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ABSTRACT 

This study arose from an interest in the possible presence of mathematics disabilities 

among students enrolled in the developmental math program at a large university in the 

Mid-Atlantic region.   Research in mathematics learning disabilities (MLD) has included 

a focus on the construct of working memory and number sense.   A component of number 

sense is the formation of a mental number line.  This study looked at the mental 

representations of the number line in postsecondary developmental math students.  It was 

found that the overall representation was linear, linear for three of four academic levels, 

and there were linear representations based upon gender.  The presence of increased error 

rates on number line estimations between 23 and 39 needs to be explored. 
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CHAPTER ONE: INTRODUCTION 

Introduction 

 To be able to understand and apply the various concepts involved with 

mathematics is a critical element in the twenty first century.  From basic consumer math 

to applied calculus mathematics is involved in every aspect of modern life.  While there 

are certainly core concepts and skill sets within mathematics, there is also a broad range 

of domains in which these core concepts are applied.  Failure to master the core of 

mathematics increases the challenges faced within the various domains (Geary, 2004; M. 

M. Murphy, M. M. M. Mazzocco, L. B. Hanich, & M. C. Early, 2007b).  The ability to 

understand and apply mathematical concepts has a direct effect on both academic and 

employment success (Geary, 2000; Mazzocco & Thompson, 2005).   

While there have been significant steps taken in the research of learning 

disabilities (LD) related to reading disabilities (RD), research in mathematics disabilities 

(MD) is still developing (Geary, 1993; Geary, Hamson, & Hoard, 2000; Gersten, Jordan, 

& Flojo, 2005; Mazzocco, & Myers, 2003).  There is a broad diversity among specific 

math deficits.  The ability to provide individualized instruction is not readily available in 

mainstream classrooms (Wadlington & Wadlington, 2008).  Mazzocco & Thompson 

(2005) stress that “It is important to identify risk for MLD, because—like poor reading 

achievement—poor math achievement is a risk factor for negative outcomes in both 

childhood and adulthood” (p. 142).  With all that is involved, and at stake, it is important 

for educators to understand mathematics disability.  Mathematics disability needs to be
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defined, current research understood, screening criteria established, and effective 

instructional interventions applied.   

 Most children can learn the core concepts of math when given a robust learning 

environment and effective instruction.  However, there are children who struggle with the 

core concepts even when the environment and instruction are focused on effective 

learning.  Three to six percent of the student population is challenged with mathematics 

learning disabilities (MLD).  MLD is broadly defined as a consistent score below the 35th 

percentile in mathematics achievement tests while possessing and average or above 

intelligence quotient (Gersten, Jordan, & Flojo, 2005). 

 Without effective intervention the segment of the student population that is 

affected by MLD can face continued challenges in learning core mathematical concepts 

and applying those concepts in the various domains of math.  Studies have shown that 

resistance to intervention past the second grade can lead to prolonged difficulties with 

math (Jordan & Hanich, 2003). 

 One of the key concepts in learning mathematics is number sense.  While there is 

a broad range of operational definitions, number sense can generally be described as:  

(a) fluency in estimating and judging magnitude, (b) ability to recognize 

unreasonable results, (c) flexibility when mentally computing, (d) ability to move 

among different representations and to use the most appropriate representation. 

(Kalchman, Moss, & Case, 2001, p. 2) 

Dehaene (2001) stated hypothesis is “that number sense qualifies as a biologically 

determined category of knowledge.  I propose that the foundations of arithmetic lie in our 
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ability to mentally represent and manipulate numerosities on a mental ‘number line’ an 

analogical representation of number” (p. 17). 

The importance of developing the linear representation of the number line, and 

thus an accurate concept of magnitude, cannot be overstated.  Booth and Siegler (2008) 

stated that “representations of numerical magnitude are both correlationally and causally 

related to arithmetic learning” (p. 1016), and that “numerical magnitude representations 

are not only positively related to a variety of types of numerical knowledge but also 

predictive of success in acquiring new numerical information, in particular, answers to 

arithmetic problems” (p. 1027).   

 Several studies have been conducted that sought to investigate the presence and 

structure of mental number lines (Booth & Siegler, 2006, 2008; Geary, Hoard, Nugent, & 

Byrd-Craven, 2008; Laski & Siegler, 2007; Siegler & Booth, 2004).  The underlying 

view of these studies is that children who do not transition from a logarithmic mental 

representation of the number line to a linear mental representation of the number line 

continue to have difficulties with number sense, specifically in magnitude estimations, 

this leads to challenges in several domains of mathematics. 

 What is the importance of number line estimation in relationship to mathematics 

learning disabilities (MLD)?  Testing for MLD has largely settled on two assessment 

measures (a) the IQ-discrepancy measure, and (b) standardized mathematics test score 

cutoff criteria.  However, both these methodologies are inadequate in themselves to 

diagnose the presence of MLD (Geary, 2005; Murphy, et al., 2007b).  Siegler and Booth 

(2004) found significant correlations between percentage error on number line 

estimations and performance on the mathematics section of the Stanford Achievement 
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Test Series, SAT-9.  Given the relationship between number line estimation and 

performance on achievement tests, the use of number line estimation could serve as a 

component of detecting the presence of mathematics learning disabilities (MLD).   

 Currently the studies of number line estimation (Booth & Siegler, 2006, 2008; 

Geary, et al., 2008; Laski & Siegler, 2007; Siegler & Booth, 2004) focused on early 

childhood education.  What has not occurred is the application of this methodology to 

postsecondary students who display correlates of MLD.  Specifically, students involved 

with remediation in developmental math programs.  Postsecondary remediation provides 

the opportunity to resolve instructional inequalities present in primary and secondary 

education.  Postsecondary remediation also provides functional competency in economic 

and political settings while preparing the student for successful negotiation of college 

coursework Bahr (2008), 

 McGlaughlin, Knoop, and Holliday  (2005) and Sullivan (2005) stated that 

research based interventions for teaching postsecondary students with mathematics 

learning disabilities (MLD) were lacking.  However, methodologies proven effective in 

early childhood education can prove effective in teaching postsecondary students with 

MLD.  This presents the possibility that detection of MLD in postsecondary students 

could lead to appropriate instructional interventions.  Most developmental math students 

are placed in the program based on a cutoff criterion on standardized and/or admissions 

tests.  However, the criteria vary widely in both four year and two year institutions (Bahr, 

2008; Hadden, 2000).  The current study was an effort to explore the feasibility of using 

number line estimation measures to detect the presence of mathematics disability in 
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postsecondary students enrolled in the developmental math program at a major university 

in the mid-Atlantic.   

Problem Statement 

 The problem was the presence of significant challenges in the mathematical 

competencies of postsecondary students enrolled in the developmental math program at a 

large university in the Mid-Atlantic region.  These challenges may or may not be related 

to the presence of math learning disability but few studies exist to sufficiently determine 

this criterion.  The ability to detect and clearly define the particular challenges faced by 

the students would not only improve instructional practice but lead to effective 

interventions.  The particular problem addressed by this study was the presence of a 

logarithmic representation of the mental number line in students participating in the 

developmental math program.  Researchers have found that students with MLD have a 

difficult time in making the transition from using the mental logarithmic number line to 

using the learned linear number line (Booth & Siegler, 2008; Geary, et al., 2008; Siegler 

& Booth, 2004; Siegler & Opfer, 2003). 

Purpose 

 The implications of a math disability have profound consequences throughout an 

individual’s lifespan.  Large-scale studies estimated that five to ten percent of students 

would face a mathematics deficit (Geary, et al., 2008).  The majority of research 

conducted on math learning disabilities (MLD) has occurred in the primary grades.  

However, McGlaughlin, Knoop, and Holliday (2005) discovered that deficits in post 

secondary students mirrored those of elementary and secondary levels.  This study’s 
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purpose was to use number line estimation to examine the potential presence or absence 

of MLD in postsecondary students enrolled in a developmental math program.  

Hypotheses 

 Based upon research indicating that the development of a linear representation of 

the mental number line is crucial to the acquisition of many mathematical skills, this 

study looked at the mental representation of the number line in developmental math 

students.  In addition, linear representations were examined based upon gender, academic 

level, and prior enrollment in developmental math.  Finally, the mean absolute estimation 

error percentages (MABE%) were compared based upon gender, academic level, and prior 

enrollment in developmental math. 

Null Hypothesis 1: The representation of the mental number line of 

developmental math students approximates a linear line as determined by 

analyzing the statistical significance of the model and the R2 correlational 

statistic. 

Null Hypothesis 2: The representation of the mental number line of 

developmental math students approximates a linear line as determined by 

analyzing the statistical significance of the model and the R2 correlational statistic 

based upon gender. 

Null Hypothesis 3: The representation of the mental number line of 

developmental math students approximates a linear line as determined by 

analyzing the statistical significance of the model and the R2 correlational statistic 

based upon academic level. 
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Null Hypothesis 4: The representation of the mental number line of 

developmental math students approximates a linear line as determined by 

analyzing the statistical significance of the model and the R2 correlational statistic 

based upon prior enrollment in developmental math. 

Null Hypothesis 5: The mean absolute error percentage will not be statistically 

different by gender. 

Null Hypothesis 6: The mean absolute error percentage will not be statistically 

different by academic level. 

Null Hypothesis 7: The mean absolute error percentage will not be statistically 

different by prior enrollment in developmental math. 

Definitions 

Absolute Error Percentage – A calculated estimation error percentage based upon the 

absolute value of the difference between the number and the estimation, divided by the 

scale of the instrument.   

Figure 1. Equation for Computation of ABE% 

% Number EstimationABE
Scale
−

=  

Developmental Math – One or more courses in mathematics, normally beginning algebra 

and intermediate algebra, designed to prepare students for required math classes in their 

major. 

Dyscalculia – A neurologically based disorder that affects an individual’s ability to solve 

mathematical problems. 

Math Learning Disabilities – A score at or lower than the thirty-fifth percentile on a 

mathematics achievement test with a low average or higher IQ score and the continuation 
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of this condition over successive school years (Geary, 2004; Gersten, et al., 2005; 

Mazzocco & Myers, 2003). 

Mean Absolute Error Percentage (MABE%) is the average of the absolute error percentage 

for a participant or group of participants. 

Mental Number Line – A mental representation of the standard number line used for 

comparisons of magnitude and numerical estimation (Booth & Siegler, 2008; Geary, 

Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Geary, et al., 2008; Laski & Siegler, 

2007).   

Number Sense – A theoretical construct that defines the ability to count, recognize 

number patterns, comparisons of magnitude, estimation skills, and numerical 

transformation (Berch, 2005). 

Working Memory – A theoretical construct that represents the ability of the brain to hold 

information in memory and process the verbal and spatial aspects of that information 

simultaneously.  
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CHAPTER TWO: REVIEW OF THE LITERATURE 

Theoretical Background 

Generally speaking, there are three main traditions within the study of intellectual 

development: (a) the empiricist, (b) the rationalist, and (c) the historic-cultural tradition 

(Case, 1987).  The tradition that bears most upon this present study is the rationalist.  The 

rationalist tradition is mainly based upon Kant’s reaction to British empiricism.  The 

premise of Kant’s writings is that order is imposed upon information received by existing 

structures within the learner and not from the order existing in the data itself.  Those who 

have accepted this view propose that the study of development should be guided by the 

explanation of these inherent structures (Case, 1987). 

One of the most influential rationalist/constructivist researchers into cognitive 

development was Jean Piaget.  Knight and Sutton (2004) stated, “Piaget’s work provided 

a useful framework for understanding how children and adolescents grow and change in 

how they think about their world and solve problems” (p. 48).  Case (1993) stated that 

“one of Piaget’s most important suggestions was that, at several different points in their 

growth, children acquire new systems of cognitive operations (structures) that radically 

alter the form of learning of which they are capable” (p.219).    

 During Piaget’s work with Theodore Simon, co-author of the Binet-Simon 

intelligence scale, he became focused on the types and differences of errors that children 

made on reading tests.  This research led Piaget to construct a theory of cognitive 

development built upon four main stages of development and the sub-stage processes of 

assimilation, accommodation and equilibrium.  While Piaget’s stages of development are 
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associated with chronological age, the completion of one stage and movement to the next 

does not happen automatically and development can be hindered at a particular stage 

(Dunn, 2005). 

Over the years Piaget’s work came under increased scrutiny, and during the 1970s 

the classical Piagetian theories of stage development proved to be inadequate for totally 

explaining cognitive development (Morra, 2008).  “It was the early 1970s when the first 

neo-Piagetian theories were published as a new integration of Piagetian concepts with 

ideas originating from Human Information Processing and other classical psychological 

frameworks” (Morra, 2008, p. 1).   The emergence of the neo-Piagetians was influenced 

by a desire to expand on Piaget’s basic concepts and incorporate new research in 

cognitive development (Knight & Sutton, 2004).   

One of the most important challenges to Piaget’s epistemological structure of 

development was the discovery that children possess basic linguistic and enumerative 

structures from birth (Case & Sowder, 1990).  However, neo-Piagetians preserve a 

number of Piaget’s central concepts: 

In particular, they preserve notions that (a) children’s knowledge is not just 

passively received but is actively constructed via a set of internal epistemic 

operations; (b) these operations are organized, that is, they possess an internal 

structure; (c) different levels of structural organization can be identified that 

transcend any particular cognitive domain; (d) structures at higher levels are 

assembled via the coordination of lower level structures; and (e) there is an age 

related “upper boundary” to the level of structure children can assemble at any 
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age, even under optimal environmental circumstances.  (Case & Sowder, 1990, p. 

82) 

One neo-Piagetian, Robbie Case, has provided a rich theoretical background for 

the concepts of number sense and the mental representation of the number line (Morra, 

2008; Okamoto & Case, 1996).  Case’s four major stages of development are: (a) 

sensimotor, (b) interrelational, (c) dimensional, and (d) vectorial (or abstract) (Case, 

1987; Morra, 2008).  Okamoto and Case were able to show that number sense increases 

in complexity at each stage of development (Okamoto & Case, 1996).   

Morra (2008) also stated that “Case accounts for the developmental progression 

within each of the four major stages by postulating a sequence of four recurring 

substages”, and that, “the development of the substages is very much a function of the 

number of mental elements of a particular task that can be represented simultaneously.  

This complexity is defined by the number of ‘basic units of thought’ the child is able to 

control” (p.192).   

Math Learning Disabilities 

There is no question on the importance of having the ability to solve mathematical 

problems.  The ability to understand and apply mathematical concepts has a direct effect 

on both academic and employment success (Geary, 2000; Mazzocco & Thompson, 

2005).   

 Although the history of mathematical learning disability (MLD) is relatively 

 short, any depiction of its history requires delving into the histories of medicine 

 (particularly neurology), developmental psychology, cognitive science, 

 mathematics education, special education, and even law.  Indeed, each of these 
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 fields has contributed to the foundations of contemporary MLD research, 

 including the areas of identification, diagnosis, and treatment of math disabilities.  

 These multiple sources of information and the perspectives associated with each 

 of these fields have given rise to the multidisciplinary field of MLD research and 

 practice that exists today.  (Gersten, Clarke, & Mazzocco, 2007. p.7) 

While there have been significant steps taken in the research of learning disabilities (LD) 

related to reading disabilities (RD), research in mathematics disabilities (MD) is still 

developing (Geary, 1993; Geary, Hamson, & Hoard, 2000; Gersten, Jordan, & Flojo, 

2005; Mazzocco, & Myers, 2003).   There is a broad diversity among specific math 

deficits.  The ability to provide individualized instruction is not readily available in 

mainstream classrooms (Wadlington & Wadlington, 2008).  Mazzocco & Thompson 

(2005) stress that “It is important to identify risk for MLD, because—like poor reading 

achievement—poor math achievement is a risk factor for negative outcomes in both 

childhood and adulthood” (p. 142).   

 Early work in defining mathematical disabilities focused on three cognitive 

aspects: (a) a procedural deficit, (b) a memory retrieval deficit, and (c) a visual spatial, 

also known as visuospatial, deficit (Geary, 1993).  Research in mathematics learning 

disability (MLD) has generally followed this cognitive pattern over the past fifteen years. 

Recent research into math disabilities/difficulties (MD) has centered on cognitive deficits 

and neurological factors (Bryant, Bryant, & Hammill, 2000; Geary, 2004; Osmon, Smerz, 

Braun, & Plambeck, 2006; Schuchardt, Maehler, & Hasselhorn, 2008; Seethaler & Fuchs, 

2006). Generally speaking, mathematics disability “ is likely best understood in terms of 

the relations between different cognitive processes and the impact that a deficit in one 
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area has on the other areas and on mathematics achievement” (Mabbott & Bisanz, 2008, 

p. 17).   

 The memory retrieval deficit is distinguished by difficulties in retrieving math 

facts from memory and variations in answer retrieval times.  Procedural deficits are 

associated with difficulties with computation strategies and problems in acquiring math 

algorithms.  A visual spatial deficit involves problems with placing numbers and 

understanding visual representations of numbers (Mazzocco & Myers, 2003). 

With all that is involved and all that is at stake it is important for educators to 

understand mathematics disability.  Mathematics disability needs to be defined, current 

research needs to be understood, screening criteria need to be established, and effective 

instructional interventions need to be applied.   

 Mathematics is a broad and complex field of study.  Geary (2004) states that 

mathematics disability  “can result from deficits in the ability to represent or process 

information in one or all of the many mathematical domains (e.g., geometry) or in one or 

a set of individual competencies within each domain” (p. 4).    

 Most children can learn the core concepts of math when given a robust learning 

environment and effective instruction.  However, there are children who struggle with the 

core concepts even when the environment and instruction are focused on effective 

learning.  Three to six percent of the student population is challenged with mathematics 

learning disabilities (MLD).  MLD is broadly defined as a consistent score below the 35th 

percentile in mathematics achievement tests while possessing and average or above 

intelligence quotient (Gersten, et al., 2005). 
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 Without effective intervention the segment of the student population that is 

affected by MLD can face continued challenges in learning core mathematical concepts 

and applying those concepts in the various domains of math.  Studies have shown that 

resistance to intervention past the second grade can lead to prolonged difficulties with 

math (Jordan & Hanich, 2003). 

 Difficulties in math can result from a number of factors that can include poor 

instruction, socioeconomic factors, or cognitive factors (Mazzocco, 2005).  Mazzocco 

calls for a broad definition of students who have difficulties with math and a more 

specific definition, math disabilities, for those who are challenged by biologically based 

deficits.  Generally speaking, mathematics learning disability (MLD)  “ is likely best 

understood in terms of the relations between different cognitive processes and the impact 

that a deficit in one area has on the other areas and on mathematics achievement” 

(Mabbott & Bisanz, 2008, p. 17).   Geary (1993) states that “from a cognitive perspective, 

the lower order deficits of MD children potentially reside in five component skills: 

procedural, memory retrieval, conceptual, working memory, and speed of processing 

(especially counting speed)” (p. 348).  Of these five areas two appear to be prevalent in 

mathematics disability research.  They are counting skills and memory retrieval (Geary, 

1993; Geary 2004; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Gersten, 

Jordan, & Flojo, 2005; Mabbott & Bisanz, 2008; Mazzocco & Myers, 2003; Wadlington 

& Wadlington, 2008). 

Counting Skills  

Research into preschool counting skills has settled onto two different theories of counting 

acquisition.  One theory states that counting is inherent the states that counting is 
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inductively learned through experience.  No matter if counting skills are inherent or 

inductive counting is a related skill to solving addition problems (Geary, 1993). 

 Geary (2004) states that “many children with MLD, independent of their reading 

achievement levels or IQ, have a poor conceptual understanding of some aspects of 

counting” (p. 6).  It is unclear if deficits in counting continue beyond the second grade.  

While this may not be the case, the early counting deficits lead to difficulties in solving 

math problems that require the use of counting strategies (Geary, 2004).  Gersten, Jordan, 

& Flojo (2005) point out that “maturity and efficiency of counting strategies are valid 

predictors of students’ ability to profit from traditional math mathematics instruction” (p. 

295). 

 Errors in counting can have an effect on the development of math skills. Geary, 

Hoard,  Byrd-Craven, Nugent, & Numtee (2007) state that “poor skill at detecting 

counting errors may compromise ability to correct these errors and thus result in more 

errors in situations in which counting is used to solve arithmetic problems” (p. 1344). 

Memory Retrieval 

 Two important factors are at work in the functioning of memory storage (a) the 

speed with which numbers can be counted, and (b) the quantity of numbers held in 

working memory (Geary, 1993).  “Working memory is the ability to hold a mental 

representation of information in mind while simultaneously engaging in other mental 

processes” (Geary, et al., 2007, p. 1345). Problems with the speed of counting and 

narrower working memory can lead to a failure to adequately place math facts in long-

term memory (Geary 1993). 
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 Not only do math facts need to be effectively retrieved from long-term memory, 

students must be confident that these facts are correct.  Geary, Hamson, & Hoard (2000) 

state that “the use of retrieval-based processes is moderated by a confidence criterion that 

represents an internal standard against which the child gauges confidence in the 

correctness of the retrieved answer” (p. 239).   

 Gersten, Jordan & Flojo (2005) describe the importance of memory retrieval by 

stating that “failure to instantly retrieve a basic combination, such as 8 + 7, often makes 

discussions of the mathematical concepts involved in algebraic equations more 

challenging” (p. 294).  Gersten, Jordan & Flojo point to the fact that “the ability to store 

this information in memory and easily retrieve it helps students build both procedural and 

conceptual knowledge of abstract mathematical principles, such as commutativity and the 

associative law” (p. 295).  Finally Miller & Hudson state that “the ability to memorize 

mathematical information and quickly retrieve the information helps students as they 

progress through the hierarchical mathematics curriculum (i.e., sequence of skills that 

become increasingly complex; each skill builds on previous skill)” (p. 53). 

Screening for MLD 

To a great degree the screening methodology for learning disabilities has been 

based on a discrepancy between IQ scores and achievement.  However, this methodology 

has come under increasing scrutiny in recent years.  The absence of a discrepancy does 

not necessarily indicate the absence of LD or MD in particular (Mazzocco & Myers, 

2003).   The developing field of neuroscience is providing screening methods for 

mathematics disability.  This methodology is in conjunction with the study of dyscalculia.     

(Katzir & Pare'-Blagoev, 2006).  Studies that use the performance measures of 
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dyscalculia research have shown that five to eight percent of school age children present 

some type of mathematics disability (Geary, 2004). 

 There are two main assessment measures for identifying children at risk of math 

disabilities (a) the IQ-discrepancy measure, and (b) standardized mathematics test score 

cutoff criteria.  The IQ-discrepancy measure generally looks at the presence of scores 

below the 20th to 25th percentile on mathematics achievement tests with average and 

above IQ for grade level and age.  The standardized mathematics test score cutoff varies 

from a very strict 15% to a very broad 35% (Geary, 2004, 2005; Mabbott & Bisanz, 

2008; Murphy, et al., 2007b; Schuchardt, et al., 2008).  Murphy et al. (2007b) take issue 

with the use of the IQ-discrepancy measure stating that:  

 In essence, not only do IQ-discrepancy definitions lack discriminant validity but 

 they also leave unspecified at which point a discrepancy becomes significant, and 

 they do not account for changes over time in the stability and interpretability of 

 discrepancy scores.  (p. 459) 

Concerning standardized test cutoff score criteria Geary (2005) stated: 

 The road to the development of assessment measures specifically for 

 mathematical  disabilities (MD) perforce runs through existing standardized 

 achievement tests. These tests, however, should only be viewed as initial 

 screening measures—that is, as a means to identify children who might have a 

 cognitive disability that interferes with mathematical learning. 

Compared to RD researchers in MLD have yet to develop a criterion based set of 

diagnostic measures (Mazzocco & Myers, 2003). 
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 Mazzocco (2005) stated “there is much variability in how mathematics difficulties 

are defined and measured, and even in the terms used to refer to them” (p. 318).  This 

may be because mathematics is not a unified subject area but spreads over several 

domains. (Geary, 2004) noted: 

 The breadth and complexity of the field of mathematics make the identification 

 and study of the cognitive phenotypes that define mathematics learning 

 disabilities (MLD) is a formidable endeavor. In theory, a learning disability can 

 result from deficits in the ability to represent or process information in one or 

 all of the many mathematical domains (e.g.,  geometry) or in one or a set of 

 individual competencies within each domain. (p. 4). 

Gersten, Jordan, and Flojo (2005) stated that because “tests are based on many different 

types of items, specific deficits might be masked. That is, children might perform at an 

average level in some areas of mathematics but have deficits in others” (p. 294). 

 Screening should encompass several combinations of test items and take 

developmental issues into consideration (Mazzocco, 2005).  Screening must balance 

between sensitivity and specificity and include a sufficient level of difficulty so that 

refinement in MD subtypes can be detected (Fuchs, et al., 2007).  Clearly defining 

mathematics disability can have a significant effect on screening.  Using a broad criterion 

in definitions and measurements can lead to two different outcomes.  Studies may 

eventually converge on standard definitions and methodologies or they would diverge in 

such a fashion that application and generalization of research would be impossible.  

Divergence would prevent a standardization of screening definitions (Murphy, et al., 

2007b). 
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 On method of screening uses cutoff levels on mathematics achievement tests.  

One of the results of using too lenient range is to mix severe cases of MD with mild cases 

or even students merely experiencing math difficulties (Geary, et al., 2007).  Geary et al. 

found that “children identified with a stringent versus a lenient cutoff criterion differ in 

important ways and should not be conflated” (p. 1355).    

 Establishing a criterion for cutoff points may not be as straight forward as it 

seems if we fail to take developmental aspects into consideration.  Development of skills 

in mathematics is a cumulative process that continues beyond formal education.  

Developmental differences may exist for MD subtypes over time and screening methods 

should take into account a pattern of disability that exists over time (Mazzocco & Myers, 

2003).  The differences in general and specific mathematics learning disabilities can vary 

over time.  It is important to hold a longitudinal view when diagnosing MLD in early 

elementary students (Jordan & Hanich, 2003).  

Gender and Math Difficulties 

 While gender differences seem to exist during particular phases of education, the 

overall differences in mathematics performance are being equalized as a result of current 

educational practices in the United States (Ding, Song, & Richardson, 2006).  Mundia 

(2010) found that both female and male students with math difficulties struggled on 

particular tests.  However, Mundia also found that females in coeducational classes 

possessed a high level of self esteem and confidence.  Mundia called upon educators and 

parents to work to remove stereotypes surrounding gender differences in mathematical 

performance.   
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Cognitive Development and MLD  

Between five and eight percent of children attending schools have some type of 

cognitive or memory deficit that affects their ability to learn methods and concepts 

involving math (Geary, 2004; Geary, et al., 2008; Mabbott & Bisanz, 2008; Murphy, et 

al., 2007b).  One of the challenges in studying and identifying the various characteristics 

of MLD is the wide range of domains (algebra, trigonometry, geometry, etc.) and the 

various skills within each domain (Geary, 2004).  Compared to the wealth of research in 

reading disabilities (RD), research into the core deficits of MLD have not produced a set 

of readily identifiable deficits (Mazzocco & Myers, 2003).   

 MLD then is difficult to diagnose and is broad in its scope of possible 

manifestations.  While the study of MLD has developed over the past three decades, it 

was a seminal article by Geary (1993) that began the integration of MLD research and 

research in the cognitive sciences (Berch, 2008; Gersten, et al., 2005).   

  Geary (1993) stated that “despite the lack of systematic research into the MD 

area, extant cognitive and neuropsychological studies of mathematical achievement and 

mathematical disorder provide valuable insights into the specific deficits that might 

underlie mathematical disabilities” (p. 345).  Geary sought to provide an integration of 

cognitive and neuropsychological studies involving the visible discrepancies between 

typically achieving (TA) students and students with math disabilities (MD).  Children 

with MD show two primary numerical deficits; immature counting strategies and 

difficulty with fact retrieval from long term memory.  The procedural errors associated 

with counting strategies could be influenced by a poor working memory capacity but 

appear to be a developmental delay.  However, the retrieval of mathematical facts from 
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long term memory is more fundamental and does not disappear with developmental 

growth (Geary, 1993). 

 Geary also stated that “from a cognitive perspective, the lower order deficits of 

MD children potentially reside in five cognitive component skills: procedural, memory 

retrieval, conceptual, working memory, and speed of processing (especially counting 

speed)” (Geary, 1993, p. 348).  Procedural and memory retrieval skills have a direct 

affect on pencil and paper tests.  The combined effect of all five can negatively affect 

performance on achievement and ability tests.   

 In reference to neuropsychological studies, Geary (1993) stated “the neurological 

studies in fact suggest three relatively distinct types of basic lower order mathematical 

deficit: fact retrieval, procedural, and spatial representation” (p. 354).  Fact retrieval and 

procedural errors are related to anarithmetria, a deficit associated with damage to the 

posterior regions of the left hemisphere.  Difficulties in spatial representation are 

associated with damage to the posterior regions of the right hemisphere and are referred 

to as spatial acalculia (Geary, 1993).  “Specific problems associated with spatial acalculia 

include the misalignment of numbers in multicolumn arithmetic problems, number 

omissions, number rotation, misreading arithmetical operation signs, and difficulties with 

place value and decimals” (Geary, 1993, p. 352). 

Additional research into math disabilities/difficulties (MD) has centered on 

cognitive deficits and neurological factors (Bryant, et al., 2000; Geary, 2004; Osmon, et 

al., 2006; Schuchardt, et al., 2008; Seethaler & Fuchs, 2006). Generally speaking, 

mathematics disability “ is likely best understood in terms of the relations between 
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different cognitive processes and the impact that a deficit in one area has on the other 

areas and on mathematics achievement” (Mabbott & Bisanz, 2008, p. 17).   

Murphy, Mazzocco, Hanich, and Early (2007b) demonstrated how the cognitive 

profile of students with mathematics learning disabilities (MLD) could vary depending 

upon the cutoff criterion used in relation to achievement tests.  The use of a cutoff 

percentage on the mathematics portion of achievement tests can be problematic but it 

serves as standard methodology for defining MLD.  When setting a high cutoff 

percentage, say thirty-five to forty-five percent, the goal may be to increase sample size.  

However, this can lead to problems with heterogeneity and the inclusion of children 

simply facing a developmental delay (Murphy, et al., 2007b). 

Murphy et al. (2007) studied three groups of students using cutoff scores of ten 

percent, eleven to twenty-five percent, and above twenty-five percent on the Test of Early 

Math Ability (TEMA).  The groups were delineated as mathematics learning disabilities 

students at ten percent or below (MLD-10), mathematics learning disabilities students at 

eleven to twenty-five percent (MLD-11-25), and typically achieving students above 

twenty-five percent (TA).  The study led to three major implications.  First, there were 

group differences attributable to global cognitive deficits between the MLD groups and 

the TA group.  However, global cognitive deficits did not account for any differences 

between the MLD-10 and MLD-11-25 groups.  Murphy et al. (2007) stated that “a global 

deficit alone does not account for the differences between the two groups” (p. 475).  

Second, “the differences between the two MLD groups do not appear to arise as a 

function of consistent deficits in a single specific math related skill measured in this 

study” (Murphy et al., 2007, p. 475).  Finally, Murphy et al. (2007) did find that it was 
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possible to distinguish between differences in improvement of math related skills over 

time.  “The growth trajectories of the two MLD groups appear to diverge by third grade, 

despite evidence of continued growth in math skills through third grade” (Murphy, et al., 

2007b, p. 475). 

Developmental Math 

 The practice of developmental math instruction at postsecondary institutions must 

move beyond remediation and effectively develop the student’s ability to understand the 

concepts and procedures of mathematics (Kinney, 2001).   Kinney states that “pedagogy 

in developmental mathematics must be informed by theory and research that specifically 

addresses the learning process” (p. 10). 

 The majority of students in developmental math programs are not successful in 

remediating skills deficiencies.  However, those that experience successful remediation 

have overall outcomes that mirror students not needing developmental intervention 

(Bahr, 2008).  Lesik (2007) confirmed that “the risk of leaving college among students 

who participate in developmental mathematics programs was significantly lower than for 

equivalent students who did not participate in such programs” (p.583). 

 Initially, developmental math programs sought to provide the necessary bridge 

between remediation, review, and reengagement with math so that students could 

complete the required mathematics components of their major.  Recently, the focus has 

shifted to the impact of developmental math in helping students apply mathematical 

reasoning and problem solving processes to other academic domains (Johnson & 

Kuennen, 2004).  Johnson and Kuennen (2004) found that students who had taken the 

prerequisite developmental math courses did significantly better in a college 
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microeconomics class than those who were currently taking developmental math, and 

those who were concurrently taking developmental math did significantly better than 

those who had delayed taking the required prerequisite. 

 One of the pivotal requirements of successful matriculation for students in 

postsecondary education is the proper placement of the student in classes in which they 

have an opportunity to succeed.  Proper placement is especially important for those 

students who require developmental instruction (Jacobson, 2006).  Jacobson points out 

that placement standards alone, do not guarantee that a student will enroll.  However, the 

use of placement exams increased the overall probability that a student would enroll in a 

developmental math course. 

Donovan and Wheland (2008) point to several factors that emphasize the need for 

proper placement in developmental courses: (a) the United States continues to lag in 

mathematics literacy among developed nations, (b) there is a high correlation between 

failure to complete post secondary education and preparedness, (c) the cost of tuition is 

escalating, and (d) There is an increase in the post secondary student population requiring 

developmental education, and this is especially true for developmental mathematics.  

The normal procedure for developmental placement is performance on one 

cognitive exam.  However, there are numerous factors that lead to successful completion 

of a developmental course or courses.  The process could be enhanced if other factors 

were taken into consideration (Boylan, 2009). 

The postsecondary institution where this study was conducted employs three 

cognitive test thresholds for placement in the developmental math program.  The students 

enrolled in the developmental math course meet the following criteria: 
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• A score of less than 450 on the math component of the SAT Reasoning Test 

• A score of less than 15 on the math component of the ACT 

• A score of less than 23 on the Math Assessment Test Part One (Faculty/Adjunct 

Handbook, 2009) 

The university administers the Math Assessment Test to place students at various levels 

in the developmental math program. 

   Standardized test cutoff score criteria has a relationship to mathematics 

disabilities (MD), and the development of possible screening measures for MD.  

However, standardized testing should be viewed as one component of an overall 

assessment strategy (Geary, 2005).  In order to develop a more comprehensive 

understanding of the challenges faced by developmental math students we should 

broaden our understanding of those specific challenges and the potential interventions 

associated with specific developmental deficits.   This would require looking at other 

measures of cognitive challenges. One area that is of increasing interest is working 

memory.  Holmes, Adams and Hamilton (2008) stated that: 

Unlike other performance indicators, such as measures of IQ, working memory 

assessments are independent of knowledge acquired through school and home. 

They measure different underlying constructs from other indicators of 

performance, and are  relatively independent of background factors such as 

preschool education and socioeconomic factors.  (p. 273) 

Working Memory 

Cognitive development in children involves multiple cognitive processes such as 

procedural knowledge, concept acquisition, and working memory.  One way of looking at 
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mathematical learning disabilities (MLD) is to understand it in terms of the impact that a 

deficit in one process has on other related processes (Mabbott & Bisanz, 2008). 

One area of process research that has been the focus of leading researchers in the 

field of MLD is the connection between MLD and the construct of working memory 

(Andersson, 2007; Berch, 2008; Geary, 1993, 2005; Geary, et al., 2000; Geary, et al., 

2007; Gersten, et al., 2007; Jordan, Kaplan, Locuniak, & Ramineni, 2007; Mazzocco & 

Kover, 2007).  “Working memory is the ability to hold a mental representation of 

information in mind while simultaneously engaging in other mental processes” (Geary, et 

al., 2008, p. 279).  

The reason that there is a growing interest in the functions of working memory, 

and its affect on MLD, is that recent research has shown that both the central executive 

and each of the two subcomponents of working memory play an important role in the 

development of mathematical knowledge (Andersson, 2007; Andersson & Lyxell, 2007; 

D'Amico & Guarnera, 2005; Geary, et al., 2008; Holmes, et al., 2008; Mabbott & Bisanz, 

2008; Rasmussen & Bisanz, 2005; Schuchardt, et al., 2008).  Rasmussen and Bisanz 

(2005) stated that, “working memory is implicated in academic performances, including 

reading comprehension and mathematics in both children and adults” (p. 139).   

Working memory should be distinguished from short-term memory.  The 

distinguishing factor between working memory and short term memory is the ability to 

process the information being stored and to move that information to and from long term 

memory.  Short term memory is a brief storage system that decays rapidly and has no 

processing component (Andersson, 2007). 
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Andersson (2007) found that developmental growth in typically achieving 

children brought an increase in the capacity and function of working memory.  Mainly in 

the ability to process and store verbal information concurrently and the ability to shift 

information to and from long term memory.  The ability to easily retrieve information 

from long term memory has implications for the ability to calculate using known math 

facts while the concurrent processing of verbal information increases accuracy on word 

problems (Andersson, 2007).  Andersson and Lyxell (2007) found that children with 

mathematics disabilities (MD) faced challenges in working memory related to concurrent 

processing and the storage of information. 

Not only do math facts need to be effectively retrieved from long-term memory, 

students must be confident that these facts are correct.  Geary, Hamson, & Hoard (2000) 

stated that “the use of retrieval-based processes is moderated by a confidence criterion 

that represents an internal standard against which the child gauges confidence in the 

correctness of the retrieved answer” (p. 239).   

 Gersten, Jordan & Flojo (2005) describe the importance of memory retrieval by 

stating that “failure to instantly retrieve a basic combination, such as 8 + 7, often makes 

discussions of the mathematical concepts involved in algebraic equations more 

challenging” (p. 294).  Gersten, Jordan & Flojo point to the fact that “the ability to store 

this information in memory and easily retrieve it helps students build both procedural and 

conceptual knowledge of abstract mathematical principles, such as commutativity and the 

associative law” (p. 295).  Finally Miller & Hudson stated that “the ability to memorize 

mathematical information and quickly retrieve the information helps students as they 
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progress through the hierarchical mathematics curriculum (i.e., sequence of skills that 

become increasingly complex; each skill builds on previous skill)” (p. 53).   

“Working memory capacity (that is, the capacity to hold various pieces of 

information simultaneously and to use them for further processing) is a critical feature of 

several models of human cognition, and it is widely recognized that it affects 

performance on many tasks” (Morra, 2008, p. 3) .  Case (1987) stated that “the variable 

that determines the maximum rate at which within-stage progress can take place is the 

size of the child’s working memory, which is seen as growing in response to both 

maturational and experiential variables” (p. 572).    

The Development of the Baddeley Model of Working Memory 

In the early 1970s Allen Baddeley and Graham Hitch began a three year research 

project to investigate the relationship between short-term and long-term memory.  Using 

students as participants they discovered that a unitary model of working memory was 

insufficient to describe the processing of short-term memory tasks.  This led to the three 

part model of working memory as shown in Figure 1 (Baddeley, 2006; Baddeley & 

Hitch, 1974). 

Figure 2. Baddeley Three Component Model of Working Memory 
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The central executive a domain-general limited capacity system responsible for 

inhibition, planning, switching attention, and monitoring the processing of 

temporarily stored information, controls two slave systems: the phonological loop 

and the visuospatial sketchpad. These systems, both domain specific and limited 

in capacity, are responsible for the temporary maintenance and manipulation of 

verbal and visuospatial information respectively.  (Holmes, et al., 2008, pp. 272-

273) 

Rasmussen and Bisanz (2005) state that “numerous brain imaging and 

neuropsychological studies have supported the three-component model of working 

memory proposed by Baddeley and colleagues” (p. 138), and that “working memory is 

implicated in academic performances, including reading comprehension and mathematics 

in both children and adults” (p. 139).  The three component model is the primary theory 

used by MLD researchers today (Berch, 2008; Geary, et al., 2008; Holmes, et al., 2008; 

Rasmussen & Bisanz, 2005; Schuchardt, et al., 2008).   

The Central Executive 

 Current research on tasks associated with the function of the central executive 

have shown that it operates in three major domains; concurrent processing, inhibition 

control, and shifting to and from the phonological loop and visuo-spatial sketchpad.  

These functions have been shown to account for performance differences on written 

computation and problem solving.  One of the key elements in the central executive’s 

tasks is to bring relevant information from long term memory while simultaneously 

inhibiting irrelevant information (Andersson, 2007).   
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 The central executive is significantly involved in mathematical tasks in both 

children and adults.  The central executive does not contain memory storage capabilities, 

storage is provided by the phonological loop and the visuo-spatial sketchpad.  Specific 

deficits in children with mathematics disabilities have been linked to the processing of 

numerical and visuo-spatial information by the central executive (Andersson & Lyxell, 

2007). 

 Geary et al. (2008) stated that higher scores on central executive task measures 

were related to the use and formation of a linear representation of the mental number line.  

Geary et al. also pointed the inhibitory control aspect of the central executive.  While 

intelligence quotient (IQ) was related to number line development in second grade, 

longitudinally, number line performance was related to central executive function.  Geary 

et al. hypothesized that the inhibitory functions of the central executive contributed to the 

suppression, or lack of suppression, of the natural number-magnitude representation in 

contrast to the use of the learned linear representation. 

The Visuo-spatial Sketchpad and Phonological Loop 

 The two subcomponents of working memory, the phonological loop and visuo-

spatial sketch pad, provide domain specific storage capacities.  The phonological loop is 

comprised of a memory store and repetitive vocalization process.  The visuo-spatial 

sketchpad also contains a memory store for visual information along with an ability to 

dynamically represent visual information (Schuchardt, et al., 2008) 

D'Amico & Guarnera (2005) found that the deficits faced in children who perform 

poorly on math related tasks stemmed from deficits in maitaining and manipulating 

numerical information in working memory.  Specifcally they found deficits in the visuo-
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spatial sketch pad related to numerical magnitude and ordinal arrangement of numbers.  

This was of particular intrest to the present study. 

Not surprisingly, Simmons and Singleton (2008) reported that studies focused on 

the phonological loop found significant relationships to deficits in the phonological loop 

and the solution of word problems.  However, the studies also found that the process of 

addition was hindred as well as the successful storage of numerical facts. 

Geary et al. (2007) found that the phonological loop and visuo-spatial sketchpads 

contributed to specific deficits while the central executive contributed to an overall 

deficit.  Overall the deficits centered on numerical processing, number line estimations, 

and the retrieval of addition facts. 

The Impact of Working Memory on Mathematical Learning  

 Research in MLD has shown that children with moderate to severe mathematics 

learning difficulties have trouble completing tasks related to the functioning of working 

memory.  Working memory deficits are found in the majority of children who learning 

difficulties.  Working memory deficits are especially prevalent in mathematics and 

reading disabilities.  Working memory deficits are distinct from other functional 

measures, such as IQ in that they are not influenced by previous knowledge (Holmes et 

al. 2008).  The working memory deficit affects students on three fronts: (a) the ability to 

inhibit distractions and inefficient strategies in the central executive, (b) the ability to 

hold visual representations of concepts in the visuospatial sketchpad, and (c) the ability to 

integrate verbal information concurrently with operations in both the central executive 

and the visuospatial sketchpad (Andersson & Lyxell, 2007; Booth & Siegler, 2008; 
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D'Amico & Guarnera, 2005; Geary, et al., 2008; Holmes, et al., 2008; Mabbott & Bisanz, 

2008; Rasmussen & Bisanz, 2005; Schuchardt, et al., 2008).   

Number Sense 

 When deficits are present in working memory the development of number sense is 

affected.  Number sense is a holistic construct of mathematical relationships and Number 

sense is directly linked to higher order thinking skills in solving mathematical problems 

(Gersten et al., 2005). 

 While there is a broad range of operational definitions, number sense can 

generally be described as:  

(a) fluency in estimating and judging magnitude, (b) ability to recognize 

unreasonable results, (c) flexibility when mentally computing, (d) ability to move 

among different representations and to use the most appropriate representation. 

(Kalchman, et al., 2001, p. 2) 

Dehaene (2001) stated hypothesis is “that number sense qualifies as a biologically 

determined category of knowledge.  I propose that the foundations of arithmetic lie in our 

ability to mentally represent and manipulate numerosities on a mental ‘number line’ an 

analogical representation of number” (p. 17). 

One of the components of number sense is the formation of a mental number line 

and its relationship to accurately judging the differences in number magnitude (Booth & 

Siegler, 2008; D'Amico & Guarnera, 2005; Geary, et al., 2007; Geary, et al., 2008; 

Gersten, et al., 2005; Laski & Siegler, 2007).  “Children’s understanding of numerical 

magnitudes is closely related to their general math achievement, estimation skills, and 

arithmetic proficiency” (Laski & Siegler, 2007, p. 1723).   
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The Mental Number Line and the Importance of Magnitude 

 Children possess a mental number line that is logarithmic in scale.  This means 

that the difference between two and three appears to be greater than the difference 

between 89 and 90.  Upon entering school children, begin to make a transformation from 

the mental logarithmic model to the linear model where magnitude is equal across all 

numbers (Booth & Siegler, 2008; Geary, et al., 2007; Geary, et al., 2008; Laski & 

Siegler, 2007).  The importance of developing the linear representation of the number 

line, and thus an accurate concept of magnitude, cannot be overstated.  Booth and Siegler 

(2008) stated that “representations of numerical magnitude are both correlationally and 

causally related to arithmetic learning” (p. 1016), and that “numerical magnitude 

representations are not only positively related to a variety of types of numerical 

knowledge but also predictive of success in acquiring new numerical information, in 

particular, answers to arithmetic problems” (p. 1027).  The mental representation of the 

number line is intricately involved in mathematical domains such as geometry and 

algebra.  Failure to accurately develop a correct mental representation of the number line 

has consequences through secondary education and beyond (Geary et al. 2008).  

Researchers have found that children with MLD have a difficult time in making the 

transition from using the mental logarithmic number line to using the learned linear 

number line. 

 Several studies have been conducted that sought to investigate the presence and 

structure of mental number lines (Booth & Siegler, 2006, 2008; Geary, et al., 2008; Laski 

& Siegler, 2007; Siegler & Booth, 2004).  The underlying view of these studies is that 

children who do not transition from a logarithmic mental representation of the number 
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line to a linear mental representation of the number line continue to have difficulties with 

number sense, specifically in magnitude estimations, this leads to challenges in several 

domains of mathematics. 

 What is the importance of number line estimation in relationship to mathematics 

learning disabilities (MLD)?  Testing for MLD has largely settled on two assessment 

measures (a) the IQ-discrepancy measure, and (b) standardized mathematics test score 

cutoff criteria.  However, both these methodologies are inadequate in themselves to 

diagnose the presence of MLD (Geary, 2005; Murphy, et al., 2007b).  Siegler and Booth 

(2004) found significant correlations between percentage error on number line 

estimations and performance on the mathematics section of the Stanford Achievement 

Test Series, SAT-9.  Given the relationship between number line estimation and 

performance on achievement tests, the use of number line estimation could serve as a 

component of detecting the presence of mathematics learning disabilities (MLD).   

 Recent findings seem to indicate that typically achieving (TA) children move 

from using the logarithmic mental number line to the learned linear number line by at 

least the fourth grade (Geary, et al., 2008; Laski & Siegler, 2007).  Researchers believe 

that the logarithmic number line is held in the visuospatial sketchpad automatically until 

the central executive reaches a point of maturity where it can override this naturally 

occurring number line with the linear learned number line.  Geary et al. (2008) stated 

that: 

The visuospatial sketchpad is of interest, because the parietal areas associated 

with number and magnitude processing are situated near brain regions that 

support aspects of visuospatial processing and because damage to these parietal 
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regions disrupts the ability to form spatial representations and to imagine a mental 

number line.  (p.280) 

  This relates to the ability of the central executive to inhibit distracting or irrelevant 

information from affecting the operations of the phonological loop and the visuospatial 

sketchpad (Andersson & Lyxell, 2007; Geary, et al., 2008; Laski & Siegler, 2007; 

Schuchardt, et al., 2008).  Children with MLD take longer to make this transition and 

many enter third grade still using the logarithmic line (Geary, et al., 2008). 

Case understood that the development of number sense involved the creation of a 

mental number line.  Around six years of age children begin to understand positional 

relationships on the number line and use that to make judgments concerning overall 

quantity.  Children also use the number line to reference the increase or decrease of 

quantity.  By mentally mapping number words with their location on the mental number 

line, children develop the concept of cardinality (Morra, 2008). 

 Currently the studies of number line estimation (Booth & Siegler, 2006, 2008; 

Geary, et al., 2008; Laski & Siegler, 2007; Siegler & Booth, 2004) focused on early 

childhood education.  What has not occurred is the application of this methodology to 

postsecondary students who display correlates of MLD.  Specifically, students involved 

with remediation in developmental math programs.  Postsecondary remediation provides 

the opportunity to resolve instructional inequalities present in primary and secondary 

education.  Postsecondary remediation also provides functional competency in economic 

and political settings while preparing the student for successful negotiation of college 

coursework Bahr (2008), 
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 Being able to retrieve a linear model of the number line and its accurate 

magnitude representations facilitates learning by limiting erroneous estimations and 

increasing the probability of a correct answer (Augustyniak, Murphy, & Phillips, 2005).  

Researchers have found that students with MLD have a difficult time in making the 

transition from using the mental logarithmic number line to using the learned linear 

number line (Booth & Siegler, 2008; Geary, et al., 2008; Siegler & Booth, 2004; Siegler 

& Opfer, 2003). 

Summary 

Mathematics learning disability affects five to eight percent of the student 

population, yet students who encounter difficulty in learning math may comprise a larger 

percentage of the student population (Mazzocco, 2005).  The very nature of math and its 

broad conceptual base challenge researchers seeking to identify MLD’s combined deficits 

Geary (2004).  Currently there is no specific diagnostic system for identifying MLD.  

Testing for MLD has largely settled on two assessment measures (a) the IQ-discrepancy 

measure, and (b) standardized mathematics test score cutoff criteria.  However, both 

these methodologies are inadequate in themselves to diagnose the presence of MLD 

(Geary, 2005; Murphy, et al., 2007b).  

While there have been significant steps taken in the research of learning 

disabilities (LD) related to reading disabilities (RD), research in mathematics disabilities 

(MD) is still developing (Geary, 1993; Geary, Hamson, & Hoard, 2000; Gersten, Jordan, 

& Flojo, 2005; Mazzocco, & Myers, 2003).  There is a broad diversity among specific 

math deficits.  The ability to provide individualized instruction is not readily available in 

mainstream classrooms (Wadlington & Wadlington, 2008).  Mazzocco & Thompson 
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(2005) stress that “It is important to identify risk for MLD, because—like poor reading 

achievement—poor math achievement is a risk factor for negative outcomes in both 

childhood and adulthood” (p. 142).  With all that is involved, and at stake, it is important 

for educators to understand mathematics disability.  Mathematics disability needs to be 

defined, current research understood, screening criteria established, and effective 

instructional interventions applied.   

 Most children can learn the core concepts of math when given a robust learning 

environment and effective instruction.  However, there are children who struggle with the 

core concepts even when the environment and instruction are focused on effective 

learning 

 Within the last two decades, there has been an increasing focus on the relationship 

between MLD and research in cognition, specifically in the neurological aspects of 

cognition.  This focus has largely settled around the construct of working memory 

(Andersson, 2007; Andersson & Lyxell, 2007; Berch, 2008; Bull, Espy, & Wiebe, 2008; 

Geary, 1993; Geary, et al., 2007; Geary, et al., 2008; Mabbott & Bisanz, 2008; Mazzocco 

& Kover, 2007; Murphy, et al., 2007b; Rasmussen & Bisanz, 2005; Schuchardt, et al., 

2008; Swanson & Beebe-Frankenberger, 2004; van Garderen, 2006).  The preeminent 

theoretical construct of working memory used by researchers in the field of MLD is the 

three-component model developed by Baddeley and his colleagues (Baddeley, 1986; 

Baddeley & Hitch, 1974).  Recently Repovs and Baddeley (2006) have refined the three-

component model to include a fourth component called the episodic buffer.  This 

component handles the facilitation of transfer of information between the central 
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executive, the phonological loop, and the visuospatial sketchpad.  To date there has not 

been a body of research in MLD that incorporates the episodic buffer. 

 One area of research, the relationship between number magnitude and working 

memory, has caught the attention of David C. Geary (Geary, et al., 2007; Geary, et al., 

2008).  Geary is a seminal researcher in the connection between MLD and working 

memory (Geary, 1993).  This has led to further exploration of the relationship between 

numerical magnitude representations and MLD by other researchers in the field (Booth & 

Siegler, 2008; D'Amico & Guarnera, 2005; Holmes, et al., 2008; Laski & Siegler, 2007).   

 Interventions for numerical magnitude deficits rely on accurate representations of 

the linear number line.  These representations establish the linear model in long-term 

memory.  As the central executive subsystem of working memory matures, the naturally 

occurring logarithmic representation of magnitude present in the visuospatial sketchpad is 

replaced by the more accurate learned linear representation (Augustyniak, et al., 2005; 

Booth & Siegler, 2008; Geary, et al., 2007; Geary, et al., 2008; Laski & Siegler, 2007). 

 McGlaughlin, Knoop, and Holliday  (2005) and Sullivan (2005) stated that 

research based interventions for teaching postsecondary students with mathematics 

learning disabilities (MLD) were lacking.  However, methodologies proven effective in 

early childhood education can prove effective in teaching postsecondary students with 

MLD.  This presents the possibility that detection of MLD in postsecondary students 

could lead to appropriate instructional interventions.  Most developmental math students 

are placed in the program based on a cutoff criterion on standardized and/or admissions 

tests.  However, the criteria vary widely in both four year and two year institutions (Bahr, 

2008; Hadden, 2000)
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CHAPTER THREE: METHODOLOGY 

 The purpose of this study was to investigate the possible existence of math 

learning disabilities in postsecondary students enrolled in the developmental math 

program at a large university in the Mid-Atlantic region.  The particular problem 

addressed by this study was the presence of a logarithmic representation of the mental 

number line in students participating in the developmental math program.  Researchers 

have found that students with MLD have a difficult time in making the transition from 

using the mental logarithmic number line to using the learned linear number line (Booth 

& Siegler, 2008; Geary, et al., 2008; Siegler & Booth, 2004; Siegler & Opfer, 2003). 

 The implications of a math disability have profound consequences throughout an 

individual’s life span.  Large-scale studies estimated that five to ten percent of students 

would face a mathematics deficit (Geary, et al., 2008).  The majority of research 

conducted on math learning disabilities (MLD) has occurred in the primary grades.  It has 

not been evident that math disabilities persist beyond secondary education.  However, 

McGlaughlin, Knoop, and Holliday (2005) discovered that deficits in post secondary 

students mirrored those of elementary and secondary levels.  This study’s purpose is to 

examine the potential presence or absence of MLD in postsecondary students enrolled in 

a developmental math program.    

Overview of the Study 

 This study developed out of a review of research focusing on number magnitude 

and particularly the representation of magnitude in a construct called the mental number 

line.  Magnitude estimation relates to general math skills, the ability to estimate, and
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 arithmetic competence (Laski & Siegler, 2007).  The number line is an essential part of 

counting and coordinate systems in algebra and geometry.  The development of a correct 

mental image of the number line affects mathematical learning throughout the range of 

schooling (Geary, et al., 2008). 

 In a foundational study Siegler and Opfer (2003) found that children and adults 

possess a mental image of the number line.  The number line varies from a logarithmic 

model to a linear representation.  In 2004 Siegler and Booth replicated the experiment of 

Siegler and Opfer (2003) and found that, given normal cognitive development, the mental 

number line progresses from a logarithmic to a linear representation during the transition 

from kindergarten to second grade (Siegler & Booth, 2004).  Geary et al. (2008) also 

duplicated the methodology used by Siegler and Opfer (2003) and Siegler and Booth 

(2004).  In a longitudinal study over first and second grade, Geary et al. found that a 

logarithmic representation of the mental number line was employed by MLD children 

more often than their low achieving (LA) and typically achieving (TA) peers.  Geary et 

al. recognized the potential of logarithmic representation of the mental number line to 

indicate the presence of math disability and/or difficulties. 

 The problem addressed in this study sought to discover if post secondary students 

in a developmental math introductory algebra class have a logarithmic mental 

representation of the number line (See Figure 3).   
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Figure 3. Example of Logarithmic Line 

 

The presence of a logarithmic line would be a preliminary indicator of math disability 

and could lead to further study of other indicators and appropriate interventions.  The null 

hypothesis was that the representation of the mental number line of developmental math 

students approximates a linear line. 

Design of the Study 

 This was a quasi-experimental study.  “Quasi-experimental designs lack 

randomization but employ other strategies to provide some control over extraneous 

variables.  They are used, for instance, when intact classrooms are used as the 

experimental and control groups” (Ary, Jacobs, & Sorensen, 2010, p. 326). 

 The study employed a design used by Booth and Siegler (2008), Geary et al. 

(2008), Siegler and Booth (2004), and Siegler and Opfer (2003).  The design centers on 

the use of estimation skills when marking the location of a given number on a blank 

number line bounded by 0 on one end and 100 on the other end.  The students were given 
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a number between 1 and 100 and are asked to place a mark where they believed the 

number should go.  The results of the estimations were used to determine whether a 

logarithmic or linear line provides the best fit for the estimations.  Also of interest were 

results based upon gender, academic level, and prior enrollment in developmental math.  

Comparisons were made for number line representations and absolute estimation error 

percentages. 

Research Questions and Null Hypotheses 

Based upon research indicating that the development of a linear representation of 

the mental number line is crucial to the acquisition of many mathematical skills, this 

study looked at the mental representation of the number line in developmental math 

students.  In addition, linear representations were examined based upon gender, academic 

level, and prior enrollment in developmental math.  Finally, the mean absolute estimation 

error percentages (MABE%) were compared based upon gender, academic level, and prior 

enrollment in developmental math. 

Null Hypothesis 1: The representation of the mental number line of 

developmental math students approximates a linear line as determined by 

analyzing the statistical significance of the model and the R2 correlational 

statistic. 

Null Hypothesis 2: The representation of the mental number line of 

developmental math students approximates a linear line as determined by 

analyzing the statistical significance of the model and the R2 correlational statistic 

based upon gender. 
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Null Hypothesis 3: The representation of the mental number line of 

developmental math students approximates a linear line as determined by 

analyzing the statistical significance of the model and the R2 correlational statistic 

based upon academic level. 

Null Hypothesis 4: The representation of the mental number line of 

developmental math students approximates a linear line as determined by 

analyzing the statistical significance of the model and the R2 correlational statistic 

based upon prior enrollment in developmental math. 

Null Hypothesis 5: The mean absolute error percentage will not be statistically 

different by gender. 

Null Hypothesis 6: The mean absolute error percentage will not be statistically 

different by academic level. 

Null Hypothesis 7: The mean absolute error percentage will not be statistically 

different by prior enrollment in developmental math. 

Data Gathering Methods 

 Data was gathered from the developmental math classes and the liberal arts math 

classes during the fall semester.  The fall semester was chosen to minimize the number of 

students who may be taking the developmental class again.  This situation can occur if 

the students do not achieve a grade of C or higher in the developmental class.  

 Students were asked to provide the following demographic data for the study and 

to indicate consent (see Appendix A): (a) female/male, (b) academic level (freshman, 

sophomore, junior, senior), (c) repeating course (yes/no).  In compliance with 

Institutional Review Board approval, completion of the demographic questions and 
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participation in the study implied consent by the participants.  Participation was voluntary 

and the study was explained to the participants prior to participation. 

 The researcher administered the instrument to students in residential classes.  The 

collection occurred within the first two weeks of the semester and was conducted at the 

beginning of each class session.  Students who chose to participate received a brief 

description of the study and instructions on how to complete the instrument. 

Instrumentation 

 The instrument that was used was first developed by Siegler and Opfer (2003).  

Booth and Siegler (2008) used a variation of the methodology, and Siegler and Booth 

(2004) employed the same instrument and methodology in their study.  Geary et al. 

(2008) employed a slightly modified version in testing first graders and transferred the 

instrument to a computer-based application used to measure the responses of second 

graders. 

  The instrument consisted of 48 sheets of paper, two sets of 24, each with a 23-

centimeter line printed across the middle of the page, with 0 at the left end and 100 at the 

right end.  A number between 0 and 100 was printed at the top of each page (see 

Appendix C).  Participants are required to mark an estimated location of the numerical 

value on the number line.  In keeping with the methodology of Siegler and Booth (2004), 

the following procedure was followed: 

 To improve our ability to discriminate between linear and logarithmic estimation 

 patterns, numbers below 30 were oversampled, with 10 numbers between 0 and 

 30 and  14 numbers between 30 and 100.  The 24 numbers presented were 3, 4, 6, 

 8, 12, 17, 21, 23, 25, 29, 33, 39, 43, 48, 52, 57, 61, 64, 72, 79, 81, 84, 90, and 96.  
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 Within each set of 24 number line sheets, the pages were ordered randomly.  (p. 

 432)  

The pages were randomly ordered and bound at the top.  A cover page was included to 

collect the demographic data (see Appendix B).  Students used a pen provided by the 

researcher to indicate their responses. 

 Siegler and Booth (2004) found that the accuracy of this instrument was 

comparable to that used by Siegler and Opfer (2003).  Booth and Siegler (2008) 

employed computer generated representations of the instrument.  Booth and Siegler also 

employed a technique that increased the frequency of numbers below 30 and stated “we 

slightly oversampled the numbers at the low end of the 0 – 100 range by including four 

numbers from each decade below 30 and two numbers from each successive decade” (p. 

1020).  Booth and Siegler used three sets of randomly generated numbers.  Booth and 

Siegler found that their study both replicated and extended the findings of previous 

studies that employed this instrumentation. 

 Geary et al. (2008) was one of the first longitudinal studies that assessed the 

linearity of the mental number line, and its corresponding effects on the development of 

mathematical ability, over first and second grade.  Geary et al. replicated the study of 

Siegler and Booth (2004) but modified the delivery method to computer based during the 

second grade.  Geary et al. stated, “For all three of the groups assessed in the current 

study, number line performance was consistent with theoretical predictions and with 

previous empirical studies” (p. 293). 

 Given its ability to be replicated over time and contexts, the instrument presented 

itself as a reliable tool for measuring the mental number line representation in early 
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elementary students.  Given that the construct in question is a number line, the use of 

number lines to estimate magnitude is valid.  This was believed to be the first study to 

replicate Booth and Opfer’s (2003) instrument in a post secondary population.  

Population and Sampling Procedures 

 The students enrolled in the developmental math course at the large university in 

the Mid-Atlantic region met the following criteria: 

• A score of less than 450 on the math component of the SAT Reasoning Test 

• A score of less than 15 on the math component of the ACT 

• A score of less than 23 on the Math Assessment Test Part One (Faculty/Adjunct 

Handbook, 2009) 

The university administers the Math Assessment Test to place students at various levels 

in the developmental math program. 

 In the fall of 2010 there were 588 students in 25 classes of the introductory course 

for developmental math.  The average developmental math class size was 24.  Prior to the 

beginning of the fall semester instructors in the developmental math introductory course 

were queried on their willingness to participate.  Three developmental math instructors 

expressed a willingness to conduct the experiment in their classrooms.  Seven sections of 

developmental math classes were used in the experiment.  There were a total of 136 

participants, out of which came 123 valid instruments.  Validation was based upon 

completion of the survey and the absence of non-standard markings.  There were two 

participants who chose to mark 50 on all pages of the instrument and were not included in 

the valid instruments. There were eleven participants who chose not to complete the 

instrument. 



 
 

47 
 

 Required sample size was computed based on an ANOVA fixed effects omnibus 

one-way hypothesis.  For an medium effect size of .25, an α level of .05, and a power (1-

β probability of error) of .95, the sample size should be at least 210 participants (Faul, 

2007).  By sampling each number twice, in accordance with Siegler and Booth (2004), 

the total N value for the instrument was 246, exceeding the recommended sample size.  

There were 123 total participants with 73 female participants and 50 male participants as 

shown in Table 1.  

Table 1 

Participants by Gender 
_______________________________________________________ 
   Frequency   Percent  
 
Female        73      59.3 
 
Male        50      40.7 
 
Total      123    100.0 
_______________________________________________________ 

There were 72 freshman, 37 sophomores, 13 juniors, and one senior participating in the 

study as shown in Table 2. 

Table 2 

Participants by Academic Level 
___________________________________________________ 
   Frequency   Percent  
 
Freshmen       72        58.5 
 
Sophomore       37      30.1 
 
Junior        13      10.6 
 
Senior          1                                           0.8 
 
Total      123    100.0 
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Twenty-eight participants had prior participation in developmental math and 95 

participants had no prior participation in developmental math as shown in Table 3. 

Table 3 

Participants by Prior Participation in Developmental Math 
_______________________________________________________ 
   Frequency   Percent  
 
Yes        28      22.8 
 
No        95      77.2 
 
Total      123    100.0 
_______________________________________________________ 

Data Analysis Procedures 

 Two analyses were used to detect the presence of difficulty in number line 

estimation, absolute error percentages and curve estimation.  Both of these measures have 

been shown to indicate the presence of challenges in working memory (Geary, et al., 

2008; Siegler & Booth, 2004). 

 A measure of absolute error was calculated by subtracting the estimated quantity 

(the number at the top of the page) from the estimate and dividing the result by one 

hundred.  The result was an absolute error percentage (see Figure 4). 

Figure 4. Equation for Computation of ABE% 

% Number EstimationABE
Scale
−

=  

 Curve estimation is determined by analyzing the statistical significance of the 

model and the R2 correlational statistic.  In discussing the use of the curve estimation 

function of PASW Graduate Pack 18 (SPSS, 2009) the program tutorial points out that a 

significance value of the F statistic below .05 means that the variation explained by the 
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model is not due to chance. The PASW Graduate Pack 18 tutorial stated that “the R 

Square statistic is a better measure of the strength of relationship  The R Square statistic 

is a measure of the strength of association between the observed and model-predicted 

values of the dependent variable” (¶ 4).   In describing the process of curve estimation 

(see Figure 5) PASW Graduate Pack 18 (SPSS, 2009) stated “view a scatter plot of your 

data; if the plot resembles a mathematical function you recognize, fit your data to that 

type of model. For example, if your data resemble an exponential function, use an 

exponential model” (PASW Tutorial, Curve Estimation Models, ¶ 1).   

 Siegler and Booth (2004) stated “relative to a linear representation of numbers, a 

logarithmic representation exaggerates the distance between the magnitudes of numbers 

at the low end of the range and minimizes the distance between magnitudes of numbers 

in the middle and upper ends of the range” (p.429).  
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Figure 5.  Example of Linear and Logarithmic Lines

 

 For Hypothesis 1: The representation of the mental number line of developmental 

math students approximates a linear line as determined by analyzing the statistical 

significance of the model and the R2 correlational statistic.  The analysis included an 

examination of curve fit using the curve estimation function of PASW Graduate Pack 18 

(SPSS, 2009).   

For Hypothesis 2: The representation of the mental number line of developmental 

math students approximates a linear line as determined by analyzing the statistical 

significance of the model and the R2 correlational statistic based upon gender.  The 

analysis included an examination of curve fit using the curve estimation function of 

PASW Graduate Pack 18 (SPSS, 2009).   
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For Hypothesis 3: The representation of the mental number line of developmental 

math students approximates a linear line as determined by analyzing the statistical 

significance of the model and the R2 correlational statistic based upon academic level.  

The analysis included an examination of curve fit using the curve estimation function of 

PASW Graduate Pack 18 (SPSS, 2009).   

For Hypothesis 4: The representation of the mental number line of developmental 

math students approximates a linear line as determined by analyzing the statistical 

significance of the model and the R2 correlational statistic based upon prior enrollment in 

developmental math.  The analysis included an examination of curve fit using the curve 

estimation function of PASW Graduate Pack 18 (SPSS, 2009).   

For Hypothesis 5: The mean absolute error percentage will not be statistically 

different by gender. Analysis of variance (ANOVA) was conducted using PASW 

Graduate Pack 18 (SPSS, 2009). 

For Hypothesis 6: The mean absolute error percentage will not be statistically 

different by academic level.  Analysis of variance (ANOVA) was conducted using 

PASW Graduate Pack 18 (SPSS, 2009). 

For Hypothesis 7: The mean absolute error percentage will not be statistically 

different by prior enrollment in developmental math.  Analysis of variance (ANOVA) 

was conducted using PASW Graduate Pack 18 (SPSS, 2009). 
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CHAPTER FOUR: RESULTS/FINDINGS 

The purpose of this study was to investigate the possible existence of math 

learning disabilities in postsecondary students enrolled in the developmental math 

program at a large university in the Mid-Atlantic region.  The particular problem 

addressed by this study was the presence, or absence, of a logarithmic representation of 

the mental number line in students participating in the developmental math program.  

Additional investigations were done to determine if there were differences based upon 

gender, academic level, and prior enrollment in developmental math. 

Testing the Hypotheses 

This was a causal comparative and correlational study.  The study employed a 

design used by  Booth and Siegler (2008), Geary et al. (2008), Siegler and Booth (2004), 

and Siegler and Opfer (2003).  The design centered on the use of estimation skills when 

marking the location of a given number on a blank number line bounded by 0 on one end 

and 100 on the other end.  The students were given a number between 1 and 100 and 

asked to place a mark where they believed the number should go.  The following null 

hypotheses were investigated in this study: 

Hypothesis 1: The representation of the mental number line of developmental 

math students approximates a linear line as determined by analyzing the statistical 

significance of the model and the R2 correlational statistic.   

Hypothesis 2: The representation of the mental number line of developmental 

math students approximates a linear line as determined by analyzing the statistical 

significance of the model and the R2 correlational statistic based upon gender.  
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Hypothesis 3: The representation of the mental number line of developmental 

math students approximates a linear line as determined by analyzing the statistical 

significance of the model and the R2 correlational statistic based upon academic 

level.   

For Hypothesis 4: The representation of the mental number line of developmental 

math students approximates a linear line as determined by analyzing the statistical 

significance of the model and the R2 correlational statistic based upon prior 

enrollment in developmental math.   

Hypothesis 5: The mean absolute error percentage will not be statistically 

 different by gender. 

Hypothesis 6: The mean absolute error percentage will not be statistically 

 different by academic  level.   

Hypothesis 7: The mean absolute error percentage will not be statistically 

different by prior enrollment in developmental math.   

 For Hypotheses 1 – 4 a curve fit analysis was used to determine the 

strongest model. In describing the process of curve estimation PASW Graduate Pack 18 

(SPSS, 2009) stated “view a scatter plot of your data; if the plot resembles a 

mathematical function you recognize, fit your data to that type of model. For example, if 

your data resemble an exponential function, use an exponential model” (PASW Tutorial, 

Curve Estimation Models, ¶ 1).  This is demonstrated in Figure 6.  The analysis also 

includes analyzing the statistical significance of the model and the R2 correlational 

statistic (SPSS, 2009). 
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Figure 6. Scatter Plot of Average Overall Number Line Estimations 

 

Hypothesis 1 

 For Hypothesis 1 the independent variable was the given number at the top of 

each page, the dependent variable was the numerical estimation value of the 

corresponding mark on the number line below.  Results were screened for 

nonparticipation or based upon completion of the survey and the absence of non-standard 

markings. 

The significance value of the F statistic was below α = .05 (p < .001).  This means 

that the variation explained by the model was not due to chance.  The R Square statistic 

(R2=.996, p < .001) is a measure of the strength of association between the observed and 

model-predicted values of the dependent variable as shown in Table 4.  The best fit 

model was linear (see Figure 7). 
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Table 4 

Equation fit for Overall Average Estimations for Each Number 
________________________________________________________________________ 
    Model Summary          Parameter Estimates  
Equation R Square F df1 df2   Sig.         Constant             b1       
 
Linear        .996       5087.991     1         22   .000  -.580           .972  
________________________________________________________________________ 

Figure 7. Linear Model Fit for Overall Average Estimations 

 

 When examining the representation of the mental number line of the participants 

in this study as determined by analyzing the statistical significance of the model, and 

based upon number line estimation, it was found that the representation was linear.   

 Therefore the null hypothesis that the representation of the mental number line of 

developmental math students approximates a linear line as determined by analyzing the 

statistical significance of the model and the R2 correlational statistic was not rejected.   
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Hypothesis 2 

For Hypothesis 2 the independent variable was the gender of the participants, the 

dependent variable was the numerical estimation value of the mark on the number line.  

When examining the representation of the mental number line as determined by 

analyzing the statistical significance of the model and the R2 correlational statistic, based 

upon estimations by gender, it was found that the representation was linear.   

The significance value of the F statistic was below α = .05 (p < .001) for both 

female and male participants.  This means that the variation explained by the model was 

not due to chance.  The R Square statistic (R2=.996, p < .001, female), (R2=.995, p < 

.001, male) as shown in Table 5, is a measure of the strength of association between the 

observed and model-predicted values of the dependent variable.  The best fit curve 

models were linear (see Figure 8 and Figure 9). 

Table 5 

Equation fit for Average Estimations for Each Number by Gender 
________________________________________________________________________ 
    Model Summary          Parameter Estimates  
Equation R Square F df1 df2   Sig.         Constant             b1       
Linear      
  
  Female    .996       5131.707     1         22   .000   .025           .958  
 
  Male     .995       4342.832   1  22   .000           -1.504           .993  
________________________________________________________________________ 
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Figure 8. Linear Model Fit for Female Participants 

 

Figure 9. Linear Model Fit for Male Participants
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Based upon the strength of the linear models, (R2=.996, p < .001, female) and 

(R2=.995, p < .001, male), visual inspection of the plots of the overall average estimations 

for the participants, and the corresponding linear equation curve, it was evident that a 

linear relationship existed.  Therefore the null hypothesis that the representation of the 

mental number line of developmental math students approximates a linear line as 

determined by analyzing the statistical significance of the model and the R2 correlational 

statistic based upon gender was not rejected.   

Hypothesis 3 

For Hypothesis 3 the independent variable was the academic level of the 

participants, the dependent variable was the numerical estimation value of the mark on 

the number line.  When examining the representation of the mental number line as 

determined by analyzing the statistical significance of the model and the R2 correlational 

statistic, based upon estimations by academic level, it was found that the representation 

was linear, with the exception of the single senior participant whose estimations was best 

represented by a cubic line.   

 The significance value of the F statistic was below α = .05 (p < .001) for the 

freshman, sophomore, and junior academic levels of the participants.  This means that the 

variation explained by the model was not due to chance.  The R Square statistic (R2= 

.996, p < .001,Freshmen), (R2=.995, p < .001, Sophomore), (R2= .993, p < .001, Junior) 

as shown in Table 6, is a measure of the strength of association between the observed and 

model-predicted values of the dependent variable.  The best fit models were linear for the 

Freshmen, Sophomore, and Junior participants (see Figure 10, Figure 11, and Figure 12). 
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Table 6 

Equation fit for Average Estimations for Each Number by Academic Level 
________________________________________________________________________ 
    Model Summary          Parameter Estimates  
Equation R Square F df1 df2   Sig.         Constant             b1       
Linear      
  
  Freshman    .996       5838.711     1         22   .000           - .439           .969  
 
  Sophomore    .995       4207.174   1  22   .000           - .646           .980 
 
  Junior    .993       3343.973   1  22   .000           - .982           .966 
________________________________________________________________________ 
 
 

Figure 10. Linear Model Fit for Freshmen Participants
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Figure 11. Linear Model Fit for Sophomore Participants 

 

Figure 12. Linear Model Fit for Junior Participants
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The senior academic level was represented by one participant.  However, the 

strongest curve fit for this participant was cubic (R2= .980, p < .001, Senior) as shown in 

Table 7.  The best representation of the model was cubic as shown in Figure 13. 

Table 7 

 Equation fit for Average Estimations for Senior Academic Level 
________________________________________________________________________ 
                    Model Summary                       Parameter Estimates              
Equation      R Square       F      df1   df2   Sig.    Constant      b1        b2          b3       
 
Cubic  .980  323.623    1       22   .000   1 .485      .958     -.001    3.094 E -5 
 
Linear             .970  715.513     1     22   .000   -2.385      .993  
________________________________________________________________________ 

Figure 13. Cubic Model Fit for Senior Participant 

 

Based upon the strength of the models, visual inspection of the plots of the overall 

average estimations for the participants, and the corresponding curves; it was evident that 

a linear relationship exists.  The null hypothesis that the representation of the mental 
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number line of developmental math students approximates a linear line as determined by 

analyzing the statistical significance of the model and the R2 correlational statistic based 

upon academic level was not rejected.   

Hypothesis 4 

For Hypothesis 4 the independent variable was the presence, or absence, of prior 

participation in developmental math by the participants, the dependent variable was the 

numerical estimation value of the mark on the number line.  When examining the 

representation of the mental number line as determined by analyzing the statistical 

significance of the model and the R2 correlational statistic, based upon estimations by 

prior participation, it was found that the representation was linear 

The significance value of the F statistic was below α = .05 (p < .001) for the 

participants with no prior participation in developmental math, and the participants with 

prior participation in developmental math.  This means that the variation explained by the 

model was not due to chance.  The R Square statistic (R2= .996, p < .001, No Prior), 

(R2=.995, p < .001, Prior) as shown in Table 8, is a measure of the strength of association 

between the observed and model-predicted values of the dependent variable. 

Table 8 

 Equation fit for Prior Participation in Developmental Math 
________________________________________________________________________ 
    Model Summary          Parameter Estimates  
Equation R Square F df1 df2   Sig.         Constant             b1       
Linear      
  
  No Prior    .996       5239.126     1         22   .000            - .025           .966  
 
  Prior     .995       4287.343   1  22   .000           -1.336           .993  
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Figure 14 and Figure 15 demonstrate the appropriateness of a linear model. 

Figure 14. Linear Model Fit for Participants with No Prior Developmental Math 

 

Figure 15. Linear Model Fit for Participants with Prior Developmental Math 
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Based upon the strength of the linear models, (R2=.996, P , .001, No Prior) and 

(R2=.995, p < .001, Prior), visual inspection of the plots of the overall average 

estimations for the participants, and the corresponding linear equation curve, it was 

evident that a linear relationship existed.  The null hypothesis that the representation of 

the mental number line of developmental math students approximates a linear line as 

determined by analyzing the statistical significance of the model and the R2 correlational 

statistic based upon prior involvement in developmental math was not rejected.   

Hypothesis 5 

 For Hypothesis 5, the mean absolute error percentage will not be statistically 

different by gender; the relationships were analyzed using analysis of variance (ANOVA) 

with an = .05.   Although the group sizes were similar the Levene Statistic to test of 

homogeneity of variance was used to insure stability in the ANOVA model.  The null 

hypothesis of the Levene test is that homogeneity of variance exists.  The hypothesis was 

tested at α = .10. Also, a robust ANOVA, Brown-Forsythe was computed.  The Brown-

Forsythe ANOVA does not require homogeneity of variance. 

 The mean absolute error percentage by gender was 4.1% for female participants 

(M = .041, SD = .0123), and 3.8% for male participants (M = .038, SD = .0115) as shown 

in Table 9.  A visual analysis of the means plot did not appear to show a significant 

difference between the participant groups (see Figure 16). 
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Table 9 

Descriptive Statistics of Mean Absolute Error Percentage by Gender 
________________________________________________________________________ 
                 95% CI   
Gender  N           M (SD)   LL   UL  
 
Female            73         .041 (.0123)            .0384             .0442 
 
Male            50         .038 (.0115)            .0347                            .0412 
________________________________________________________________________ 
Note.  CI = confidence interval; LL = lower limit, UL = upper limit 
 

 

Figure 16. Means Plot of ABE% by Gender 

 

Since the Levene Statistic (.253, p = .616) failed to reject the assumption of homogeneity 

of variance at α = .10 (see Table 10) ANOVA was calculated. 
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Table 10 

Test of Homogeneity of Variance by Gender 
________________________________________________ 
Levene Statistic df1   df2       Sig.  
         .253                      1          121         .616 
________________________________________________  
 

 The null hypothesis, the mean absolute error percentage will not be statistically 

different by gender, was tested at the p = .05 level.  The null hypothesis was not rejected 

(F = 2.390, p = .125) as shown in Table 11.   

Table 11 

Analysis of Variance on Mean Absolute Error Percentage by Gender 
_____________________________________________________________________ 
       Sum of Squares   df   Mean Square      F        Sig.          
 
Between Groups     .000      1          .000   2.390        .125 
 
Within Groups      .017  121          .000 
 
Total       .018  122 
______________________________________________________________________ 

Brown-Forsythe ANOVA supported the failure to reject at α = .05 (Statistic = 2.452, p = 

.120) as shown in Table 12. 

 
Table 12 

Brown-Forsythe Analysis of Variance by Gender 
______________________________________________________ 

Statistica df1   df2           Sig.  
 Brown-Forsythe           2.452               1      109.959          .120 
______________________________________________________  
a.  Asymptotically F distributed 
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Hypothesis 6 

 For Hypothesis 6, the mean absolute error percentage will not be statistically 

different by academic level; the relationships were analyzed using analysis of variance 

(ANOVA).  The group sizes differed so the Levene Statistic to test of homogeneity of 

variance was used to insure stability in the ANOVA model.  Also, a robust ANOVA, 

Brown-Forsythe was computed.  Since there was only one senior participant the ANOVA 

relationship was not computed for this participant.  Robust tests of equality of means 

cannot be performed for participant levels of 1 or less (SPSS, 2009). The mean absolute 

error percentage (MABE%), as shown in Table 13, for Freshmen was 3.9% (M = .039, SD 

= .0121),  MABE% for Sophomores was 4.0% (M = .040, SD = .0120), MABE% for Juniors 

was 4.4% (M = .044, SD = .0122). 

Table 13 

Descriptive Statistics of Mean Absolute Error Percentage by Academic Level 
________________________________________________________________________ 
                 95% CI   
Gender  N           M (SD)   LL   UL  
 
Freshmen       72         .039 (.0121)            .0365             .0422 
 
Sophomore    37         .040 (.0120)            .0356                            .0436 
 
Junior           13         .044 (.0122)            .0377                            .0420 
________________________________________________________________________ 
Note.  CI = confidence interval; LL = lower limit, UL = upper limit 
 
Visual inspection of the means plot indicates little variation in the MABE% (see Figure 17). 
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Figure 17. Means Plot of ABE% by Academic Level

 

Since the Levene Statistic (.158, p = .854) failed to reject the assumption of homogeneity 

of variance at α = .10 (see Table 14) ANOVA was calculated. 

Table 14 

Test of Homogeneity of Variance by Academic Level 
________________________________________________ 
Levene Statistic df1   df2       Sig.  
         .158                      2          119         .854 
________________________________________________  
 
 The null hypothesis, the mean absolute error percentage will not be statistically 

different by academic level, was tested at the p = .05 level.  The null hypothesis was not 

rejected (F = .674, p = .512) as shown in Table 15. 
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Table 15 

Analysis of Variance on Mean Absolute Error Percentage by Academic Level 
_____________________________________________________________________ 
       Sum of Squares   df   Mean Square      F        Sig.          
 
Between Groups     .000      2          .000   .674         .512 
 
Within Groups      .017  119          .000 
 
Total       .018  121 
______________________________________________________________________ 

Brown-Forsythe ANOVA supported the failure to reject (Statistic = 2.452. p = .516) see 

Table 16. 

Table 16 

Brown-Forsythe Analysis of Variance by Academic Level 
______________________________________________________ 

Statistica df1   df2           Sig.  
 Brown-Forsythe           2.452               1      109.959          .120 
______________________________________________________  
a. Asymptotically F distributed 
 
Hypothesis 7 

For Hypothesis 7, the mean absolute error percentage will not be statistically 

different by prior enrollment in developmental math; the relationships were analyzed 

using analysis of variance (ANOVA).  The Levene Statistic to test of homogeneity of 

variance was used to insure stability in the ANOVA model.  Also, a robust ANOVA, 

Brown-Forsythe was computed.   

The MABE% for Prior Participation was 4.1% (M = .041, SD = .0130), the MABE% 

for No Prior Participation was 4.0% (M = .040, SD = .0118) as shown in Table 17. 
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Table 17 

Descriptive Statistics of Mean Absolute Error Percentage by Prior Participation in 
Developmental Math 
________________________________________________________________________ 
Prior                 95% CI   
Participation N           M (SD)   LL   UL  
 
Yes            28         .041 (.0130)            .0355             .0456 
 
No            95         .040 (.0118)            .0374                            .0422 
________________________________________________________________________ 
Note.  CI = confidence interval; LL = lower limit, UL = upper limit 
 

A visual analysis of the means plot did not show a significant difference between the 

participant groups (see Figure 18). 

Figure 18. Means Plot of ABE% by Prior Participation in Developmental Math
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Since the Levene Statistic failed to reject the assumption of homogeneity of variance at α 

= .10 (.327, p = .568) as shown in Table 18, ANOVA was calculated. 

Table 18 

Test of Homogeneity of Variance by Prior Participation in Developmental Math 
________________________________________________ 
Levene Statistic df1   df2       Sig.  
         .327                      1          121         .568 
________________________________________________  
 
 The null hypothesis, the mean absolute error percentage will not be statistically 

different by prior enrollment in developmental math, was tested at the = .05 level.  The 

null hypothesis was not rejected ( F = .086, p = .770) as shown in Table 19.   

Table 19 

Analysis of Variance on Mean Absolute Error Percentage by Prior Participation in 
Developmental Math 
_____________________________________________________________________ 
       Sum of Squares   df   Mean Square      F        Sig.          
 
Between Groups     .000      1          .000   .086         .770 
 
Within Groups      .018  121          .000 
 
Total       .018  122 
______________________________________________________________________ 

Brown-Forsythe ANOVA supported the failure to reject (Statistic = 2.452, p = .782) see 

Table 20. 

Table 20 

Brown-Forsythe Analysis of Variance by Prior Participation in Developmental Math 
______________________________________________________ 

Statistica df1   df2           Sig.  
 Brown-Forsythe           2.452               1      109.959          .120 
______________________________________________________  
a. Asymptotically F distributed 
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CHAPTER FIVE: SUMMARY AND DISCUSSION 

Summary 

What is the importance of number line estimation in relationship to mathematics 

learning disabilities (MLD)?  Testing for MLD has largely settled on two assessment 

measures (a) the IQ-discrepancy measure, and (b) standardized mathematics test score 

cutoff criteria.  However, both these methodologies are inadequate in themselves to 

diagnose the presence of MLD (Geary, 2005; Murphy, et al., 2007b).   

Recently, researchers in MLD have incorporated measures related to the constructs of 

number sense and working memory.  This allows for a broad spectrum of indicators. 

Murphy, Mazzocco, Hanich, and Early (2007b) demonstrated how the cognitive profile 

of students with mathematics learning disabilities (MLD) could vary depending upon the 

cutoff criterion used in relation to achievement tests.  The use of a cutoff percentage on 

the mathematics portion of achievement tests can be problematic but it serves as standard 

methodology for defining MLD.  When setting a high cutoff percentage, say thirty-five to 

forty-five percent, the goal may be to increase sample size.  However, this can lead to 

problems with heterogeneity and the inclusion of children simply facing a developmental 

delay (Murphy, et al., 2007b). 

 It must be noted that there is a difference between students who have significant 

cognitive challenges with math and those who have math learning difficulties.  

Difficulties in math can result from a number of factors that can include poor instruction, 

socioeconomic factors, or cognitive factors (Mazzocco, 2005).  Mazzocco states:
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 I propose that the term math difficulties be used to refer to a broader group of 

 children that includes children with or without math disability—and that math 

 disability be reserved to refer to a presumed biologically based set of math 

 difficulties, even if that basis is not yet fully understood at the neurobiological or 

 genetic level. (p. 321) 

Generally speaking, mathematics learning disability (MLD)  “ is likely best understood in 

terms of the relations between different cognitive processes and the impact that a deficit 

in one area has on the other areas and on mathematics achievement” (Mabbott & Bisanz, 

2008, p. 17).   

The majority of research conducted on math learning disabilities (MLD) has 

occurred in the primary grades.  It has not been evident that math disabilities persist 

beyond secondary education.  However, McGlaughlin, Knoop, and Holliday (2005) 

discovered that deficits in post secondary students mirrored those of elementary and 

secondary levels.   

This study’s purpose was to use number line estimation to examine the potential 

presence or absence of MLD in postsecondary students enrolled in a developmental math 

program. This was a causal comparative and correlational study. 

The students enrolled in the developmental math course at the large university in the 

Mid-Atlantic region met the following criteria: 

• A score of less than 450 on the math component of the SAT Reasoning Test 

• A score of less than 15 on the math component of the ACT 

• A score of less than 23 on the Math Assessment Test Part One (Faculty/Adjunct 

Handbook, 2009) 
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Siegler and Booth (2004) found significant correlations between percentage error 

on number line estimations and performance on the mathematics section of the Stanford 

Achievement Test Series, SAT-9.  Given the relationship between number line estimation 

and performance on achievement tests, the use of number line estimation could serve as a 

component of detecting the presence of mathematics learning disabilities (MLD).   

It was not evident in this study that a link existed between number line estimation 

and the low performance on standardized math achievement tests required for entry into 

post secondary education.  Without comparison to a typically achieving population in the 

same academic environment we do not know if the differences in mean estimation errors 

are significant enough to take into account. 

 The study employed a design used by  Booth and Siegler (2008), Geary et al. 

(2008), Siegler and Booth (2004), and Siegler and Opfer (2003).  The design centered on 

the use of estimation skills when marking the location of a given number on a blank 

number line bounded by 0 on one end and 100 on the other end.  The students were given 

a number between 1 and 100 and asked to place a mark where they believed the number 

should go.  The results of the estimations were used to determine whether a logarithmic 

or linear line provided the best fit for the estimations.  In addition, linear representations 

were examined based upon gender, academic level, and prior enrollment in 

developmental math.  Finally, the mean absolute estimation error percentages (MABE%) 

were compared based upon gender, academic level, and prior enrollment in 

developmental math. 

The instrument was administered during the first week of class in the fall 

semester.  Seven sections of developmental math classes were used in the experiment.  
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There were a total of 136 participants, out of which came 123 valid instruments.  

Validation was based upon completion of the survey and the absence of non-standard 

markings.   

For Hypotheses 1 through 4 the representation of the mental number line of 

developmental math students was examined to see if it approximated a logarithmic line as 

determined by analyzing the statistical significance of the model and the R2 correlational 

statistic.  The analysis employed an examination of curve fit using the curve estimation 

function of PASW Graduate Pack 18 (SPSS, 2009).   

 Curve estimation is determined by analyzing the statistical significance of the 

linear model and the R2 correlational statistic.  In discussing the use of the curve 

estimation function of PASW Graduate Pack 18 (SPSS, 2009) the program tutorial points 

out that a significance value of the F statistic below .05 means that the variation 

explained by the model is not due to chance. The PASW Graduate Pack 18 tutorial goes 

on to stated that “the R Square statistic is a better measure of the strength of relationship  

The R Square statistic is a measure of the strength of association between the observed 

and model-predicted values of the dependent variable” (¶ 4).  

 The statistical package generates a line from the data.  The data line is then 

compared to a model of a line with predicted values.  The analysis then determines if 

these two lines are significantly close to each other. 

Hypothesis 1, the representation of the mental number line of developmental math 

students approximates a linear line as determined by analyzing the statistical significance 

of the model and the R2 correlational statistic was not rejected.  The linear model was 
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found to be significant at the p < .001 level.  There was an associative power of R2 = .996 

for the overall linear model. 

The results indicate that the overall model for the number line estimation errors is linear 

(see Figure 7).  The absence of a logarithmic model indicates that the mental 

representation of the number line for these participants is linear.  This would also seem to 

indicate that there is no problem with transferring the mental line to the visuo-spatial 

sketchpad.  What cannot be determined from this, and requires further study, is if this 

linear representation makes any difference in the mathematical skills of the participants in 

developmental math. Developmental math, at the institution studied, involves pre-algebra 

and beginning algebra. 

Hypothesis 2, the representation of the mental number line of developmental math 

students approximates a linear line as determined by analyzing the statistical significance 

of the model and the R2 correlational statistic based upon gender was not rejected.  The 

linear model was found to be significant at the p < .001 level for both female and male 

participants.  There was an associative power of R2 = .996 for the linear model associated 

with the female participants and R2 = .995 for the linear model associated with the male 

participants. 

Both of the data based models based on the gender of the participants were linear.  This 

was not unexpected as recent research indicates that differences in gender based 

performance vary over developmental timeframes.   

 Given the inconsistent findings regarding the nature and timing of the gender 

 differences in math, there is a reason to cast doubt on whether there continue to be 
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 gender differences in mathematics performance as claimed by previous studies, 

 especially in the current educational context in the United States.  

 (Ding, Song, & Richardson, 2006, p. 282) 

Hypothesis 3, the representation of the mental number line of developmental math 

students approximates a linear line as determined by analyzing the statistical significance 

of the model and the R2 correlational statistic based upon academic level was not 

rejected.  The linear model was found to be significant at the p < .001 level for freshmen, 

sophomore, and junior participants. There was an associative power of R2 = .996 for the 

linear model associated with the freshman academic level participants, R2 = .995 for the 

linear model associated with the sophomore academic level participants, and R2 = .993 

for the linear model associated with the junior academic level participants.  The model 

for the senior academic level participant proved to be cubic at a significance level of p < 

.001.  The cubic model had an association of R2 = .980 as compared with an R2 = .970 for 

a linear model. 

Three of the data based models were linear and one was cubic.  The results would seem 

to indicate that delay in completion of the introductory developmental math course does 

not relate to the presence of a logarithmic mental number line.  The cubic line was 

somewhat significant in that prior studies had not indicated that this model was a 

possibility (see Figure 19).  Since this was an anonymous study there is no way to further 

evaluate the related aspects of working memory and number sense in this particular 

participant. 
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Figure 19. Senior Participant with No Prior Involvement in Developmental Math 

 

Hypothesis 4, the representation of the mental number line of developmental math 

students approximates a linear line as determined by analyzing the statistical significance 

of the model and the R2 correlational statistic based upon prior enrollment in 

developmental math was not rejected.  The linear model was found to be significant at the 

p < .001 level for participants who had no prior enrollment in developmental math as well 

as those participants who had prior enrollment in developmental math.  There was an 

associative power of R2 = .996 for the linear model associated with the participants who 

had no prior enrollment and R2 = .995 for the linear model associated with the 

participants who had prior enrollment in developmental math as shown in Table 21. 

 Both data based models that involved prior participation in developmental math 

were linear.  This would seem to indicate that a linear representation of the mental 
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number line does not correlate directly with success in developmental math since 22.8% 

of the participants had taken developmental math at least once prior to this study. 

Table 21 

Model Summaries of Equation fit for Average Estimations 
________________________________________________________________________ 
                    Model Summary                       Parameter Estimates              
Equation      R Square       F      df1   df2   Sig.    Constant      b1     b2         b3        
Linear 
 
Overall     .996    5087.991    1      22   .000    -.580       .972 
 
Female     .996    5131.707     1      22   .000      .025      .958  
 
Male  .995    4342.832     1    22   .000    -1.504     .993  
 
Freshmen        .996     5838.711     1     22   .000     - .439     .969 
 
Sophomore .995     4207.174     1    22   .000      - .646    .980 
 
Junior  .993     3343.973     1    22   .000       - .982   .966 
 
No Prior .996 5239.126     1     22   .000       - .025    .966  
 
Prior  .995 4287.343     1    22   .000       -1.336   .993 
 
Cubic 
Senior  .980  323.623    1       22    .000      1 .485     .958    -.001   3.094 E -5  
________________________________________________________________________ 
 
 For Hypothesis 5, the mean absolute error percentage (MABE%) will not be 

statistically different by gender; the relationships were analyzed using analysis of 

variance (ANOVA).   The null hypothesis, the mean absolute error percentage does not 

differ by gender, was tested at the α = .05 level.  The null hypothesis that the mean 

absolute error percentage will not be statistically different by gender was not rejected at α 

= .05 (F = 2.390, p = .125) see Table 11.   
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 Hypothesis 6, the mean absolute error percentage will not be statistically different 

by academic level; the relationships were analyzed using analysis of variance (ANOVA).  

Since there was only one senior participant the ANOVA relationship was not computed 

for this participant.  Robust tests of equality of means cannot be performed for participant 

levels of 1 or less (SPSS, 2009). Since there were more than two groups post hoc tests 

were performed to check for possible between group differences.  The null hypothesis, 

the mean absolute error percentage will not be statistically different by academic level, 

was tested at the α = .05 level.  The null hypothesis was not rejected (F = .674, p = .512) 

as shown in Table 15.      

 For Hypothesis 7, the mean absolute error percentage will not be statistically 

different by prior enrollment in developmental math; the relationships were analyzed 

using analysis of variance (ANOVA).  The null hypothesis, the mean absolute error 

percentage will not be statistically different by prior enrollment in developmental math, 

was tested at the α = .05 level.  The null hypothesis was not rejected ( F = .086, p = .770) 

as shown in Table 19.   

Discussion 

 In hypotheses one through four all of the models proved to be linear with the 

exception of the senior academic level.   The linearity of the model for Hypothesis 1 was 

not expected but could be a result of the spectrum of academic levels examined.  Forty-

one of the 123 participants came from the sophomore through senior level (see Appendix 

A).  Maturity and exposure to other aspects of mathematics in various disciplines could 

have increased the estimation skills of this particular segment of the population.  

However, this study found that there were positive increases in mean Absolute 
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Estimation Errors (ABE) over the range of numbers 21 to 43 as academic level increased.  

This would seem to indicate that the linearity came from the freshmen participants. 

 The cubic model present for the senior participant in Hypothesis 3 was definitely 

unexpected.  However, with an N = 1, this would prove problematic to generalize on all 

seniors taking developmental math at this particular institution.  It does raise possibilities 

for further research since Johnson and Kuennen (2004) advised “that students needing 

mathematics remediation take the course in their first semester and that the importance of 

developmental courses to other disciplines be stressed” (p. 24).  The senior had not taken 

developmental math prior to this point.  The model was not logarithmic but cubic (see 

Figure 19). 

 To delay instructional interventions is problematic.  However, there was a 

segment of the population that was repeating this course in developmental math.  Out of 

the 123 participants 22.8 % were repeating the course 9see Appendix A).  Table 24 

shows 24 sophomores and 4 juniors were repeating the course.  Table 23 shows 10 

female and 18 male participants were repeating the course. 

In Hypothesis 2 and Hypothesis 5 it was found that there was no difference 

between male and female participants.  Ding, Song and Richardson (2006) stated “there 

is a reason to cast doubt on whether there continue to be gender differences in 

mathematics performance as claimed by previous studies, especially in the current 

educational context in the United States” (p. 282).  Mundia (2010) found that both 

genders experienced common mathematical deficiencies.  Mundia stated that, in classes 

where females were not repeating the course, “females had better mathematical skills 

than their male counterparts. The girls’ high confidence and self-esteem in coeducation 
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classes and in previously male-regarded subjects needs to be encouraged and supported 

by both teachers and parents to break gender stereotypes” (p. 155). 

In Hypothesis 6 it was found that no differences existed based upon academic 

level. Johnson and Kuennen (2004) found that delaying enrollment in developmental 

math affected performance in other academic domains.  Johnson and Kuennen stressed 

that students should be encouraged to enroll early and that the costs of delayed 

enrollment be pointed out.   

 In Hypothesis 4 and Hypothesis 7 it was found that no differences existed based 

upon prior enrollment in developmental math.  Approximately 23% of the participants 

were repeating developmental math as shown in Table 22. 

Table 22 

Participants Repeating Developmental Math 
_______________________________________________________ 
   Frequency   Percent  
 
Yes        28      22.8 
 
No        95      77.2 
________________________________________________________ 
 
Out of those who were repeating approximately 64% were male as shown in Table 23. 

Table 23 

Gender of participants repeating Developmental Math 
_______________________________________________________ 
   Frequency   Percent  
 
Female        10      35.7 
 
Male        18      64.3 
________________________________________________________ 
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This is in line with Mundia (2010) who found that the majority of repeaters were 

male.  Mundia stated that “repetition of a class or grade was neither therapeutic nor 

advantageous unless the root causes of poor performance in a student were identified and 

addressed through counseling and remedial teaching to break the vicious circle of 

repeated failure” (p. 155).  

While it cannot be determined specifically from the demographic information, 

14% of the repeaters were at the Junior academic level (see Table 24).  This would 

indicate the possibility of having repeated the course more than once. 

Table 24 

Academic Level of Participants Repeating Developmental Math 
_______________________________________________________ 
   Frequency   Percent  
 
Sophomore       24      85.7 
 
Junior          4      14.3 
_______________________________________________________ 
 
 The importance of developing the linear representation of the number line, and 

thus an accurate concept of magnitude, cannot be overstated.  Booth and Siegler (2008) 

stated that “representations of numerical magnitude are both correlationally and causally 

related to arithmetic learning” (p. 1016), and that “numerical magnitude representations 

are not only positively related to a variety of types of numerical knowledge but also 

predictive of success in acquiring new numerical information, in particular, answers to 

arithmetic problems” (p. 1027).  Geary et al. (2008) pointed to the fact that an accurate 

representation of the number line has implications in several mathematical domains and 

can impact mathematics learning into adulthood.  
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One of the most interesting findings of this study was unexpected.  There 

appeared to be significant absolute errors of estimation (ABE) in the range of numbers 

between 23 and 39 as shown in Table 25.  This occurred for all four academic levels and 

for both genders.  

Table 25 

Relationship to Range and Increased ABE%  
______________________________________________________________________ 
Number Freshmen ABE%    Sophomore ABE%    Junior ABE%    Senior ABE% 
 
    23                          1.7%                          1.6%                      3.9%                   4.5% 
    25                          0.7%                          0.3%                      1.4%                   2.0% 
    29                          3.6%                          3.7%                      4.1%                   6.5% 
    33                          3.9%                          4.7%                      5.3%                  13.0% 
    39                          6.9%                          7.8%                      7.7%                  15.0% 
_______________________________________________________________________ 
Overall ABE %         3.9%           4.0%                      4.4%                    5.1%  
 

Not only was there significant ABE% in the values 29, 33, and 39, these errors 

tended to increase with academic level.   Comparatively, Booth and Siegler (2006) found 

that accuracy increased with grade level from kindergarten to third grade.  The mean 

absolute error percentage in the third grade was ten percent.  Geary et al. (2008) found 

that typically achieving second graders had a mean absolute error percentage of six 

percent, low achieving second grade students had a mean absolute error percentage of 

nine percent, and second grade students with mathematics learning disability had a mean 

absolute error percentage of fifteen percent. 

 It is yet to be determined if this finding was significant or not.  Additional 

research could be conducted that measures computational accuracy over this range of 

numbers. Comparisons could be made with other ranges of numbers and students not 

enrolled in developmental math. 
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 In reference to number sense; a theoretical construct that defines the ability to 

count, recognize number patterns, comparisons of magnitude, estimation skills, and 

numerical transformation (Berch, 2005), it would appear that the participants in this study 

demonstrated an ability to estimate magnitude.  Whether this particular skill is transferred 

to performance in the mathematical domain of algebra is yet to be seen. 

 One of the limitations of this study was the absence of number line estimations 

from typically achieving students enrolled in the beginning liberal arts math course at the 

institution.  Attempts were made to secure this participation, however, the researcher was 

unable convince the respective department chair of the low threshold of intrusion that this 

experiment would have on the classes in question. 

Recommendations for Further Study 

 The absence of logarithmic representations of the mental number line in the 

population studied presents new challenges.  Future research could specifically focus on 

measures of working memory that address the specific constructs of the central executive, 

phonological loop, and visuo-spatial sketchpad.  Booth and Siegler (2008) not only 

employed number line estimation they included measures of short term memory and 

mental addition.  Booth and Siegler found that “representations of numerical magnitude 

are both correlationally and causally related to arithmetic learning” (p. 1016).  Geary et 

al. (2008) included a specific battery of tests for the individual components of working 

memory.   

Post Secondary Screening for MLD 

 In respect to the population being studied, when the information from 

performance on the mathematics sections of the SAT and/or ACT becomes available 
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those students scoring below the 25th percentile could be queried for participation in 

working memory research.  Screening techniques for MLD at the post secondary level 

should be unobtrusive and effective.  Screening should encompass several combinations 

of test items and take developmental issues into consideration (Mazzocco, 2005).  

Screening must balance between sensitivity and specificity and include a sufficient level 

of difficulty so that refinement in MLD subtypes can be detected (Fuchs, et al., 2007).   

 Clearly defining post secondary mathematics disability can have a significant 

effect on screening.  Using a broad criterion in definitions and measurements can lead to 

two different outcomes.  Studies may eventually converge on standard definitions and 

methodologies or they would diverge in such a fashion that application and generalization 

of research would be impossible.  Divergence would prevent a standardization of 

screening definitions (M. M. Murphy, M. l. M. M. Mazzocco, L. B. Hanich, & M. C. 

Early, 2007a). 

Post Secondary Interventions for MLD 

 In discussing the appropriateness of MLD classifications and interventions at the 

post secondary level McGlaughlin, Knoop, & Holliday (2005) state that “the results of 

this study suggest that students with mathematics disabilities at the college level tend to 

mirror research findings for students identified with mathematics disabilities at the 

elementary and secondary levels” (p. 229).  While many colleges offer general 

mathematics support students who demonstrate a possible mathematics disability should 

receive a comprehensive array of assistance (McGlaughlin, et al., 2005). 

 Wadlington & Wadlington (2008) pointed out that, “specific mathematical 

difficulties are diverse; therefore, addressing each individual’s problems can be a 
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challenge for students and their teachers” (p. 2).  Mazzocco & Thompson (2005) stressed 

that “It is important to identify risk for MLD, because—like poor reading achievement—

poor math achievement is a risk factor for negative outcomes in both childhood and 

adulthood” (p. 142).   

 If it becomes apparent that these students have deficits in one or more aspects of 

working memory, specific interventions could be coordinated with participation in 

developmental math.  Kroesbergen & Van Luit (2003) state that “An intervention is 

judged effective when the students acquire the knowledge and skills being taught and thus 

appear to adequately apply this information at, for example, posttest” (p. 99).  

Interventions need to be developmentally appropriate as well.  Secondary, and post 

secondary, math education involves the acquisition of problem solving skills.  These 

skills are directly related to solving word problems and applying knowledge in new 

situations (Kroesbergen & Van Luit, 2003).   

 One area of disabilities research that is gaining ground is response to intervention 

(RTI).  A response to intervention (RTI) model generally uses three levels of 

intervention.  First is the general education level, second is research based tutoring, and 

third is special education.  The earlier this identification and intervention can occur the 

better are the chances that students will be more competent (Fuchs, et al., 2007). 

Some of the important goals of intervention should be (a) increased confidence and 

precision with arithmetic combinations, (b) use of developmentally appropriate counting 

strategies, and (c) an ability to compare the magnitude of numbers (Gersten, et al., 2005).   

 In reflecting on the predominance of studies in basic skills in a meta-analysis of 

MLD research Kroesbergen & Van Luit (2003) state that “The interventions in the 
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domain of basic skills nevertheless showed the highest effect sizes” (p. 110).  Two other 

significant factors played a role in the effectiveness of interventions (a) the length of time 

involved, and (b) the method of instruction.  The length of time was negatively correlated 

with the effect of interventions, suggesting that short and specific interventions were 

most effective.  The method of direct instruction, whether classroom or computer based, 

provided the most effective intervention in the basic skills domain (Kroesbergen & Van 

Luit, 2003). 

 Based on the similarities of MLD between elementary and post-secondary 

students and the effectiveness of direct focused interventions in basic skills, two specific 

issues present themselves for further research (a) can the use of directed study in 

numerical combinations provide an effective intervention, and (b) can this intervention be 

effective at the post secondary level?  In other words, does an intervention in 

combination mastery significantly improve learning outcomes in developmental math at 

the college level? 

 It is important that educational researchers expand the understanding of 

mathematics disability and seek out effective interventions at all developmental stages.  

The students affected by MLD cannot afford continued neglect. 

Comorbid Reading and Math Learning Disabilities 

 Two foundational areas of learning are math and reading. It is difficult for 

students who struggle with either of these subjects. However, when students have 

significant difficulties in both subject areas it presents a serious challenge to learning. 

Research into reading disabilities is well established. Research into math disabilities is 

still developing (Gersten, et al., 2007; Wise, et al., 2008). One of the recent areas of focus 
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in understanding math disabilities is the occurrence of a comorbid relationship between 

math and reading disabilities.  

 Learning disabilities often co-occur frequently. The question becomes one of 

increased severity in both learning domains or a qualitatively different type disability 

(Cirino, Fletcher, Ewing-Cobbs, Barnes, & Fuchs, 2007).  Dirks, Spyer, and de 

Sonneville (2008) stated that in the studies recently conducted children facing both 

reading and math disability “not only have more generalized verbal and nonverbal 

problems but also in most studies appear to be the most impaired in comparison to 

reading-only or arithmetic-only disability groups” (p. 460). 

 Dirks et al. (2008) studied the prevalence of combined reading and math 

disabilities and found that the occurrence exceeded expectations.  The expected rate of 

comorbidity was 4.9% and the actual rate proved to be 7.6%. This strong prevalence has 

spurred the interest of math disabilities researchers. 

 The development of literature and research surrounding the comorbidity of math 

and reading disabilities has it s roots in one of the seminal articles in the study of math 

disabilities. Geary (1993) included the relationships between reading disabilities (RD) 

and math disabilities (MD) in his discussion of the convergence of developmental 

psychology and neuropsychology in the study of math disabilities. Geary pointed out that 

there is often an occurrence of RD in children experiencing MD.  Future research could 

look into the possible presence of Comorbid deficits in post secondary students.   

 What is clear, even in light of the current study, is that a significant portion of the 

post secondary student population struggles to successfully navigate college level 

mathematics.  If our goal is to make post secondary education accessible to all we need to 
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address the issue of mathematic learning disability in the post secondary student 

population. 
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Appendix A Demographic Data 

 

Participants by Gender 
_______________________________________________________ 
   Frequency   Percent  
 
Female        73      59.3 
 
Male        50      40.7 
 
Total      123    100.0 
_______________________________________________________ 

Participants by Academic Level 
___________________________________________________ 
   Frequency   Percent  
 
Freshmen       72        58.5 
 
Sophomore       37      30.1 
 
Junior        13      10.6 
 
Senior          1                                           0.8 
 
Total      123    100.0 
_______________________________________________________ 

Participants by Prior Participation in Developmental Math 
_______________________________________________________ 
   Frequency   Percent  
 
Yes        28      22.8 
 
No        95      77.2 
 
Total      123    100.0 
_______________________________________________________ 
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Appendix B Cover Sheet 

Number Line Research 

 Thank you for your willingness to participate in this research project.  The survey and answers are 

completely anonymous.  In order to provide for the maximum effectiveness of the research please complete the 

survey items below. 

 

Are you:   Female    Male 

Are you a:   Freshman   Sophomore  Junior     Senior 

Have you taken MATH 100 before:     Yes   No  

 

The following pages each have a number at the top of the page and a number line from 0 to 100.  The goal is to 

mark on the number line the approximate location of the number printed at the top of the page.  This is not a test 

so you may answer quickly.   
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Appendix C Sample Instrument Page 

57 

 

 

 

|------------------------------------------------------------------------------------------------| 
0                                     100 

 

 

 

Please mark the approximate location of the number on the number line 


