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Abstract 

Human embryonic stem cell (hESC) research has spurred ethical controversy ever since it 

became feasible in 1998. The reason for this is due to the fact that hESC research requires 

the destruction of a human embryo, thereby causing the cessation of life for that 

developing human. Despite this unavoidable consequence, many advocates of hESC 

research hold to the belief that the embryo is not actually a human person, and therefore 

deem the destruction of the embryo as justifiable. Many advocates of hESC research also 

have pointed to the unprecedented medical potential of hESCs to argue in favor of their 

case. However, advocates of hESC research needlessly defend their position. This is 

because a new type of human stem cell with the same type of potential as hESCs was 

created in 2007. These new stem cells are referred to as human induced pluripotent stem 

cells (hiPSCs). hiPSCs are generated without the destruction of a human embryo, and 

thus avoid the ethical controversy associated with hESCs. Besides their ethical 

supremacy, hiPSCs have a biological advantage over hESCs due to their lack of 

immunogenicity that stems from their autological nature. This makes hiPSCs better suited 

for medicinal use in disease modeling, drug testing, and cell mediated therapy. These 

ethical and biological advantages are the reasons why hESC research should cease and 

hiPSCs should be utilized in their place.   
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History of the Stem Cell Debate 

Biological History of ESC Research 

 Historically speaking, ESC research is at its infancy. Over the last sixty years the 

careful observation and problem solving skills of a few skilled researchers created the 

ability to generate a viable hESC line. In order to have a more complete understanding of 

the controversy surrounding hESC research, one must understand the biological history 

of successful ESC capture and cell line creation. This was an incredible accomplishment, 

and an understanding of the efforts that went into creating a viable hESC line will shed 

light on why many believe hESC research is not only optional, but why hESC research is 

necessary. 

Teratoma and embyronal carcinoma research. Long before ESCs were 

collected from mouse or human embryos, research was being conducted on a unique 

tumor known as a teratoma.  Histologically, a teratoma is recognized as a tumor 

containing all three of the germ cell layers, namely the endoderm, ectoderm, and 

mesoderm (1). These particular tumors have captured the interest of biologists and 

clinicians for years due to their tissue differentiation process that resembles early 

embryonic development (2). Teratomas served as the foundation for the discovery of 

ESCs. In 1954, Stevens & Little first discovered teratomas while examining mice 

testicles (2). Although most teratomas are benign, further research demonstrated that 

some of these teratomas were malignant and possessed the ability to be re-transplanted to 

consecutive hosts with subsequent teratoma proliferation. These malignant, re-

transplantable teratomas are referred to as teratocarcinomas (2).  

Teratocarcinomas contain a relatively undifferentiated tissue type referred to as an 
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embryonal carcinoma (EC). ECs had long been supposed to be the stem cell progenitor of 

the teratocarcinoma, and findings by Kleinsmith & Pierce in 1964 revealed that ECs did 

in fact have stem cell-like character (2).  Murine EC cell lines were established in the 

1970s in order to study this character and the phenomenon of tissue differentiation. 

Additional studies were being conducted during this time on the topic of teratocarcinoma 

origin. In 1970, research involving the implantation of teratocarcinomas to ectopic 

murine embryos revealed that teratocarcinomas have a germ line origin (3). The 

discovery of the germ line origin of ECs, along with the differentiation potential of ECs, 

led researchers to believe that ECs were similar to embryonic cells that possessed the 

same characteristics. 

Search for the EC-ESC connection. The findings of the 1970s demonstrated that 

murine ECs possessed many characteristics typical of what was known about the 

embryonic inner cell mass (ICM) (2). These similarities had biologists desperately 

seeking to discover a connection between the two. Many biologists held that ECs were 

the malignant equivalent to those embryonic cells. In order to study this relationship, 

multiple research groups in the mid-1970s implanted EC cells into the uteruses of 

pregnant mice. Earlier studies had revealed that EC implantation on ectopic sites had 

resulted in teratoma formation (2). However, intrauterine implantation showed that these 

ECs became normalized in the presence of a normally developing blastocyst. These ECs 

also participated in embryonic development and differentiation (2). Furthermore, the 

daughter EC cells that participated in embryonic differentiation possessed a greater 

capacity for differentiation than their parent ECs in a number of studies (2). This was 

thought to be caused by an introduction of normal genes from the somatic cell. These 
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findings on the interrelatedness of ECs and ICMs gave rise to the collection and 

proliferation of ESCs.  

Murine ESC line established. The link between ECs and embryonic cells was 

discovered in 1981 by two different studies led by Evans & Kaufman in one and Martin 

in the other (4) (5). Both studies documented the successful isolation of pluripotent cells 

from mouse blastocysts (3). These pluripotent cells, which came to be known as ESCs, 

were able to proliferate indefinitely and create cell lines similar to those of ECs when 

maintained in tissue culture (2). Although cells of the ICM do not normally proliferate 

indefinitely, ESCs are thought to do so because of their removal from the embryo. 

Additionally, when primordial germ cells are cultured in vitro, they develop into 

embryonic germ cells, which closely resemble EC cells and ESCs (2). These findings 

revealed that ESCs were the long sought after connection between ECs and the ICM. The 

successful capture and creation of a cell line of murine ESCs would not be isolated to 

mice but lead to the successful capture and creation of a cell line of human ESCs. 

hESC line established. The successful isolation of hESCs did not immediately 

follow the successful isolation of murine ESCs. Human teratocarcinomas were first 

discovered in the 1950s, and human teratocarcinoma lines were established in the 1970s 

(2). After further research, several different human EC lines capable of differentiation 

were established in the early to mid 1990s. Although this served as a precursor to the 

isolation of hESCs, this accomplishment remained elusive due to biological, legal, and 

ethical factors (2). The human ECs shared some commonalities with murine ECs but had 

many distinct differences. These differences, coupled with the lack of ESC lines and 

direct information from human embryos, made it difficult to establish the connection 
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between humans ECs and ESCs that had been made between murine ECs and ESCs (2). 

After continued research, Bongso et al. were able to grow human ICM from a blastocyst 

of a donated embryo in 1993, and they were able to successfully isolate hESCs from the 

ICM in 1994 (6) (7). These were significant accomplishments, but the creation of a 

successful hESC cell line still eluded scientists. In 1995, Thomson et al. developed an 

ESC line from the rhesus monkey, and in 1996 Thomson et al. developed an ESC line 

from the marmoset (8) (9). Being of a primate origin, these ESCs more closely resembled 

the human ECs than the murine ECs or ESCs. Eventually, Thomson et al. were able to 

successfully isolate and establish a cell line of human ESCs in 1998 (10). Since this time 

an abundance of research has been published on hESC differentiation mechanisms, 

transplantation medicine, and disease modeling (11). Although the generation of a viable 

hESC line was a major scientific accomplishment, many individuals had reservations 

about this controversial topic. 

Political History of ESC Research 

The aim of hESC research is a noble one: To treat illnesses, cure diseases, and 

promote life. The controversy with this research arises over the means by which hESCs 

are collected. To date, the only methodology to collect hESCs involves the destruction of 

the human embryo (12). Although the ethical arguments both in favor and against hESC 

research will be examined more thoroughly later in this work, the ethical debate centers 

around this fundamental question: Is a human embryo a human person?  Many who 

would answer “yes” to this question hold that the destruction of a human embryo should 

be equated with murder. 25 years prior to the first successful hESC line generation, this 

fundamental question had been examined by the U.S. government.  
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Abortion’s effect on hESC research. The political history of the hESC debate 

cannot be divorced from the political history of the abortion debate. Since the Roe v. 

Wade decision in 1973, the issue of human embryo (and consequently hESC) testing has 

been highly politicized (13). Although the Supreme Court has not specifically ruled on 

the constitutionality of hESC research, this case has revealed where the courts stand on 

the personhood of a fetus, which presumably carries over to the personhood of the 

embryo (14). In this case the Supreme Court ruled that under specific conditions a 

woman is able to have an abortion on the grounds of a right to privacy for the mother 

(14). Implicitly, the Supreme Court determined that a human embryo has no inherent 

rights.  

The importance of federal funding. Ever since the ruling on Roe v. Wade in 

1973, the government has taken action to regulate the research of living embryos (13). 

Most of the political history of the hESC debate has centered on the subject of federal 

funding, and for good reason. Since hESC research is at its beginning stages, many 

private investors forgo investing in hESC research because they are unlikely to see any 

return on their investment within their lifetime (14). Thus, in order to move forward, 

hESC research is largely dependent on the government, but the federal government has 

been hesitant to comply due to ethical controversy.  

The moratorium placed. In 1974 Congress placed a temporary moratorium on 

federal funding for clinical research on embryos and embryonic tissue until national 

guidelines could be established, although basic non-therapeutic research continued (13). 

The Ethical Advisory Board (EAB) was established in 1975 to establish protocols for in 

vitro fertilization (IVF). This protocol was established in 1979, but the Department of 



PLURIPOTENCY PROPOSITION   9 

 

Health and Human Services (DHHS) rejected these recommendations (13). EAB funding 

expired in 1980, and the Reagan and Bush administrations never extended funding. 

Therefore no IVF or embryo research was federally funded (14). In the late 1980s, the 

NIH attempted to gather federal funding for embryonic research, but the DHHS declined 

this request and the moratorium on embryo research continued (13).  

The moratorium terminated. In one of his first acts as President, Bill Clinton 

lifted the ban on federal funding for embryo research in 1993 (13). The NIH Human 

Embryo Research Panel developed guidelines in 1994 for instances in which human 

embryo research should be federally funded. These recommendations included some 

instances where the creation of embryos solely for research would be justified (14). 

Congress, after becoming largely Republican in 1994, elected to ban federal funding for 

the creation of human embryos for research or for destructive embryo research. This ban 

was known as the Dickey-Wicker ban (14). However, Congress did not specify whether 

this applied to cells that had already been obtained from an embryo, so research on these 

cells continued (13). These political events set the stage for the arrival of viable hESC 

lines. 

Dickey-Wicker and hESCs. When Thomson et al. had successfully created the 

first viable hESC line in 1998, the debate surrounding the Dickey-Wicker ban heated. 

Did hESC research constitute as destructive embryo research? The DHHS General 

Counsel, Harriet Raab, believed that since hESCs were not autonomous organisms, they 

were not embryos within the meaning of Dickey-Wicker (14). Several others disagreed. 

After the hESC line had been created, the NIH worked to develop guidelines for funding 

hESC research. By 2000 they had proposed that researchers could receive federal funding 
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for hESC research but only on hESCs that had already been derived from the blastocysts 

(13). In other words, the NIH would not fund the creation of new hESC lines from 

embryos. The NIH proposition hinged on a decision by new President George W. Bush.  

George W. Bush’s decisions. On August 9, 2001, Bush announced that he would 

allow NIH funding for hESC research, but only on hESC lines created prior to his 

announcement. No federal funding would be appropriated for the creation of new hESC 

lines (14). Advocates and opponents of hESC research were not completely satisfied with 

Bush’s decision. Opponents disliked that hESC research was allowed to continue. 

Advocates disliked that their research was limited to previously established hESC lines, 

which possessed little availability, slight genetic diversity, and risked contamination and 

infection (14). Private hESC line creation could still continue though, and states such as 

California gave money for the creation of hESC lines (13) (14). A bipartisan bill to lift 

the federal ban on the creation of new hESC lines passed both houses of Congress in 

2005, but President Bush vetoed this bill. The bill was reenacted in 2006, but it was 

vetoed once more (14). It was clear that President Bush was resolute in his decision, and 

more freedom for hESC research would not be given under this President. 

Hope for hESC research advocates. hESC research advocates were pleased to 

see Barak Obama elected as President in 2008.  In March 2009, Obama ordered that the 

moratorium on federal funding for the creation of new hESC lines be revoked (14). He 

did not, however remove all hESC research regulations. No current federal funding is 

given for the destruction of human embryos or for research with lines created solely for 

research purposes (14). New lines can only be created from leftover embryos since 2001 

and those leftover from IVF procedures (14). Even with these lasting regulations, 
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Obama’s decision has allowed for more freedom for hESC research and has delighted 

hESC research advocates. Nevertheless, there are many that still oppose hESC research, 

and the history of the hESC debate attests to the mixed opinions that individuals possess 

on this topic. This question still remains: Why are scientists so interested in researching 

hESCs? This nature of stem cells will give an answer as to why this is so.  

The Nature of Stem Cells 

Characteristics of Stem Cells  

 There are many different sources and types of stem cells, but each have two main 

distinctive properties. These are indefinite self-renewal and the capability to differentiate 

into multiple cell lineages, which is known as plasticity (15). Other cellular types may 

possess these characteristics, but it is the combination of these properties within stem 

cells that make them unique (15).  

Indefinite self-renewal. Stem cells undergo cell divisions in order to self-renew 

themselves. Stem cells are able to do this either asymmetrically or symmetrically 

depending on the need of the organism (16). At the earliest stages of human development 

where there is little differentiation, stem cells undergo symmetric mitosis, meaning that 

both daughter cells retain their parent stem cell characteristics. This can also occur 

postnatally when the stem cell pool in certain tissues has been greatly depleted (16). 

Asymmetrical stem cell mitosis is when the parent cell mitoses into two intrinsically 

different daughter cells: one identical daughter cell and one more differentiated 

progenitor daughter cell (17). In this process, the parent stem cell polarizes itself by 

locating the cell-fate determinant molecules on one side of the cell. The mitotic spindle 

then aligns itself perpendicular to the cell axis polarity, and two different daughter cells 
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result after cytokinesis (17). Asymmetrical stem cell mitosis occurs in most postnatal 

circumstances in order to maintain the stem cell pool and to allow for normal tissue 

replenishment (16). Stem cells are able to renew themselves and proliferate indefinitely if 

they are in the correct environment. This ability is one of the links found between stem 

cells and the embryoid carcinomas discussed previously. It also poses one of the 

difficulties associated with stem cell research, which will be discussed later. 

Plasticity. The second distinguishing characteristic of stem cells, their ability to 

differentiate into multiple cell lineages, is often termed plasticity. It is this characteristic 

that excites stem cell researchers because stem cells have the ability to become many 

different types of somatic tissues. This may have important implications for future 

medical practice. The level to which stem cells are able to differentiate is termed potency, 

which will be examined in the next section. In demonstrating plasticity, stem cells are 

able to cross lineage walls and adopt the phenotypic characteristics of cells of different 

morphologies (17). The plasticity of stem cells can occur by fusion or direct or indirect 

transdifferentiation.  In fusion, a stem cell fuses with a cell of another type and can then 

express genes and display phenotypic characteristics typical of that cell (17). Direct 

transdifferentiation occurs when a stem cell acquires the identity of another cell by 

expression the gene pattern of that tissue. When a more differentiated cell reverts back to 

a state of less differentiation and then differentiates into a different cell type, that cell is 

said to have undergone indirect transdifferentiation (17).  

Classification of Stem Cells 

Potency classification. Stem cells may be classified in two different ways: by 

potency and by source. The potency of a stem cell refers to its differentiation potential, or 
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the amount of different tissues it is able to differentiate into.  

Totipotent stem cells. The type of stem cell with the greatest differentiation 

potential is termed totipotent. A totipotent stem cell has the ability to successively divide 

and produce all differentiated tissues within an organism including any extraembryonic 

tissue, such as the placenta, umbilical cord, amniotic sac, and extraembryonic tissues that 

support these structures (18). The only cells that fall within this classification are the 

zygote up until the eight cell stage of the morula (17). Research also suggests that this 

totipotent quality is carried within the oocyte in the germ cells (18).  

Pluripotent stem cells. The stem cells with the next highest level of 

differentiation potential are termed pluripotent. Pluripotent stem cells are able to 

differentiate and produce all three of the germ layer tissue types found within the ICM: 

endoderm, ectoderm, and mesoderm (18). Since pluripotent stem cells are able to 

generate all three germ layer tissue types, they are thereby able to differentiate into all 

adult tissue types. The major types of stem cells discussed in this work, ESCs and iPSCs, 

both belong under the banner of pluripotent stem cells. The fact that these cells can 

differentiate into any adult tissue is what gives them such promise in the field of 

medicine and makes them unique from other types of accessible stem cells being used in 

research.  

Multipotent stem cells. Multipotent stem cells (MSCs) demonstrate the next 

greatest differentiation potential.   MSCs are partially specialized cell types that are 

limited in the types of cells they can differentiate into (19). Hematopoietic stem cells 

(HSCs) are examples of MSCs. HSCs are able to differentiate into different blood cells 

but not into other types of tissue (19).  
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Unipotent stem cells. Lastly, the type of stem cell with the least differentiation 

potential is termed unipotent. These stem cells are only able to differentiate into one 

specific cell lineage. Unipotent stem cells are found in different body tissues where they 

act as stem cell reservoirs in the event that that particular tissue volume has depleted and 

needs to be renewed (19). Epidermal stem cells residing in the stratum basale serve as an 

example of unipotent stem cells. 

Source classification. Stem cells may also be classified based upon the source 

from which they originate. The main sources for stem cells include adult stem cells 

(ASCs), umbilical cord stem cells (UCSCs), fetal stem cells (FSCs), ESCs, and iPSCs.  

Adult stem cells. Adult stem cells are partially committed stem cells that are 

located within specific tissues and are able to convert and differentiate into the type of 

tissue in which they are located (19) Most ASCs are unipotent stem cells, but some are 

MSCs depending on the environmental factors of their tissue location (17).  In their 

respective locations, ASCs serve as reservoirs capable of replacing damaged tissue (19). 

The microenvironment, along with physical contact and chemical communication among 

stem cells, stromal cells, and matrix, induce ASCs to differentiate and renew themselves 

(17). Mesenchymal stem cells are an important and frequently researched type of ASC. 

Although they are from a mesodermal origin, they are able to transdifferentiate into some 

cells of ectodermal and endodermal origins (19). Mesenchymal stem cells have also 

demonstrated the ability to differentiate in vivo and participate in bone tissue repair, 

immune system reconstruction, and revascularization of ischemic cardiac tissue in vivo 

(17). ASCs can be found throughout the body including in mesodermal tissues (bone 

marrow, muscle, adipose, synovium, and periosteum), endodermal tissues 
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(gastrointestinal tract), and ectodermal tissues (skin, deciduous teeth, and nerves) (17) 

(19).  

Umbilical cord stem cells. UCSCs come from two different sources: umbilical 

cord epithelium (UCE) and umbilical cord blood (UCB). UCE has been shown to be an 

important source for human primary keratinocytes and is able to recreate the epidermis 

(17). UCB is a source of both hematopoietic and mesenchymal stem cell types. The 

umbilical versions of these stem cell types have demonstrated more tolerance than their 

adult counterpart (17). The umbilical cord mesenchymal stem cells can also produce 

cytokines which facilitate grafting in the donor (17). 

Fetal stem cells. These are perhaps the least researched of all stem cell types. 

FSCs are MSCs and hold the same properties as ASCs (17). The source of FSCs for the 

sake of feasibility and fetal safety is fetal blood. A procedure known as ultrasound guided 

accession to fetal circulation is the method to obtain FSCs (17). FSCs are divided into 

five categories: hematopoietic, mesenchymal, endothelial, epithelial, and neural (17).   

Embryonic stem cells. As noted previously, ESCs are pluripotent stem cells taken 

from the ICM of a developing embryo, thereby killing the embryo in the process. Their 

capture methods will be outlined in greater detail later in this work. ESC therapeutic 

potential and biological and ethical concerns will also be examined in a later section. 

Induced pluripotent stem cells. iPSCs are somatic cells that have been reverted 

back to a state of pluripotency via the introduction of multiple transcription factors. Their 

derivation methodology will also be examined more intently later within this thesis. iPSC 

therapeutic potential and concerns with iPSCs will be examined later as well.  
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Pluripotent Stem Cell Derivation 

Now that a biological and political context has been laid and the nature of stem 

cells has been discussed, the stem cells at the focus of this paper, hESCs and hiPSCs, will 

be examined in greater detail. Both of these stem cell types are pluripotent, making them 

highly desirable for research because of their great medical potential. Although they are 

both pluripotent, hESCs and hiPSCs are derived in significantly different manners and 

possess different qualities.  

hESC Derivation 

 ICM collection. The first successful creation of a hESC cell line was reported in 

1998 by Thomson and his affiliates (10). They used fresh and frozen human embryos that 

had been created by in vitro fertilization (IVF) for clinical purposes (10). IVF involves 

fertilizing a haploid ovum with a haploid sperm in order to form a diploid zygote. This 

zygote then undergoes several mitotic divisions until it reaches the blastocyst stage of 

early embryogenesis (12). The blastocyst contains an inner layer of cells called the 

embryoblast and an outer layer of cells called the trophoblast (12). The outer cell mass, 

known as the trophectoderm, forms the extraembryonic tissue that gives rise to the 

placenta, chorion, and umbilical cord (12). The embryoblast, or ICM, develops into the 

embryo (12). The cells of the ICM are isolated for the creation of a hESC line. In 

Thomson’s study, he and his team cultured human embryos to the blastocyst stage and 

then isolated 14 ICMs (10). In Thomson’s study and in the establishment of other early 

hESC lines, the immunosurgical method was utilized to retrieve the ICM (12). This 

method entails using anti-human serum antibodies and guinea pig complement to 

separate the ICM. However, the immunosurgical method was soon after discarded due to 
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its possibility of transferring pathogens and evoking an immune response in any 

implantation procedures (12). Currently mechanical dissection, enzymatic isolation, or 

laser beam isolation are used in the retrieval of the ICM from the blastocyst (12).  

hESC characterization studies. Thomson tested his newly created hESC line to 

validate its credibility. These cells maintained their pluripotency, were karyotypically 

normal when grown on mouse embryonic fibroblast (MEF) feeders, and were able to 

form teratomas when grafted to severe combined immunodeficient (SCID) mice (12). 

Hence, these hESCs possessed the criteria of indefinite self-renewal and plasticity that 

are unique to stem cells (10). To date hundreds of hESC lines have been created, and all 

of these lines have resulted in the destruction of the human embryo (12). Although 

research has been conducted to develop a method of hESC derivation without embryo 

destruction, researchers have been unable to do so. 

iPSC Derivation 

 Induction factor discovery. The first iPSCs were created from mouse embryonic 

fibroblasts in 2006 by Takahashi and Yamanaka (20). Tests were conducted on 24 

candidate genes of transcription factors that were thought to be involved with inducing 

and maintaining pluripotency in ESCs (20). These genes were first individually 

introduced into MEFs by retroviral transduction, but no colony formation was noted (20). 

When all 24 genes had been retrovirally transduced, 22 different colonies had formed. 

Five of these possessed similar ESC morphology including a round shape, large nucleoli, 

and minor cytoplasm (20).  Different combinations of gene transduction into the MEFs 

were attempted in order to determine which combination of factors was necessary to form 

a viable cell line that could be maintained in culture. After several trials, the combination 
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of four different genes proved to create viable pluripotent stem cell lines, and these 

factors caused greater ESC-like colony growth than the combination of all 24 genes (20). 

Those four genes were Oct3/4, Klf4, Sox2, and c-Myc (20). Thus, the combination of 

these four transcription factors could induce pluripotency.  

 hiPSC generation and validation. In 2007 this same group reported the successful 

induction of human pluripotent stem cells using similar methods (21). Other research 

groups experienced similar success at this time. In both Takahashi studies, extensive post 

induction testing was carried out to validate the induced pluripotency. RT-PCR 

demonstrated that these cells possessed pluripotency markers typical of ESCs (20) (21). 

Gene expression was analyzed using a DNA microarray, which showed that expression 

patterns between iPSCs and ESCs were highly similar (20) (21). Teratoma and embryoid 

body formation also proved that cells possessed pluripotency (20) (21). Southern and 

western blots were conducted and gave evidence that the cells were pluripotent stem cells 

as well (20) (21). hiPSC morphology, proliferation, surface antigens, gene expression, 

telomerase activity, and epigenetics are all highly similar to hESCs as well (22). The 

induction methods and verification methods conducted in these two studies are still 

common methods of creating iPSCs, but some variations do occur.  

 Additional hiPSC derivation procedures. Besides retroviral transduction, 

lentivirus, adenovirus, plasmid transfection, transposon, and recombinant protein 

methods have been described to create iPSCs (22). Other combinations of transcription 

factors are also used to generate iPSCs, and some have even demonstrated higher 

efficiency than the traditional four (22). Refer to Table 1 for a list of some iPSC 

generation methods. 
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Table 1. iPSC Generation Methods 

Table 1 was obtained from source 22. This lists several of the reprogramming methods 

used today to generate iPSCs. Different variations of transcription factors as well as 

different transduction strategies have been utilized to generate iPSCs with different levels 

of efficiency. This is not intended to be an exclusive representation of iPSC generation 

methods. 

 

 No matter the methods used, the ability to create pluripotent stem cells from 

somatic cells is a significant scientific accomplishment. Although other types of 

pluripotent stem cells have been created using methods such as somatic cell nuclear 

transfer (SCNT) and cell fusion, none possess the therapeutic potential that iPSCs do 

(23). In fact, a biological case may be made that iPSCs have the most therapeutic aptitude 
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out of all pluripotent stem cells including ESCs. 

Biological Grounds for hiPSC Utilization 

 hESCS and hiPSCs have great potential for future use in the medical field, but 

hiPSCs have multiple biological advantages over hESCs. These are a result of hiPSCs 

being an autologous source of pluripotent stem cell. The autological characteristics of 

hiPSCs make them better suited than hESCs for clinical drug testing, disease modeling, 

and cell mediated therapy. Since hiPSC research is still in its infancy, it still possesses 

some problems such as tumorigenicity, epigenetic memory, and possible 

immunogenicity. These potential obstacles require more research before hiPSCs can be 

used in a clinical setting, but the potential of hiPSCs for medicinal use demands that more 

research be conducted to address these concerns. 

Drug Testing and Disease Modeling 

 The concept of using pluripotent stem cells in drug testing and disease modeling is 

a fascinating one. By definition, pluripotent stem cells are able to differentiate into any 

type of somatic tissue. For drug testing and disease modeling, this has tremendous 

implications. Many tissues, such as neurons, are difficult to access, so the ability to 

generate these cells in vitro will provide great insight into the pathophysiology of 

diseases in these difficult access tissues and will allow for a greater amount of 

pharmacological testing (23).  

 The hiPSC advantage. Although hESCs have demonstrated the ability to 

differentiate into multiple cell lineages and pathologies, hiPSCs have a distinct advantage 

over hESCs when it comes to disease modeling and drug testing (23). hESCs have 

demonstrated the ability to differentiate into any adult  cell type, including neurons, 
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cardiomyocytes, and hepatocytes. Although this has provided a great tool for drug 

discovery, most hESC represent generic cells that are not indicative of specific clinical 

conditions (24). The ability to generate a pluripotent cell line directly from a specific 

patient afflicted with a disease should allow genetically identical cell types from all the 

major organs of interest (25). Rather than putting a patient at risk by subjecting him or 

her to specific unknown effects of different medications in the treatment of disease, the 

pharmacological treatments could be tested in vitro on genetically identical hiPSCs from 

the patient. This concept could also be applied to the development of new drugs. This 

idea has great appeal in theory, but is it possible to carry out in reality? Recent research 

points to this being so.  

hiPSC disease modeling research. Recent studies have described the successful 

generation of hiPSC lines from patients with a myriad of pathological problems (25). The 

most effective modeling studies have come from early onset diseases caused by strong 

genetic factors in a highly defined cell or tissue type (24). To date most of these studies 

have focused on monogenic diseases to prove that disease modeling pluripotent stem 

cells can be created (23). As seen in Table 2, many more disease lines have been 

developed using hiPSC technology instead of hESCs. In most of these studies, in vitro 

differentiation of hiPSCs to each cell type for the disease has been reported, and many 

studies suggest that patient specific hiPSCs demonstrate certain disease characteristics 

(25). For example, in hiPSCs derived from spinal muscular atrophy (SMA) patients, a 

progressive loss of motor neurons was noted during in vitro differentiation (26). This may 

reflect the developmental loss of motor neurons during the in vivo course of this disease.  
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Table 2. hESC and hiPSC Disease Models 

 Table 2 was obtained from source 24. This represents a current compilation of hESC 

and/or hiPSC lines derived from patients with the specified diseases. The molecular 

defect and phenotype of each disease is provided if previously determined.  
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Another study demonstrated that cardiomyocytes derived from hiPSCs of patients 

suffering from LEOPARD syndrome were larger than normal, which may be reflective of 

the hypertrophic cardiomyopathy typical of this pathology (27). Similarly, gluatamatergic 

neurons with less synapses and diminished calcium transients than controls were seen in 

hiPSCs derived from methyl CpG binding protein 2 (MeCP2)-deficient females with 

RETT syndrome, which is typical of cells from RETT patients (28). A number of other 

studies have yielded similar results in which hiPSCs derived from diseased patients 

exhibit cellular disease characteristics (24). In some of these studies, such as in the 

described studies of SMA and RETT syndrome hiPSCs, known treatments for these 

diseases were used on the hiPSC models and brought healing of these diseased cells (25). 

 Although the successful production of disease phenotypes from hiPSCs is a major 

accomplishment, the ultimate goal of disease modeling and drug therapy is to develop 

treatment based upon these diseased hiPSC lines (25). Besides modeling diseases for 

drug discovery, hiPSCs are thought to potentially serve as a model for pre-symptomatic 

abnormalities in patient derived cells (25). This could provide insight into disease onset 

as well as be used in the development of early diagnostic tools and drug therapy (25). 

Due to the infancy of hiPSC modeling, no new drugs have been discovered yet to reverse 

disease phenotypes (neither has this occurred from hESC modeling) (25). However, 

hiPSCs provide an unmatched prospective use in drug testing.  

hiPSC drug testing potential. There is a high drug attrition rate in the 

conventional method of drug testing. This is because these drugs cannot be tested in a 

relevant human diseased population until late in the drug testing process (24). Most 

clinical trials fail due to toxicological or efficacy issues and many positive results from 



PLURIPOTENCY PROPOSITION   25 

 

preclinical testing phases do not transfer to clinical testing because of highly engineered 

human cell lines that create imperfect modeling systems (24). Genetic variations in 

humans, such as millions of single nucleotide polymorphisms, copy number variations, 

deletions, insertions, inversions, and epigenetic differences make it difficult to determine 

pharmacological effects in in vivo models (24). This issue could become obsolete with 

the implementation of patient-derived hiPSCs for drug testing. It is important to 

acknowledge that hESCs would be a poor choice for drug testing due to the same genetic 

problems that face adult human cell lines.  

Given their identical genetic makeup with their origin, hiPSCs would be an ideal 

source for preclinical drug testing. The efficiency of clinical trials could be increased 

using patient-derived hiPSCs because the actual diseased cells from a large number of 

patients could be tested in vitro for efficacy, toxicity, and dose response (24). Several 

other benefits to this proposition would result as well. Patient compliance issues and 

patient risks would be largely eliminated using this method of drug testing. The created 

hiPSC lines could be used to test many future potential drugs as well (24). Additionally, 

the hiPSC lines could be used to study the effect of the potential drugs in all tissue types 

after differentiation and represent a “patient in a dish” (24). The potential for hiPSCs in 

drug testing and drug discovery through disease modeling is remarkable. hESCs are not 

capable of such potential due to their nonspecific genetic makeup. For a schematic 

representation of the proposed use of hiPSCs in drug screening and disease modeling, see 

Figure 1.  hiPSCs not only possess an exclusive extreme potential in drug testing and 

creation, but also in cell-mediated therapy.  
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Figure 1. Schematic Representation of Potential hiPSC Medicinal Utility 

Figure 1 was obtained from source 25. Somatic cells would be obtained from a patient 

and turned into iPSCs using one of the transcription factor induction methodologies. 

These cells would be differentiated to the desired tissue using differentiation protocol. 

They could then be used as an autological source of cell-mediated therapy, used to model 

a disease, or used to test certain drugs before administering those drugs to the patient.  

 

Cell-Mediated Therapy 

Cell-mediated therapy is the repair or replacement of damaged or poorly 

functional tissue with new cells. The idea is that healthy cells will be able to correct 

whatever underlying abnormality may be present in the dysfunctional cells or possibly 

replace the dysfunctional cells altogether. There are ASC-mediated therapies being used 

today, such as hematopoetic stem cell transplantation for patients with blood or bone 

marrow cancers. Although these ASCs have proved valuable, hiPSCs possess the most 

potential in cell mediated therapy, even more so than hESCs.  

 hiPSC advantage in cell-mediated therapy. Pluripotent stem cells hold a 

theoretical advantage over ASCs in the area of cell-mediated therapy due to a couple 

different factors. First, pluripotent stem cells have the potential to be used for a broader 
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range of target tissues due to their enhanced differentiation potential than the typically 

multipotent ASCs. Secondly, the pluripotent stem cells are able to be differentiated into 

cell types that would be difficult to obtain from an adult source, such as neurons or 

cardiomyocytes. This is one of the reasons why relatively easy access tissues, such as 

hematopoetic and skin ASCs, are nearly exclusively used in adult stem cell-mediated 

therapy (25). Although both hESCs and hiPSCs seem to possess greater biological 

potential for cell-mediated therapy than ASCs, hiPSCs are clearly a better option for 

future utilization in cell-mediated therapy than hESCs.  

 Just as the autologous nature of hiPSCs proved to distinguish them as superior to 

hESCs in drug testing and disease modeling, this nature makes hiPSCs a better alternative 

than hESCs in the area of cell-mediated therapy. One of the greatest difficulties facing 

regenerative medicine is immune rejection. hiPSCs are able to bypass this difficulty by 

creating a self-source for transplantation and thereby allow for the possibility of a 

“personalized” approach to cell-mediated therapy. For example, fibroblasts could be 

obtained from a patient with ischemic heart disease. These fibroblasts could be reverted 

to hiPSCs after the introduction of Oct3/4, Klf4, Sox2, and c-Myc. The hiPSCs could 

then be differentiated into cardiomyocytes and injected into the ischemic areas of the 

heart, thereby causing improved cardiac functioning without eliciting an immune 

response. Refer to Figure 1 for a schematic representation of this proposed process of 

cell-mediated therapy. In contrast to hiPSCs, hESCs generated for cell-mediated therapy 

would possess immunogenicity, and would therefore be a poorer option than hiPSCs.  

Recent research has shown significant progress in making hiPSC cell-mediated therapy a 

reality. 
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 hiPSC research and potential in regenerative medicine. hiPSC cell-mediated 

therapy is no longer strictly theoretical. Multiple studies have demonstrated improvement 

of the diseased specimens after iPSC transplantation. In one such study, hematopoietic 

cells generated from murine iPSCs were shown to help improve a humanized mouse 

model of sickle cell anemia (25). In this study a transgenic mouse with a mutation in the 

human hemoglobin sequence received correction of this mutation through homologous 

recombination. iPSCs were derived from this mouse and were differentiated into 

hematopoietic progenitor cells in vitro. These cells were then transplanted back into the 

transgenic mouse, which resulted in restoration of normal hemoglobin levels and an 

improved erythrocyte phenotype (25).  

 iPSCs have also demonstrated improvement in cell-mediated therapy in harder 

access tissues like central nervous system (CNS) cells.  Rats with Parkinson’s disease 

have shown improvement after receiving neurons derived from iPSCs. Likewise, glial 

cells derived from iPSCs have demonstrated the ability to help protect neurons after 

transplantation (29). Cardiac iPSC cell-mediated therapy has shown promise as well. One 

study delivered autologous murine iPSC-derived cardiomyoctyes into the myocardium of 

mice with infarcted hearts. These iPSC-derived cardiomyoctes replicated without 

disrupting neighboring cell structure and improved contractile performance, ventricular 

wall thickness, and electrical stability of the infarcted hearts. Cardiac muscle, smooth 

muscle, and endothelial tissues were also regenerated in this study (30). Other studies 

have demonstrated the possibility of creating a biological pacemaker utilizing iPSC cell-

mediated therapy (31).  
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Like numerous other studies, the studies mentioned above show that iPSC cell-

mediated therapy can lead to improvement in diseased tissues. Besides implantation into 

diseased tissues, one of the chief aims of hiPSC research is to develop methods to create 

entire organs for organ transplantation. Complex organs such as the brain, heart, and liver 

have very complicated anatomy consisting of multiple cell types and precise chemical 

consistencies that are vital to their proper functioning (32). Because of this and the fact 

that hiPSC research is at its infancy, the creation of organs with hiPSCs is likely many 

years away. Although organ generation is distant, progress has been made in making 

organ generation a greater possibility. Successful techniques have been developed for 

angiogenesis in small organs and tissue, which is vital for the generating organs from 

hiPSCs (32). Genetically human organs could theoretically be created in animals 

considering recent advances in scientific technology.  Other propositions for the future of 

organ generation include “bioprinting” of organs by using a 3-D printer that uses hiPSCs 

as the “ink”. After programming the printer with the right anatomical structure, the 

correct type of hiPSCs could be placed in their corresponding location (32). No matter 

the difficulty, the possibility of creating an entire organ from an autological source is 

extremely appealing and could have a tremendous positive impact on the future of 

medicine. This is one more reason why hiPSC research should be conducted all the more 

vigorously and hESC research be put to a halt.  

Biological Concerns with hiPSCs 

 Although hiPSCs have shown extraordinary potential in medicine, there are still 

some concerns raised about these cells. hiPSC research has only been around for less than 

a decade, so many of the concerns raised may simply require more research in the years 
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to come to adequately assess if the concerns may have any negative consequences. It 

should be noted that some of the concerns raised about hiPSCs, such as tumorigenicity, 

are also major problems with hESCs. The main issues that will be addressed below 

include this issue as well as concerns about epigenetic differences, immunogenicity, and 

induction methods.   

 Innate tumorigenicity. One of the consistencies among all pluripotent stem cells, 

including hESCs and hiPSCs, is their ability to generate teratomas in suitable hosts. In 

fact, most pluripotent characterization procedures involve delivering pluripotent stem 

cells into SCID mice to measure for teratoma formation. Positive teratoma formation is 

used to designate successful generation of pluripotent stem cells. This information alone 

demonstrates the close relationship between pluripotency and tumorigenicity, and it is 

therefore no surprise that tumorigenicity is one of the major obstacles to overcome for 

hiPSCs and hESCs (33). Although much more research needs to be conducted to allow 

for the elimination of tumor formation after pluripotent stem cell transplantation, recent 

studies have shed light on some of the possible ways to minimize the tumorigenesis in 

cell-mediated therapy. 

 A recent study demonstrated that the somatic origin of iPSCs is crucial in 

determining the level of tumorigenicity. In this study, murine iPSCs derived from adult 

mouse tail-tip fibroblasts had the highest propensity of tumorigenesis, while those from 

stomach tissues had the lowest propensity (34). It is proposed that some tissues, like the 

fibroblasts, may lead to iPSCs that are resistant to differentiation and are teratoma-

initiating (34). Other studies have demonstrated that non-differentiated iPSCs are more 

tumorigenic than differentiated iPSCs. Hattori et al. created a cardiomyocyte purification 
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methodology that selects pluripotent stem cell-derived cardiomyoctes against 

undifferentiated pluripotent stem cells at >99% purity. These cardiomyocytes are non-

tumorigenic after transplantation into SCID mice, demonstrating that transplantation that 

utilizes differentiated pluripotent stem cells could be the future direction for stem cell-

mediated therapy (35).  

Besides somatic origin and purification of differentiated iPSCs, immunity plays a 

large role in the amount of tumorigenesis after pluripotent stem cell transplantation. The 

amount of tumorigenesis after pluripotent stem cell transplantation is remarkably reduced 

in immunocompetent specimens compared to SCID specimens (33). It has therefore been 

deduced that the immune system plays a major role in regulating tumorigenesis, and 

research has supported this notion. The presence of NK cells and the complement system, 

as well as certain cells in the adaptive immune response, have shown the ability to limit 

the amount of tumorigenesis in the stem cell recipient (33). Other factors that play a role 

in the amount of tumorigenesis include the amount of pluripotent stem cells transplanted 

and the location of the grafting site in the recipient (33). 

It is again important to note that despite the difficulties hiPSC may face in the 

issue of tumorigenicity, hESCs face the same problem. hiPSCs have actually been 

proposed to be a better source of pluripotent stem cells than hESCs for cell-mediated 

therapy because of their ability to recognize self and non-self. The self cells (the 

differentiated hiPSCs) would be able to be distinguished from tumor forming cells by the 

host. The host’s immune system would be able to help extinguish these tumor-forming 

cells and allow the differentiated hiPSCs to proliferate (33). Despite the research 
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mentioned above, much more research needs to be conducted on eliminating teratoma 

formation before hiPSCs can be used for human cell-mediated therapy. 

Possible immunogenicity. As has been stated numerous times throughout this 

work, the major biological appeal of utilizing hiPSCs in place of hESCs lies in the fact 

that hiPSCs would provide an autologous source. In theory, this autological source should 

not provoke an immune response in possible cell-mediated therapy procedures. However, 

one recent study suggested that iPSCs may possess immunogenicity. This claim was 

made after examining transplantation of undifferentiated mouse iPSCs and assays for 

teratoma formation (36). Some possible explanations as to why immunogenicity was 

observed are the expression of human leukocyte antigens (HLAs) or epigenetic memory 

of iPSCs, which will be discussed shortly (37). Although this study may seem to support 

the notion that iPSCs possess immunogenicity, this study was conducted on 

undifferentiated iPSCs. Numerous studies have been published on transplantation of 

differentiated iPSCs without provoking an immune response (34). These results suggest 

that non-differentiated iPSCs have different cellular properties than differentiated iPSCs 

and that the selection of properly differentiated iPSCs will reduce the risk of 

immunogenicity. Along with the decreased likelihood of tumorigenesis, this demonstrates 

that differentiated iPSCs may be the ideal candidate for future cell-mediated therapy.  

Epigenetic memory and genetic differences. Comparative studies of ESCs and 

iPSCs have demonstrated that these two stem cell types are extremely similar and nearly 

indistinguishable (25). Although this is true, there is evidence that there are subtle 

differences between the two, particularly epigenetic differences. Recent studies have 

shown that some iPSCs retain some epigenetic properties of their somatic cell origin. 
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These epigenetic factors include either DNA methylation or histone modification (38). 

However, most of the retention of these epigenetic similarities is found in early passage 

numbers of iPSCs, and can therefore be considered as transient epigenetic memory (38). 

The cells that display epigenetic memory have also shown greater success in 

differentiating into the cells of the original somatic tissue, which would make them better 

candidates than hESCs in cell replacement therapy (39).  

In addition to epigenetic memory differences from ESCs, some iPSCs have 

possessed genetic mutations including insertions, deletions, and point mutations (38). 

Some of these have been predicted to alter protein function. Although hESC research 

advocates may be quick to argue that this is due to inherent differences between hESCs 

and hiPSCs, they are likely due to many different factors. Some of these mutations were 

already present in the somatic donor cells. This points to the discrepancy that the hESCs 

used in many of these studies were most likely originated from multiple embryonic 

founder cells, which were compared to hiPSCs from donors with an unknown genomic 

integrity (25).  Some of these mutations were also present in late-passage hESCs (38). 

Other mutations could have arisen from simple de novo replication. The most probable 

explanation is that these mutations arose from unpolished hiPSC generation procedures. 

Recent studies have shown that genetic background, lab-to-lab variation, passage 

number, and the use of viral integration have a significant effect on gene expression of 

hiPSCs (25).  

Improved hiPSC generation methods should limit the amount of mutations present 

in hiPSCs. The use of retroviral transduction in hiPSC generation has been raised as a 

concern by many due to the possibility of causing mutations and cancer. In response to 
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these concerns, research has been conducted to create new methods of hiPSC generation 

without viruses by utilizing micro-RNA, transposons, and recombinant proteins (refer to 

Table 1 for the iPSC generation methods) (22). New research will also lead to more 

efficient hiPSC induction methods, which has been another concern associated with 

hiPSCs. Although epigenetic and genetic concerns have been raised about hiPSCs, there 

has not been substantial research to support the notion that these differences from hESCs 

will lead to any problems (25). However, careful examination of these differences is 

warranted before hiPSCs are to be used in cell-mediated therapy since hiPSC research is 

still at its beginning.  

Ethical Grounds for hiPSC Utilization 

 The ethical controversy surrounding hESC research is the largest problem hESC 

research faces. This is ultimately the most significant reason why hESC research should 

be eradicated and hiPSC research should be conducted more intensely. hESC research 

proponents cite a number of arguments in favor of hESC research, but these arguments 

are rationally and morally flawed. The ethical arguments against hESC research hold 

greater weight. 

Ethical Arguments in Favor of hESC Research 

 Although there have been many ethical arguments developed in favor of hESC 

research, two of the main arguments will be addressed here. These are the imperative to 

end suffering and the non-personhood of the embryo (40). 

  The imperative to end suffering. This argument holds that hESC research is 

necessary to aid in ending the suffering of millions around the world who suffer from 

illness and disease (41). It is argued that since there are millions of people suffering from 
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thousands of different debilitations, it is mankind’s moral responsibility to do what it can 

to relieve this suffering. hESCs are believed to be able to aid in this matter. Therefore, 

many advocates of this position would state that hESC research is a necessity (41). This 

argument clearly motivated President Obama to lift the ban on federal funding on hESC 

research. This is seen in his speech following the revoking of this ban when he stated, 

“Scientists believe these tiny cells may have the potential to help us understand, and 

possibly cure, some of our most devastating diseases and conditions. . . I believe we are 

called to care for each other and work to ease human suffering. I believe we have been 

given the capacity and will to pursue this research – and the humanity and conscience to 

do so responsibly.” (42).  

  The non-personhood of the embryo. The most important issue encompassing 

the hESC research debate is the status of personhood of the embryo. In this second 

argument examined in favor of hESC research, proponents would state that at the 

blastocyst stage from which hESCs are derived, the blastocyst is not a human person 

(40). In this view some hold that the human embryo is degraded to nothing more than a 

clump of cells (41). Advocates for hESC research would then propose that an embryo 

possesses a lesser moral status than adult humans, and therefore it is justifiable to kill 

them for research (43). When coupled with the argument of the imperative to end 

suffering, this leads to a natural sense of obligation to conduct hESC research.   

Others, even though they do not believe the embryo is a human person, believe 

that because it has the potential to become a person it deserves “respect” or “profound 

respect” and its life should not be destroyed without a just cause (44). The just cause, 

they propose, is the imperative to end suffering, and since hESC research could help end 
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that suffering, the destruction of the embryo is justified for hESC research. This is known 

as the sacrifice argument (40). This argument states that since these embryos are destined 

to be discarded and not used in IVF, why not use them in research to help relieve 

suffering? If hESC research is able to bring a sufficient measure of good despite the 

destruction of embryos, then it is justifiable. This argument is made on direct 

consequentialist grounds and is used by proponents of stem cell research to bypass the 

moral status of an embryo (43).  They reason that if these embryos could be used in 

research, nothing would be lost in destroying them, and something could potentially be 

gained (41).  

Many proponents of hESC research do not believe that embryos should be created 

solely for the purpose of being destroyed for research. However, since embryos created 

during IVF are going to die anyways without implantation and further development, they 

should be used for hESC research. This is referred to as the “nothing is lost” principle, 

and it is one of the strongest arguments in favor of hESC research. This principle states 

that one may justifiably directly kill another innocent human being when that human 

being is going to die anyways and another innocent life may be saved (40). Some 

advocates of hESC research may grant that the human embryo is a human person. 

However, they state that the embryo has no inherent right to gestation and life. They 

equate this to the absence of a developed human’s right to social protection from diseases 

and disasters (41). 

Ethical Arguments against hESC Research 

 No matter the biological case for hiPSC research in place of hESC research, by 

far the strongest case against hESC research is the ethical one. This is due to the 
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necessary destruction of a living human embryo in order for hESC to take place. Even if 

hESCs were a better biological source of pluripotent stem cells than hiPSCs, hESC 

research should be brought to a halt because of its requirement to destroy a human 

embryo. The most important question surrounding the stem cell debate still lingers: Is a 

human embryo a human person? Several strong arguments exist to demonstrate that this 

is so.  

 The personhood of the embryo.  If a human embryo is in fact a human person, 

then hESC research renders the killing of a human person as morally permissible (40). A 

stronger case exists for the personhood of the embryo versus the non-personhood of the 

embryo. 

 Definition of a person. What constitutes personhood? There are two main 

approaches to this position: the functionalistic and the essential. The functionalistic view 

holds that an entity is a person only if it functions as a person in aspects of consciousness, 

rational thinking, and self-awareness. This view produces false regulations on 

personhood. Under the functionalistic definition of personhood, those who are sleeping or 

under general anesthesia would not be classified as a person. The essential view provides 

a better alternative to defining persons.  

Under this view, an entity is a person if it possesses the nature of a person. In 

other words, it possesses the basic inherent capacity to function as a person even if this 

capacity is never actualized. The human embryo is a human person with a continuous 

history. Ontologically, essence precedes functioning. In order for something to be able to 

act like a person it must in fact be a person. Since a human embryo possesses the basic 

inherent capacity of a human person, it is therefore a human person. 
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 Beginning of personhood. There are many different thoughts on when 

personhood begins, and these thoughts have implications on whether one believes an 

embryo is a person. Some of these views include the points of conception, implantation, 

brain development, appearance of humanness, sentience, quickening, viability, birth, and 

gradualism.  Not all of these views will be addressed, but using the essential view of 

personhood, conception appears to be the beginning of personhood. Throughout the 

development of a human organism, there is no equally decisive break than at the moment 

of conception (44). Prior to conception, a haploid sperm and ovum containing separate 

information exist. After conception, a genetically unique diploid organism comes into 

existence. The other views on the beginning of personhood fail to ascribe personhood to 

the zygote even though this is the moment where the basic inherent capacity of 

personhood is initiated. The zygote is an integrated, self-developing organism capable of 

the progressive development that is characteristic of human life (44). Since personhood is 

dependent on essence and personhood begins at conception, the destruction of an embryo 

for hESC research is to be equated with the destruction of a human person. A human 

embryo is not simply a potential person, but it is already in essence a person with 

potential (40).  

 Objections to the sacrifice argument. As discussed previously, there are some 

who believe that although a human embryo is not a human person it should be treated 

with some measure of respect, even “profound respect” (40). Because of this, its life 

should not be casually discarded of, but it may be “sacrificed” for a just cause (40). This 

argument possesses several flaws. 
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 Benefit of the doubt. By stating that a human embryo needs to be treated 

respectfully, this position would necessarily acknowledge that the human embryo could 

in fact be a person. By no means can the claim be made that the embryo is absolutely not 

a person (40). Since an embryo will develop as a human person if it is not interfered with, 

the burden of proof lies on those who hold to the non-personhood view of an embryo. 

This is regarded as the benefit of the doubt argument (40). Even if one believes that the 

embryo is not a person, one cannot be completely sure of this. Therefore, the destruction 

of an embryo is at best criminal negligence.  

 False respect for the embryo. The measure of genuineness of those who state 

they have “profound respect” for an embryo they intend to kill must be called into 

question. In harvesting hESCs, one is knowingly destroying the human embryo. It is 

difficult to justify the destruction of an undisputed potential human being while making 

the claim that the embryo is being respected (40). One must not forget that the embryos 

are destined to die based on the researcher’s volition (44). One cannot pretend that the 

death of the embryo is a natural event unaffected by man’s choices. Although these 

embryos may not have directly been chosen to be created by the researchers destroying 

them, the researcher’s relationship to their death is not any different from a moral 

standpoint (44). Up to 38% of all frozen embryos are simply discarded, demonstrating 

that these embryos are not even treated respectfully by the hESC advocates’ own 

definition (45).  

 Pseudo-sacrifice. The term “Sacrifice Argument” is a misleading one. Sacrifice 

necessitates willingness on the part of the party that is standing something to lose (40). 

Sacrifice is a noble act, but the volition of the effected party is necessary in order to 
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constitute as sacrifice. One can choose to sacrifice his or her own life but not the life of 

another individual. “Sacrificing” another’s life is equivalent to murder (40). Even if that 

person thinks sacrificing another’s life is justifiable, it is still murder nonetheless. Since 

the embryo is not voluntarily laying its life down for the research of diseases, the act of 

destroying the embryo may not be called sacrifice (40).  

 Is relieving suffering a just cause? The notion of relieving suffering as means to 

justify the destruction of human embryos needs to be called into question. Suffering is a 

subjective item. Proponents of hESC research say that embryo destruction is justified 

based on the suffering of millions worldwide, but what if there were only a few people 

suffering? Can embryos be killed for them? The level of suffering necessary to justify 

killing embryos is subjective, and the end to killing embryos for suffering may never 

cease (40). If the destruction of human embryos could provide the benefit of creating a 

new antiwrinkle cream to relieve the “suffering” associated with aging, would hESC 

destruction not be justified under this argument (43)? This notion seems absurd, and for 

good reason. hESC research has produced no treatment options to date, yet countless 

numbers of human embryos are destroyed on a regular basis. Even though the desire to 

minimize suffering is a noble one, man is not required to use any means necessary to do 

so (40).   

Objections to the nothing is lost principle. The nothing is lost principle states 

that it is justifiable to kill innocent human embryos since they are going to be destroyed 

anyways and their destruction may result in saving another innocent life (46).  A recent 

estimate revealed that there are approximately 400,000 frozen embryos in fertility clinics 

nationwide (46). Proponents of the nothing is lost principle would state that since these 
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embryos are going to be destroyed anyways, they should be used for research so some 

measure of good may be extracted out of them. Although this is one of the most 

persuasive of all the arguments in favor of hESC research, there are three objections that 

can be made to this argument (40). 

 Incomplete count. Advocates of hESC research neglect important information 

from the estimate that there are 400,000 frozen embryos throughout the USA. The study 

that unveiled this estimate also stated that only 2.8% of these 400,000 embryos are 

designated for research, which equates to about 11,000 embryos (46). Since most of these 

11,000 embryos have been in cryopreservation for a number of years, their ability to 

develop into blastocysts and eventually hESC lines is greatly diminished. The estimated 

amount of viable hESC lines that could actually be created is 275 (46). This is not nearly 

the amount hESC proponents advertise. 

Unjustifiable experimentation. The fact that the embryos are going to die does 

not warrant them to be subjected to research. If human embryos are in fact persons, then 

they should be respected as persons no matter what fate they may face (44). The notion 

that it is acceptable to experiment on weaker forms of human persons that are destined 

for death has been seen throughout history. Many Nazi physicians reasoned that since the 

Jews were going to die anyways, they wanted to create good out of the situation by 

experimenting on them. While researchers should not be thought of as equivalent to Nazi 

physicians, the principle remains the same, and experimentation on those destined for 

death can result in extremely negative consequences (40).  

Alternative to destruction. The fact that there are some frozen embryos that will 

not be used in family building does not automatically mean that these embryos are 
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destined for destruction. Although the majority of frozen embryos are donated for 

research, other alternatives are available (45). One such alternative is adoption, and some 

choose to donate their frozen embryos to a specific couple (45).There are specially 

created adoption agencies for finding parents for frozen embryos (40). Embryos are not 

created specifically to be adopted in these agencies as this would spark more ethical 

debate. These agencies work to find homes for already created frozen embryos, thereby 

negating the presumptuous destiny for destruction (40). Although adoption is a viable 

alternative, only 3% of donors choose to donate their embryos in this way (45). 59% 

donate their embryos to research, and 38% choose to discard them (45). These latter 

options, especially the option of discarding, are highly irresponsible and inexcusable. The 

best alternative for current frozen embryos would be to offer them up for adoption in 

order to avoid killing these human persons.  

Conclusion 

There has been a large amount of debate surrounding hESC research since the 

creation of the first successful hESC line in 1998 after decades of previous research. 

Since this time, many political regulations have been implemented or rescinded, which 

has added to the controversy. With the advent of hiPSCs in 2007, much of this 

controversy can be regarded as unnecessary. hiPSCs clearly possess greater potential than 

hESCs in the field of medicine due to their autologous nature. hiPSCs offer the 

possibility of generating a “patient in a dish” to be used for drug testing and have already 

proven to be a more effective source for disease modeling than hESCs. Cell-mediated 

therapy is also better suited for hiPSCs due their lack of inherent immunogenicity unlike 

hESCs. Admittedly, much more research needs to be carried out to address the possible 



PLURIPOTENCY PROPOSITION   43 

 

problems of hiPSCs before they can be safely used in cell-mediated therapy just as would 

be the case for hESCs. hiPSCs are biologically superior to hESCs in terms of medical 

potential and should be researched instead of hESCs on biological grounds. Even if 

hiPSCs were not biologically superior to hESCs and there was no viable pluripotent 

alternative to hESC research, hESC research should be eradicated on ethical grounds 

alone. The arguments in favor of hESC research are selfish, prideful, and largely 

irrational. A human embryo possesses the basic inherent capacity of a human and is a 

human by essence. The destruction of a human embryo is therefore equivalent to murder, 

and because of this hESC research needs to be brought to a halt. hiPSCs should be 

utilized in place of hESCs for both biological and ethical reasons.  
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