of decoding and understanding the received signal. It can 

be implemented on many different pieces of hardware, such as a field programmable gate 

array (FPGA) or even a general purpose computer processor. 

Homodyne architecture. The architecture of a homodyne or direct conversion 

SDR receiver is very similar to its superheterodyne counterpart. In fact, the receiver is 

merely missing the several stages of the superheterodyne receiver that convert the RF 

signal down to an IF signal. Thus, in this direct conversion receiver, the digital signal 

processor receives the RF signal that was sent through the air and has to digitally perform 

demodulation of this signal down to baseband.  Figure 4 displays an overview of the 

homodyne receiver architecture (Buracchini, 2000).  

RF

Receiver

Antenna

RF BPF

LNA ADC DSP

 

Figure 4: SDR Homodyne Receiver Architecture 

 The blocks the homodyne receiver in Figure 4 shares with the superheterodyne 

receiver in Figure 1 function in roughly the same way. Just like in the superheterodyne 

receiver, the RF signal is received by an antenna, preferably a wideband antenna. Then, 

undesired frequencies are filtered out by the BPF. After that, the LNA amplifies the very 

low power received signal. In the superheterodyne receiver, the signal would then be 

mixed down to an IF, but in this homodyne receiver, the signal proceeds directly to the 
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ADC to be digitized. Finally, the DSP receives the signal where it must be digitally 

demodulated down from an RF signal to a baseband signal.   

Transmitter Architecture 

Superheterodyne architecture. Just like an SDR receiver, a superheterodyne 

SDR transmitter consists of both front-end hardware and software on a general purpose 

processor. In fact, some SDR front-end hardware components can be used for both the 

receiver and transmitter. Figure 5 displays an example of a general superheterodyne SDR 

transmitter setup. This setup, similar to the superheterodyne SDR receiver, encloses an 

antenna, power amplifier (PA), radio frequency band pass filter (RF BPF), mixer, 

intermediate frequency band pass filter (IF BPF), digital to analog converter (DAC), and 

digital signal processor (DSP) (Cruz, Carvalho, & Remley, 2010). A general setup of an 

SDR superheterodyne transmitter is shown in Figure 5 (Buracchini, 2000). 

RF

Transmitter

Antenna

RF BPF Mixer IF BPF

DAC DSPPA

 

Figure 5: SDR Superheterodyne Transmitter Architecture 

 Converse to the signal flow through the SDR receiver, the SDR transmitter signal 

passes from the right side to the left side of Figure 5. The digital signal processor 

generates the signal to be sent into the air. The DSP could consist of any number of 

different types of processors, including a general purpose central processing unit (CPU) 

within a computer. Software running on the computer defines the signal and its 

communication protocol, which can be changed by manipulating the software. 
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Additionally, the DSP performs initial modulation of the signal, taking it from a baseband 

signal to a higher frequency IF signal. The versatility of SDRs results from the pliability 

of the software running on the DSP.  

 After being created by the DSP, the signal is received by the digital to analog 

converter (DAC). The SDR receiver architecture contained an analog to digital converter 

(ADC) which converted the received analog signal into a digital signal for processing 

inside the computer. Conversely, the DAC in the SDR transmitter converts the created 

digital signal from the processor into analog signal that can be sent over the air 

(Tuttlebee, 1999).   

 Next, the analog signal flows through an intermediate frequency band-pass filter 

(IF BPF).  This BPF works in the exact same way as the BPF in the SDR receiver, and an 

SDR front-end hardware module may use the same filter for both functions. When 

generated by the DSP, the signal is sent to the DAC at an intermediate frequency. Then, 

the IF BPF cleans up the signal by removing any noise that may have been generated at 

unwanted frequencies.  

 Just as the SDR receiver demodulates the received high frequency signal down to 

an intermediate frequency, the SDR transmitter modulates the IF signal up to a high 

frequency RF signal. The mixer performs the modulation operation by attaching, or 

mixing, the IF signal to a RF carrier signal. For several reasons, the modulation of the 

signal to a higher frequency is necessary. For example, higher frequency signals are 

easier to transmit over long distances. Also, the Federal Communications Commission 

(FCC) regulates who can use different frequency bands in different locations around the 

United States. Thus, the signal must be modulated to a frequency band that the 
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transmitter is legally allowed to use. The frequency band on which the signal is being 

sent can be edited through software in an SDR system. While restricted by physical 

hardware limitations, SDRs are unique in their ability to change the transmitted signal’s 

frequency through the use of software.  

 Once again, the signal passes through another BPF after being modulated to a 

higher frequency. This BPF, like all other BPFs, only passes signals which are within the 

desired frequency range and suppresses all others. As the signal is about to be amplified 

and sent into the air, sending undesired noise from other frequency ranges into the air 

could cause problems for other wireless communication systems. Transmitting 

information over more than the allotted frequency range can disrupt communications 

within those frequencies and may also be illegal. Thus, the performance of the RF BPF is 

essential to the functionality of the SDR transmitter.  

 Right before transmission over the air through the antenna, the signal must be 

amplified by a power amplifier (PA). The PA uses a series of electrical circuits to 

dramatically increase the power of the transmitted signal (Cruz, Carvalho, & Remley, 

2010). When within the DSP and in previous stages, the signal resides at very low power 

levels. Digital circuits require low signals to increase efficient and to not destroy sensitive 

components. As the signal degrades in strength very quickly through the air, it must leave 

the transmitter at a very high power to compensate for in-air losses.  

 The final stage of the SDR transmitter architecture, the antenna, physically sends 

the signal into the air. To make the SDR robust, the antenna must be as wideband as 

possible or be able to transmit over a wide range of frequencies. Wideband antennas 

allow SDRs to change communication protocols from one frequency band to another with 
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much ease. Otherwise, a developer would need to change antennas for communication 

systems using different frequencies. Consequently, the RF antenna performs one of the 

most important functions in any SDR system.  

Homodyne architecture. Just like SDR receivers, SDR transmitters can exist in a 

homodyne architecture in addition to a superheterodyne architecture. The general 

architecture is simpler than the superheterodyne transmitter, as it is simply missing the IF 

to RF conversion stages. However, the DSP of the homodyne transmitter must be more 

powerful to perform modulation from baseband all the way to a RF, rather than from 

baseband to an IF. Figure 6 provides a visual representation of the homodyne transmitter 

architecture (Buracchini, 2000).  

RF

Transmitter

Antenna

RF BPF

DAC DSPPA

 

Figure 6: SDR Homodyne Transmitter Architecture 

 When compared to the SDR superheterodyne transmitter, the stages of the 

homodyne receiver perform in a very similar manner. Once again, the DSP generates the 

signal to be sent over the air. However, the homodyne DSP outputs a digital signal that 

has already been modulated to an RF signal rather than an IF signal in the case of the 

superheterodyne transmitter. Next, the digital signal is converted to an analog signal by 

the DAC. After that, the signal passes through the RF BPF to remove unwanted signals 
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from being transmitted into the air. Then, just before transmission, the signal is amplified 

by the PA. Finally, the amplified signal is transmitted into the air through the antenna.  

Software-Defined Radio Development Systems 

 While all SDR systems follow the basic receiver and transmitter structure 

previously discussed, actual software radio systems differ in their implementation 

structure. In particular, SDR systems can exist as a combination of proprietary and open 

source hardware and software. More specifically, SDR systems can be developed in one 

of three primary ways: developing proprietary software for different hardware platforms, 

creating a standard hardware platform, or using compilers to enable the same code to 

work on multiple hardware systems (Buracchini, 2000).  

 As previously explained, software radio systems consist of a hardware front-end 

and software for processing. Consequently, the development of SDR systems is often 

split between those working on hardware front-ends and the software to develop SDRs. 

In many cases, one hardware unit will be compatible with multiple SDR development 

software packages. However, the SDR software packages are often created specifically 

for use with a particular front-end hardware module. The proceeding sections will outline 

the major SDR hardware units and software packages.  

Software-Defined Radio Hardware 

Universal software radio peripheral. One of the most popular SDR front-end 

hardware modules, the Universal Software Radio Peripheral (USRP), is a software radio 

platform developed and sold by Ettus Research, LLC under the parent company of 

National Instruments (Cass, 2006). Its main goal is to enable users to create their own 

SDRs, and it is used predominantly by researchers and universities. The key advantages 
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of the USRP are its versatility, large development community, and high amount of 

associated software (Dickens, Dunn, & Laneman, 2008). 

 In general, the USRP hardware unit consists of an antenna connected to an radio 

frequency (RF) front end, analog to digital converter (ADC), digital to analog converter 

(DAC), and a field programmable gate array (FPGA) (Cass, 2006). Then, the USRP 

connects to a host compute via either a USB or Gigabit Ethernet connection, depending 

on the USRP model (Tucker & Tagliarini, 2009). The USRP is compatible with nearly all 

modern operating systems (OS) including Window, Mac OS X, and many distributions of 

UNIX. Thus far, UNIX distributions have been by far the most commonly used OS used 

with the USRP, primarily because of Linux’s open source nature. To communicate with 

the host computer, the USRP board works with the USRP Hardware Driver (UHD).  

 More precisely, the USRP is not merely one product but is actually a family of 

products. Each of these USRP boards differs in terms of features offered and supported. 

Currently, Ettus Research produces four main lines of USRP boards. First, the high end 

hardware boards, the USRP X Series, are some of the most robust and fastest software 

radio front-ends in existence (Ettus Research, 2014). Second, the most widely used USRP 

boards are part of the USRP Networked Series (N Series). The USRP N Series boards are 

relatively robust and connect to a host computer using a high speed Gigabit Ethernet 

connection (Ettus Research, 2014). Third, the USRP Bus Series consists merely of a 

single circuit board without a protective casing like the other USRP models. It is 

primarily for use in low cost, small form factor software radio designs (Ettus Research). 

The fourth and final USRP line, known as the USRP Embedded Series, is made up of 

both a hardware front-end and a built-in processer. Instead of connecting to a host 
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computer, the Embedded Series boards host an on-board Linux operating system (Ettus 

Research).  

Despite their differences, each USRP model contains some major basic features. 

Primarily, each model consists of a basic motherboard and a removable daughterboard 

(Ferreira, Diniz, Veiga, & Carneiro, 2012). The daughterboard performs RF front end 

functions and can be interchanged to allow receiving and transmitting (RX and TX) at 

different frequencies. However, the daughterboards currently on the market are wideband 

enough that one daughterboard can suffice for many different radio protocols. After being 

processed by the daughterboard, the signal moves to the motherboard where an ADC 

changes the analog signal into a digital signal. It also contains an FPGA to provide some 

DSP functions, but the bulk of the digital processing is done on the host processor which 

is connected via a USB or Gigabit Ethernet cable.  

 From the connection to the computer, the USRP device communicates with the 

host computer using the USRP Hardware Driver (UHD). Additionally, it has support for 

all major platforms: Windows, UNIX, and Mac OS X. Moreover, the UHD works with 

many third-party software platforms such as GNU Radio, Labview, Simulink, and 

OpenBTS. Because the UHD is universal across all USRP boards, applications written 

for one USRP board is compatible with all other USRP models. This versatility increases 

the usefulness and robustness of the USRP platform, since developers do not have to 

worry about the many different USRP models when designing radios. Consequently, 

researchers have gravitated to the USRP as a good development system for new radio 

protocol when developing with a large array of researchers.  
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FlexRadio systems. While the USRP is one of the most widely used SDR 

hardware units for academic and research use, the FlexRadio System is one of the most 

popular SDR units for amateur, home, and personal use. FlexRadio sells a variety of SDR 

hardware units, ranging in low-end, cost efficient models to expensive high-performance 

models (FlexRadio Systems, 2011). These radios are all designed for use with modern 

Microsoft Windows operating systems (FlexRadio Systems). Finally, all FlexRadios are 

designed for use with the FlexRadio PowerSDR software radio development system.  

 Unlike some other SDR hardware units, FlexRadio systems are limited to 

standard amateur radio frequency bands. The FCC regulates who can use different radio 

frequency bands, and in order to comply with these regulations, FlexRadio manufacturers 

have to limit their radios’ operating range. Therefore, FlexRadio systems would not be 

ideal for use in developing and testing communication standards which can exist on a 

much wider frequency range than those possible with the FlexRadio systems. It should be 

noted, however, that FlexRadio systems were not designed for research and scientific use, 

so its frequency band limitation was a design choice.  

FUNcube dongle. The FUNcube Dongle is a low-cost, SDR receiver primarily 

created for educational and amateur purposes. Consisting of a very small USB dongle, 

the FUNcube allows users access to a limited frequency band between 150 kHz and 1.9 

GHz (FUNcube Dongle, 2013). The FUNcube Dongle is simple in that it can begin 

working within minutes and can work with several different software radio packages, 

including GNU Radio. In addition to the USB connection to a computer, the FUNcube 

Dongle has a SMA connection to the desired external antenna (FUNcube Dongle). While 
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not very robust, the FUNcube Dongle provides simple and cheap SDR capabilities in a 

small form factor.  

Software-Defined Radio Software 

GNU radio. One of the most used software packages for creating SDRs, GNU 

Radio is an open source software platform used to design and implement software radios 

(Dhar, George, Malani, & Steenkiste, 2006). It runs on desktop computers, mainly on 

distributions of the Linux operating system, to process and analyze signals in a SDR. 

GNU Radio is specifically designed and maintained for use with the USRP platform, 

interacting with the UHD to communicate with the USRP board. However, GNU Radio 

is also compatible with many other hardware front-ends.  

GNU Radio works by breaking down digital signal processing into blocks and 

connections between those blocks. More specifically, GNU Radio describes its 

functionality as implementing “the signal processing runtime and processing blocks to 

implement software radios” (GNU Radio, 2011). The signal processing library of GNU 

Radio provides signal processing blocks for modulation, demodulation, filtering, I/O 

operations such as file access and audio output, and for communicating with the USRP 

board (Dhar, George, Malani, & Steenkiste, 2006). These blocks all have declared inputs 

and outputs, and connections are defined between inputs and outputs of different blocks 

to create a signal processing flow. GNU Radio can be used to write application to both 

receive data and transmit data using the connected USRP platform. 

GNU Radio applications are primarily created using the Python and C++ 

programming languages. GNU Radio signal processing blocks are written primarily in 

C++ for high speed applications, while the blocks are connected together using Python 
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(Marwanto, Sarijari, Fisal, Yusof, & Rashid, 2009). The blocks of GNU Radio are 

connected to form a flow graph through which the signal flows on a systems level (Dhar, 

George, Malani, & Steenkiste, 2006). The flow graphs can either be represented through 

just source code by an executable Python script or through a graphic user interface known 

as GNU Radio Companion (GRC).  

 Blocks usually operate on continuous streams of data, and every GNU Radio 

system has at least one input stream known as a source and at least one output stream 

known as a sink. Sources and sinks are special blocks which only produce or consume 

data, respectively (Dhar, George, Malani, & Steenkiste, 2006). Sources include blocks 

that receive data from USRP RX ports and blocks that read from file descriptors (Dhar, 

George, Malani, & Steenkiste). Some sinks include blocks that send data to USRP TX 

ports and block that write to file descriptors (Dhar, George, Malani, & Steenkiste). In 

general, anything that a block outputs is known as an item, and these items can be real 

samples, complex samples, integers, etc. Each block operates on its input stream to 

produce an output stream, which may or may not be of the same data type. The blocks 

work together to form a SDR system.  

This flow graph can be visualized on the computer by using the GNU Radio 

Companion (GRC), which is a graphical user interface (GUI) for generating and 

visualizing flow graphs. The blocks each serve a single function to increase the 

modularity of the SDR system and are connected together to form a total system. The 

blocks are connected together by ports defined by the user (Dhar, George, Malani, & 

Steenkiste, 2006). The first block, the source, does not have an input port, because it 

produces the input signal. Likewise, the last block, the sink, does not have an output port, 
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as the last block contains data that gets recorded. Each block has different parameters 

which the user can set, including sample rate, gain, frequencies, etc. depending on the 

block.  

 GNU Radio has an extensive library of built-in signal processing blocks and 

example programs but also allows users to develop their own blocks and radio systems 

(Dhar, George, Malani, & Steenkiste, 2006). When developing an SDR system with 

GNU Radio, users have access to many signal processing blocks that come standard with 

GNU Radio. In addition to the built-in blocks, users can develop their own blocks, known 

as out-of-tree modules, to implement more advanced functionality. Because of the open 

source nature of GNU Radio, when new blocks and flow graphs are created, they are 

often placed online for others to view and use. The extensive development community 

using GNU Radio in combination with the robustness of the program has made GNU 

Radio a favorite for academic researchers and software radio developers.  

MATLAB and Simulink. MATLAB and Simulink have a free to download 

package that enables use with the Ettus Research USRP front-ends (Tabassam, Ali, 

Kalsait, & Suleman, 2011). Requiring the Communication Systems Toolbox, a separate 

paid pack in addition to owning MATLAB and Simulink, the USRP development 

package allows user to create and test SDRs with a USRP front-end (Mathworks, 2014). 

Simulink communicates with the USRP through the use of the UHD, which is the main 

driver for USRP devices. As MATLAB and Simulink are available for all major 

operating systems, this software package can be used to create SDRs using a Microsoft 

Windows, Mac OS X, or Linux based computer. For those who are already experienced 
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using MATLAB and Simulink, the USRP support could make this a good development 

platform for software radios.  

Labview. Another major software radio development kit for use with the USRP 

system is Labview, developed by National Instruments. Labview is a widely used paid 

program for designing systems using a kind of visual programming language. To connect 

with the USRP, Labview has a freely downloadable software add-on that communicates 

with the USRP using the UHD (National Instruments, 2011). Similar to the other GUIs 

for use with the USRP, such as GNU Radio and Simulink, Labview provides the ability 

to program the USRP through a signal flow graph (Welch & Shearman, 2012). Thus, for 

those familiar with using Labview, developing SDRs using the USRP hardware platform 

can be quite simple.   

OSSIE. Developed by researchers at Virginia Tech, the Open Source SCA 

Implementation::Embedded (OSSIE) is a SDR development program primarily for use 

with the USRP platform (OSSIE, 2013). OSSIE provides a GUI that runs exclusively on 

Linux operating systems. Originally, OSSIE was developed to be modeled after the JTRS 

Software Communications Architecture, which was to be the software radio architecture 

standard for the United States military (Li, Jha, & Raghunathan, 2012). While built-in 

modules are available for signal processing, users can create their own signal processing 

modules through programming with C++. With highly customizable flow graphs and a 

GUI somewhat similar to GNU Radio Companion, OSSIE has become one of the 

premiere software radio development packages used by researchers and developers.  

FlexRadio PowerSDR. Designed for use primarily with FlexRadio’s own 

hardware modules, the FlexRadio PowerSDR system offers amateurs a graphic interface 
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for creating their own software radios (FlexRadio Systems, 2011). As it is used mainly by 

FlexRadio systems, PowerSDR is a software package developed by FlexRadio. 

Additionally, FlexRadio encourages software radio experimentation and development by 

offering users the ability to view and edit the program’s source code (FlexRadio 

Systems). However, programming experience is not necessary to operate the FlexRadio 

PowerSDR software, as its fully-functional graphic user interface (GUI) can provide most 

software radio functions. FlexRadio PowerSDR is a Microsoft Windows based software 

package that allows users to customize the digital signal processing of their software 

radio (FlexRadio Systems). The PowerSDR software allows the user to specify all 

aspects of the signal processing within the host computer, including modulating and 

demodulation, frequency bands to be used, etc.  

The State of Software Radio Technology 

Current State 

 Up to this point, SDRs have primarily been used by researchers and developers 

for designing and testing communication systems. The primary motivations for this focus 

on SDR’s immense potential. While the government has explored and used SDRs for 

military use, they have not yet fully adopted SDRs into their communication systems. 

Additionally, many users have explored using SDRs in amateur radio networks to easily 

communicate through a variety of methods. However, developing SDR systems can be 

too technical and too expensive for the average consumer, so widespread SDR adoption 

has yet to occur with cheaper and simpler radio configurations readily available. Many of 

these limitations are only current problems that researchers hope to solve in the future.  
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 One of the most challenging complications with SDR systems thus far has 

involved the latency and low throughput of systems processing information in a general-

purpose computer. As the processing hardware used in SDR systems is general purpose 

in nature, it will always be less efficient than its hardware-defined counterpart. To create 

a robust and dynamic system that can recreate many different kinds of radio systems, a 

large amount of both hardware and software overhead must be implemented.  

An example of the latency problem occurs in the Universal Software Radio 

Peripheral used with GNU Radio. As several different systems must be connected 

together with busses in a USRP/GNU Radio system, it experiences some bottlenecking in 

different components that produces latency (Truong, Suh, & Yu, 2013). In  fact, Truong, 

Suh, & Yu identified, “Latency on GNU Radio/USRP platforms can be divided into three 

components: (i) latency introduced in GNU Radio and OS kernel, (ii) latency at 

communication bus between host computer and USRP, and (iii) latency at USRP 

hardware” (p. 307). Latency in USRP/GNU Radio systems has inhibited some modern 

communication protocols, such as 802.11a/g/n, from being implemented. To combat this, 

researchers have explored options such as implementing time-critical components 

entirely within dedicated hardware or even within an FPGA on the front-end hardware 

module (Puschmann, Kalil, & Mitschele-Thiel, 2012). These solutions are non-ideal, as 

they undermine the flexibility and robustness inherent in SDRs. More recently, however, 

some researchers have found workarounds for implementing time-critical mechanisms 

through careful programming, such as the carrier sense multiple access (CSMA) 

mechanism developed by Puschmann, et al. for the USRP.  
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As SDR systems still have significant problems implementing high data-rate, 

time-critical applications, only the highest-end SDR systems are being used 

commercially. As such, software radios have been used in radio base-stations which have 

the space and money to afford expensive, high-end processors. The added benefit of 

using SDRs in base-stations is that companies would not have to spend a lot of time and 

money to upgrade communication protocols in these base-stations. Rather than needing 

new equipment each time an improvement in the radio technology is introduced, the 

company would simply have to change some source code. Consequently, companies 

could keep up with current technology even faster.  

Future State 

 While some consumer-based SDR systems currently exist, most are not easy 

enough to use for the average consumer. Therefore, the future of SDR adoption lies in 

making them robust and easy to use for non-technical users. Then, many developers are 

working to make simple, cheap, and small software radios that can be easily modified and 

used by consumers. This is not the ultimate goal of software radio systems, however, as 

researchers hope SDRs can provide advanced functionality impossible in classical 

hardware radios. 

   One of the main goals of software radios is create a new, advanced radio system 

known as cognitive radio. As previously mentioned, cognitive radios are “smart” in that 

they can observer their environment and change themselves accordingly. Joseph Mitola 

(1999) provides an even clearer picture of cognitive radios in his doctoral dissertation 

when he states, “Such a radio should be aware of the communications needs of its user, 

the overall context of anticipated communications events, and the degree of success 
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towards communications goals offered by alternative courses of action” (p. 39). From 

this, one can see that cognitive radios must have the ability to physically alter their 

configuration based on communications context. Since hardware radios are essentially 

static, the only hope for cognitive radios is in the development of more efficient and 

smarter SDRs. Researchers at Virginia Tech, especially, have been working on creating 

cognitive radios through SDRs (MacKenzie, et al., 2009). So far, they have made some 

important developments toward cognitive radios, but the research community still has 

significant challenges to overcome before cognitive radios will become fully-realized. 

 The benefits of a cognitive radio system can be readily seen. Primarily, cognitive 

radios could allow frequency bands to be allocated dynamically instead of statically. 

Classically, RF bands have been sold or given out by governments to different entities to 

use so that industries and governments can send wireless communications without 

interference (MacKenzie, et al., 2009). While this model has worked, it is very 

inefficient, as many frequency bands sit unused for long periods of time. However, 

cognitive radios give hope for dynamic spectrum access (DSA), which would allow 

radios to either make sure a frequency band is free before using it or negotiate for a 

frequency band from some sort of frequency broker (MacKenzie, et al.). This solution 

would lead to much more efficient use of the frequency spectrum and would alleviate 

some of the frequency crowding problem experienced today.  

 Another future goal of software radios centers on the creation of an ideal, fully 

software-based transceiver. An ideal software receiver would be able to directly sample 

the received RF signal to convert it to a digital signal. Additionally, a fully software 

transceiver would need to be able to implement a software-defined antenna that could 
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change its frequency range through software manipulation. The direct conversion 

transceiver has been very difficult to implement, because very high sampling rates are 

needed by the analog to digital converter. Significant work on developing a direct-

sampling receiver has been done by Akos, Stockmaster, Tsui, and Caschera (1999).  

In addition to developing robust direct-conversion transceivers, software radios of 

the future will also ideally have software-defined antennas. A software-defined antenna 

works by being reconfigurable within software. Unfortunately, software antennas only 

currently exist in rudimentary forms and still have many barriers to overcome before 

becoming a viable antenna option. However, researchers have demonstrated some basic 

software antenna functionality which gives them hope for the future of software-defined 

antennas (Grau, Romeu, Jofre, & De Flaviis, 2008). Reconfigurable antennas could help 

software radio systems dramatically. By focusing on a particular frequency band, a SDR 

system with a software antenna could more easily extract the received signal with 

minimal noise and outside interference. Thus, software-defined antennas will be an 

important technological element of future SDRs.  

Software-Defined Radio Example Implementations 

 Since software radios have been introduced, researchers have developed many 

fully-functional SDR systems that can replace traditional hardware radios. Some of these 

implantations are quite basic, such as AM and FM receivers, and serve as a good 

educational and entertainment tool for those new to SDRs. Other SDR implementations 

have recreated communication protocols in software that were originally only creatable 

using hardware. Additionally, some SDR researchers have developed wireless test-beds 

for new communication protocols. Robust and changeable protocol test-beds were not 
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previously possible because of the inherently static nature of hardware radios. Finally, 

many SDR developers are focusing on developing cognitive radios which have the ability 

to understand their surroundings and make protocol changes on the fly. An overview of 

several of these SDR implementations will be included in the following sections.  

IEEE 802.11a/g/p 

 One of the most important SDR implementations thus far has been the IEEE 

802.11a/g/p receiver, which is the basis for Wi-Fi communications used today. 

Developed using GNU Radio and the USRP board, this SDR receiver was one of the first 

orthogonal frequency division multiplexing (OFDM) based systems developed within 

software (Bloessl, Segata, Sommer, & Dressler, 2013). Specifically, this system 

implements both the physical and MAC layers of IEEE 802.11a/g/p (Bloessl, Segata, 

Sommer, & Dressler). The ability to implement a Wi-Fi standard within software 

provides a significant milestone for SDRs in general, as Wi-Fi is one of the most well-

known and researched wireless communication systems. In the end, this system could be 

used to test the lower layers of IEEE 802.11a/g/p under different conditions and lay the 

groundwork for future SDR protocol development.  

GPS Receiver 

 A non-real time global positioning system (GPS) receiver has been developed 

using the USRP with GNU Radio (Thompson, Clem, Renninger, & Loos, 2012). In this 

implementation, the GPS receiver uses an extra hardware module external to the USRP to 

step down the very high frequency GPS signal to a lower intermediate frequency 

(Thompson, Clem, Renninger, & Loos). Some other basic SDR GPS systems have been 

implemented, but the choice was made for this system to not operate in real time for 
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simplicity of processing and so different GPS receiver algorithms could be tested 

(Thompson, Clem, Renninger, & Loos). While the GPS does not operate in real time, 

developing a GPS system is a significant development for the SDR community. 

OpenBTS 

 OpenBTS is an open source GSM SDR emulator developed with the USRP and 

GNU Radio (Pace & Loscri, 2012). GSM is a well-known cellular voice communication 

standard. The OpenBTS project has been collaboratively developed by many researchers 

over the internet. It allows GSM compatible cellular phones to access the GSM network 

by making the USRP into a GSM access point. Then, the voice is sent through a voice 

over IP (VoIP) network (Pace & Loscri). The end goal of this project is to provide a low-

cost cellular network that can be deployed in remote areas (OpenBTS, 2013).   

Conclusions 

 Software-defined radios offer extensive advantages and features that have 

attracted researchers over the past few years. Because of their modularity, versatility, and 

digital nature, many new radio systems are being developed within software rather than 

hardware. Consisting of a versatile front-end hardware module, the signal processing of 

SDRs is often conducted within a general purpose processor with a computer. Likewise, 

some of the most accepted SDR units thus far have been Ettus Research’s USRP board 

and GNU Radio software system, because of the open source nature, large development 

community, and ease of customization. As front-end hardware and general purpose CPUs 

continue to become more robust, developers will continue to implement more advanced 

software radios. As such, SDRs will become an even more important and influential part 

of society in the years to come.  
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