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Abstract 
 

This thesis offers a brief background on the life of Fibonacci as well as his  

discovery of the famous Fibonacci sequence.  Next, the limit of the ratio of consecutive 

Fibonacci terms is established and discussed.  The Fibonacci sequence is then defined as 

a recursive function, a linear homogeneous recurrence relation with constant coefficients, 

and a generating function.  Proofs for those particular properties are introduced and 

proven.  Several theorems and identities from the field of number theory concerning the 

properties of the Fibonacci numbers are also introduced and proven.  Finally, the famous 

Fibonacci puzzle is introduced and critiqued.  These fascinating characteristics and 

applications demonstrate not only the universal nature of the Fibonacci sequence but also 

the aesthetic nature of God.
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Fascinating Characteristics and Applications of the Fibonacci Sequence 

Introduction 

In the realm of mathematics, many concepts have applications in multiple 

mathematical fields.  Without these important concepts, every field of mathematics 

would be seemingly disjointed and unrelated to topics from other mathematical fields.  

One of these concepts was discovered by a man named Leonardo Pisano during the early 

13th century.  This particular concept is known today as the Fibonacci sequence.  Since 

its official introduction to the world by Leonardo Pisano, the Fibonacci sequence has 

become one of the most fascinating concepts in the entire realm of mathematics through 

its remarkable characteristics; its useful applications to various mathematical fields such 

as number theory, discrete mathematics, and geometry; and its clear demonstration of the 

aesthetic nature of God. 

 According to O’Connor and Robertson (1998), Leonardo Pisano was born into a 

merchant family in Pisa, Italy, in 1175 A.D.  More commonly know by his nickname 

Fibonacci, Leonardo was educated in North Africa rather than Italy; because his father, 

Guglielmo Bonacci, held a diplomatic post in that area.  Fibonacci’s father was the 

representative of the Pisan merchants to the Mediterranean port city of Bugia, which was 

located in northeastern Algeria.  While in Bugia, Fibonacci was educated in the field of 

mathematics.  During his early adulthood, Fibonacci traveled with his father throughout 

the Mediterranean region, broadening his knowledge of and appreciation for various 

cultures.  Fibonacci’s journeys across the Mediterranean introduced him to innovative 
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mathematical ideas and concepts from numerous countries, fueling his love for 

mathematics (O’Connor & Robertson, 1998). 

In 1200 A.D., Fibonacci returned to his birthplace and began to work on his most 

well-known mathematical masterpiece: Liber Abaci, which means “The Book of 

Calculations” (Knott & Quinney, 1997).  Fibonacci’s Liber Abaci contains many of the 

mathematical ideas that he encountered during his travels throughout the Mediterranean.  

Through his work, Fibonacci introduced the Latin-speaking world to the Hindu-Arabic 

numerals, the decimal system, numerous topics in the field of number theory, and a 

peculiar sequence of numbers that is now known as the Fibonacci sequence (O’Connor & 

Robertson, 1998).  Fibonacci’s initial words in Liber Abaci were, “These are the nine 

figures of the Indians: 9 8 7 6 5 4 3 2 1.  With these nine figures, and with this sign 0 

which in Arabic is called zephirum, any number can be written, as will be demonstrated” 

(as cited in Knott & Quinney, 1997, ¶ 6).  The introduction of these Hindu-Arabic 

numerals forever changed the face of mathematics in the western world. 

In Liber Abaci, Fibonacci also introduced a unique sequence of numbers with 

interesting characteristics.  This sequence eventually became one of the most famous 

sequences in the realm of mathematics.  Although Fibonacci was credited with 

discovering the sequence, it was not officially named the Fibonacci sequence until after 

his death in 1250 A.D. (Burton, 2002).  In fact, this sequence was not labeled the 

Fibonacci sequence until the 19th century when a number theorist named Edouard Lucas 

examined a problem in Fibonacci’s Liber Abaci and linked Fibonacci’s name to the 

sequence that the problem involves.  In his book, Fibonacci (1202) introduced the 

sequence as the following hypothetical situation: 
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A man put one pair of rabbits in a certain place entirely surrounded by a wall. 

How many pairs of rabbits can be produced from that pair in a year, if the nature 

of these rabbits is such that every month each pair bears a new pair which from 

the second month on becomes productive? (as cited in Burton, 2002, p. 271) 

As Fibonacci began to examine this particular problem, he discovered a sequence 

involving the numbers of pairs of rabbits. 

The problem begins with a pair of baby rabbits.  Once the first month has 

concluded, that initial pair of baby rabbits has reached adulthood and is now capable of 

reproducing (Silverman, 2006).  Assuming that the average gestation period for a rabbit 

is one month, the initial pair of rabbits will give birth to a second pair of rabbits at the 

beginning of the third month.  At this point in time in the problem, there currently exist a 

pair of adult rabbits and a pair of baby rabbits.  Fibonacci assumes in his problem that 

once a pair of rabbits has reached adulthood, they reproduce another pair of rabbits each 

month afterward (Silverman, 2006).  The current pair of baby rabbits in the problem is 

able to reproduce by the beginning of the fourth month, and they give birth to a pair of 

baby rabbits each month thereafter.  In order to maintain uniformity in his problem, 

Fibonacci also assumes that none of the rabbits die (Burton, 2002). 

After each month of the problem, Fibonacci counted the number of pairs of 

rabbits; and his conclusions led him to a sequence of numbers with the number of pairs of 

rabbits as the terms of the sequence and the corresponding month numbers as the 

subscripts for those terms.  Fibonacci’s rabbit problem is illustrated in Figure 1 with each 

rabbit image representing a pair of rabbits (Silverman, 2006).  The smaller rabbit images 
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represent rabbits that have been newly birthed while the larger rabbit images represent 

adult rabbits that are at least one month old. 

 

    Month   

         1   
 

 

2   
 
 

3         
 
 

4                                
 
 

5                                    
 
 

6                             
 
 

Figure 1.  Fibonacci’s hypothetical rabbit problem. 

 

 The terms of the sequence from Fibonacci’s problem were 1, 1, 2, 3, 5, 8, 13, 21, 

34, 55, 89, 144.  Based upon Fibonacci’s findings, it is clear that each term is a sum of 

the previous two terms of the sequence (Silverman, 2006).  In fact, the Fibonacci 
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sequence can be defined recursively as 1,0, 1021 ==+= −− fffff nnn .  With this unique 

recursive definition, terms in the Fibonacci sequence hold interesting characteristics in 

relation to each other. 

Limit of the Ratio of Consecutive Fibonacci Terms 

One of the interesting characteristics of the Fibonacci sequence is evidenced in 

the convergence of the sequence.  The limit of the ratio of consecutive Fibonacci terms as 

the subscripts become infinite converges to the number phi ( )ϕ .  The number phi has also 

been known for many centuries as the golden ratio, the golden section, and the golden 

mean (Nickel, 2001).  In fact, Johannes Kepler referred to phi as the “Divine Proportion” 

(Nickel, 2001, p. 245).  In order to determine the limit of the ratio of consecutive 

Fibonacci terms, one must first let each ratio of consecutive terms equal a unique value 

 with na Ν∈n  so that .  Therefore, ( nnn ffa /1+= )
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In order to prove the convergence of the sequence of the ratio of consecutive 

Fibonacci terms, the following conjectures must be proven: 1 is a lower bound for  and 

2 is an upper bound for  

na

na ( )Ν∈∀≤≤ naei n ,21.. , ( )12 +na  is an increasing subsequence, 

 is a decreasing subsequence, and ( na2 ) ( )na  is a convergent sequence (Craw, 2002).  

Algebraic manipulation of the equation ( )nnn ffa /1+=  yields 
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Thus, 1 is a lower bound for  and 2 is an upper bound for .  Since it has already 

been established from Equation 1 that  

na na
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the following equation holds: 
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Using Equation 4, the difference between successive terms in a subsequence can be 

computed as 
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The denominator of Equation 5 is positive, in fact, ( )( ) 9114 22 ≤++≤ −− nn aa . 

Therefore, the numerator 2−− nn aa  of Equation 5 must have the same sign as nn aa −+2  

(Craw, 2002).  This information must be used in order to prove that (  is an )12 +na
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increasing subsequence and that ( )na2  is a decreasing subsequence.  These two 

conjectures must ultimately be proven inductively.  First, 

 

 (6) 224 =< aa

 

Next assume that  is true for some kk aa 222 <+ Ν∈k .  One must now verify that 

. 2242 ++ < kk aa
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Since all of the  terms for na Ν∈n  are positive, only the positive root is meaningful.  

Thus, 
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by induction on .  First, n
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Therefore, Ν∈∀> ++ naa nn 1232 .  Thus, ( )12 +na  is an increasing subsequence of ( )na .  

Since  is increasing and bounded above by 2, it must converge to some limit ( 2na )1+ β . 
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Adjacent terms in the subsequence ( )12 +na  converge to the same limit; thus, the terms 

 and  from Equation 4 may be replaced with the limit 22 +na na2 β .  Therefore, the 

following equations hold: 
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Solving for β  using the quadratic equation yields 
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Once again, only the positive root ( ) 2/51+  is meaningful in this instance.  Therefore, 

both sequences converge to the same limit ( ) 2/51+ .  Since the subsequences ( )na2  and 

of  converge to ( )12 +na ( )na ( ) 2/51+  and any subsequence of the two subsequences 
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Amazingly, the limit of the ratio of consecutive Fibonacci terms yields numberϕ .  This 

particular correlation between the Fibonacci sequence and the golden ratio is simply a 

glimpse into the relationship between these two powerful mathematical concepts.   
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Fibonacci Numbers and the Golden Ratio 

 The first mention of the golden section appeared in Euclid’s Elements in 300 B.C.  

In his Elements, Euclid proposed a problem involving the division of a line into a golden 

section (Knott, 2007c).  The problem begins with a unit segment that is divided into two 

lengths with one length equal to x  and the other length equal to x−1 .  Euclid found that 

the ratio of the smaller part of the segment to the larger part of the segment is equal to the 

ratio of the larger part of the segment to the length of the entire segment (Knott, 2007c).  

Solving the equation for the value of x  reveals that x  is equal to the number ϕ . 

 Although Euclid was the first to study the idea of the golden section, it has been 

evident for thousands of years.  The Greeks were fascinated by this ratio, because it 

frequently appeared in the field of geometry.  One geometric application of the golden 

ratio can be found in the proportion of the lines of a pentagram (Nickel, 2001).  The 

pentagram can be broken into different lengths where the lines cross each other to form 

the figure.  The ratio of certain lengths in the pentagram will yield the golden ratio 

(Nickel, 2001).  Throughout history, many artists have also used the golden ratio in their 

works, because it was believed to be aesthetically pleasing (Knott, 2007b).  Also, many 

great architectural structures throughout the world have evidences of the golden ratio in 

their proportions (Knott, 2007b). 

 One of the most perplexing features of both the Fibonacci sequence and the 

Golden Ratio is their frequent appearances in nature.  The Fibonacci sequence is often 

evidenced in the petal arrangement of flowers in that many flowers contain a number of 

petals that matches a number in the Fibonacci sequence (Knott, 2007a).  The Fibonacci 

sequence can also be found in the spiral arrangement of pine cones, and pineapples, 
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flower petals, and flower seed heads (Nickel, 2001).  When looking either at a pine cone, 

a pineapple, or a sunflower, numerous spirals stemming from the center of the object are 

evident.  According to Knott (2007a), the number of spirals on these objects is typically a 

Fibonacci number.  The Fibonacci sequence is also apparent in the spiraling pattern of the 

leaves on the stems of plants.  Starting from a given leaf at a specific position on a plant, 

the number of turns required to find another leaf in the same position is typically a 

Fibonacci number.  Moreover, the number of leaves found within those turns is typically 

a Fibonacci number as well (Knott, 2007a). 

According to Nickel (2001), the Fibonacci sequence is also easily found in the 

realm of music; for example, the keys on a piano are divided into Fibonacci numbers.  

Including the two notes that are an octave apart, an octave on a piano contains a total of 

thirteen keys, eight of which are white and five of which are black.  Along the keyboard, 

the black keys are also separated into groups of two and three keys (Nickel, 2001).  Also, 

numerous classical musical compositions implement the golden ratio (Beer, 2005).  

According to Beer (2005), one such example can be found in the “Hallelujah Chorus” 

from Handel’s Messiah.  The entire musical composition consists of ninety-four 

measures, and one of the most important events in the song occurs during measures fifty 

seven and fifty eight.  This particular event is located approximately eight thirteenths of 

the way through the composition.  This ratio of two Fibonacci numbers yields the golden 

proportion (Beer, 2005). 

God has clearly demonstrated his aesthetic nature to mankind through the golden 

ratio.  Throughout history, many have described this ratio as both “pleasing to the eye” 

and “ideal” (Knott, 2007b).  In His Creation, God used the golden ratio to evidence His 
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purpose and beauty so that the world would be aesthetically pleasing and representative 

of the nature of God.  Once humans discovered the aesthetic qualities of the golden ratio, 

they began to use it to perform mathematical calculations and create artistic expressions 

through architecture and music that imitate elements of God’s Creation. 

Linear Homogeneous Recurrence Relation with Constant Coefficients 

One of the interesting properties of the Fibonacci sequence concerning the realm 

of discrete mathematics is that it is a solution to a linear homogeneous recurrence relation 

with constant coefficients.  A linear homogeneous recurrence relation of degree k with 

constant coefficients is a recurrence relation of the form 

 

 knknnn acacaca −−− +++= ...2211 . (16) 

 

Equation 16 can be described as linear, because the left-hand side of the equation is equal 

to the sum of the previous terms in the sequence (Rosen, 1999).  It can be also be 

described as homogeneous, because there are no terms in the recurrence relation that are 

not multiples of the  (Rosen, 1999).  Finally, the coefficients of the terms of the 

sequence in Equation 16 are all constants. 

sa j '

In order to solve a linear homogeneous recurrence relation, one must find a 

solution of the form , where n
n ra = r  is a constant (Rosen, 1999).  Implementing this 

equality in Equation 16 yields: 

 

knknnn acacaca −−− +++= ...2211  
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                (17) 
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Dividing both sides of Equation 17 by knr −  and subtracting the entire left side of the 

equation from both sides of the equation yields 

 

 , (18) 0... 1
2

2
1

1 =−−−−− −
−−

kk
kkk crcrcrcr

 

which is known as the characteristic equation of the recurrence relation (Rosen, 1999). 

In order to understand more about the nature of the Fibonacci sequence as a 

solution linear homogeneous recurrence relation with constant coefficients, a theorem 

must be proven in order to establish the characteristics of recurrence relations.  This 

theorem will be useful in determining the explicit formula for the Fibonacci sequence. 

Theorem 1 

Let  and  be real numbers.  Suppose , the characteristic 

equation of a recurrence relation of degree two, has two distinct roots  and .  Then 

the sequence {  is a solution of the recurrence relation 
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Proof 

In order to prove the theorem, one must first show that if  and  are roots of 

the characteristic equati 0=  of a recurrence relation of degree two, and 

1r 2r

on 21
2 −− crcr 1α  

and 2α  are constants, then the sequence { }
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na  with  is a solution of the 

recurrence relation (Rosen, 1999).  Since, r  and  are roots of , 
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n ra 211α +=

2 − c

r2α

2rr 021 =c−r

 



Fibonacci Sequence 18 

 

      (19) 

 

.     (20) 

 

211
2

1 crcr +=

221 crc +

and 

2
2r =

 

Therefore, 

 

( ) ( )2
22

2
112

1
22

1
1112211

−−−−
−− +++=+=∴ nnnn

nnn rrcrrcacaca αααα  

2
222

2
112

1
221

1
111

−−−− +++= nnnn rcrcrcrc αααα  

 

 ( ) ( )221
2

22211
2

11 crcracrcr nn +++= −−α . (21) 

 

Now, from Equations 19, 20, and 21, the following equation can be deduced: 
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suppose {  is a solution of the recurrence relation and that the following initial 

conditions hold:  and 

}na

00 Ca = 11 Ca = .  Next, one must show that there exist constants 1α  

and 2α  such that the sequence { }na  with  satisfies these same initial 

conditions.  Thus, 

nn
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From Equations 24 and 25, 
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Therefore, the sequence{  satisfies the initial conditions.  Since the sequence is 

uniquely determined by these initial conditions and this recurrence relation, Equation 22 

holds. 

}na

Since the Fibonacci sequence is a linear combination of the terms of the sequence, 

the specific recurrence relation for the Fibonacci sequence can be found in its recursive 

definition: 

 

 1;11;00 12 >+===== −− niffffandniffniff nnnnn . (29) 

 

From Equation 29, the initial conditions of the Fibonacci sequence are 1and  0 10 == ff .  

Also, the characteristic equation of the Fibonacci sequence is 
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One must now solve the Fibonacci characteristic equation for r  in order to find the roots 

of the equation.  Using the quadratic formula yields: 
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From Theorem 1, 
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for some constants 1α  and 2α .  Now, use the initial conditions 1,0 10 == ff  to find 1α  

and 2α . 
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Now, substitute 2α−  for 1α . 
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Substituting these values for 1α  and 2α  into Equation 34 yields the following equation: 
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Equation 39 is the explicit formula for the Fibonacci numbers.  This particular formula 

can yield any term in the Fibonacci sequence.  The value  in Equation 39 denotes the 

subscript of the particular term in the sequence.  
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Fibonacci Sequence as a Generating Function 

Generally, any sequence of the form  can be grouped into a 

power series of the form  (Silverman, 

2006).  This particular function is called the generating function for the sequence.  The 

generating function is a function of the variable 
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into the equation for that x  variable, then a value for can be determined.  The 

generating function for the Fibonacci sequence is 
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In order to determine the interval of convergence of the generating function for 

the Fibonacci sequence, the following limit ratio test must be used: 

 

 x
f

f

n

n

n

1lim +

∞→
. (41) 

 

Because x  is considered to be a constant inside the limit, 

 

 
n

n

n
n

n

n f
f

xx
f

f 11 limlim +

∞→

+

∞→
= . (42) 

 

Also, from Equation 15, 
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2

51lim 1 +
=+

∞→
n

n

n f
f

. (43) 

 

Therefore, 

 

 (44) 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=+

∞→ 2
51lim 1 x

f
fx

n

n

n
 

 

 

 

 

The interval of convergence for a generating function is found by setting the value 

determined from the limit to be less than 1.  Thus, 

 

                                     (45)
.

51
21

2
51

+
<⇒<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ + xx

 

Now, rationalize the denominator. 

 ) 

 

       (46

 

Therefore, the interval of convergence for the Fibonacci sequence is  

 

 
2

15 −
<x . (47) 

( )
( )

( ) ( )
2

15
4

512
51

512
51
51

51
2 −

=
−
−

=
−
−

=
−
−

⋅
+

<x
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In order to determine the generating function formula of the Fibonacci sequence, 

one must substitute the corresponding Fibonacci numbers into the original generating 

function (Silverman, 2006).  Therefore, 

 

                     (4( ) 138532 765432 ++++++= xxxxxxxxf 8) ...

 

Now, one must find a simple expression for ( )xf .  Using the recursive definition of the 

Fibonacci sequence, 21 −− += nnn fff , replace all the Fibonacci numbers accordingly 

(Silverman, 2006).  Therefore, 

 

( ) ...6
6

5
5

4
4

3
3

2
21 ++++++= xfxfxfxfxfxfxf  

 

 

    (49) 

 

Now, ignore the first two terms of Equation 49 momentarily and regroup the remaining 

terms (Silverman, 2006). 

  (50) 
 

+

( )

( ) ( ) ( ) ( ) 6
45

5
34

4
23

3
12

2
21 +++++++++= xffxffxffxffxfxf ...+

{ } { }...+

      ⇓       ⇓  
( )xf                                ( ) xfxf 1−    

 

 1)   (5

 

... 4
4

3
3

2
2

3
3

2
21

22
21 ++++++++= xfxfxfxxfxfxfxxfxfxf

( ) ( ) ( ( ) )xfxfxxfxxfxfxf 1
22

21 −+++=∴

Now, use the values  and 11 =f 12 =f  to determine the following formula: 
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( ) ( ) ( ) ( ) (xfxxfxxxxfxxfxxxxf ⋅+⋅+=−⋅+⋅++= 2222 )  

 

Therefore, 

 

 (52) ( ) ( ) ( )2 xfxxfxxxf ⋅+⋅+= .

 

Now, simply solve for  to obtain the Fibonacci generating function formula. ( )xf

 

( ) ( ) ( ) ( ) ( ) ( ) xxfxxfxxfxfxxfxxxf =⋅−⋅−⇒⋅+⋅+= 22  

   (53) 

 

 Amazingly, the explicit formula for the Fibonacci sequence can also be derived 

from the sequence’s generating function formula.  The two roots of the polynomial 

expression  are 21 xx −− ( ) 2/51±− , and the reciprocals of these two roots are 

( ) 2/51± .  In order to separate the two roots, let 

 

 (54) 

 

 

and let 

    
2

51−
=β . (55) 

( )( ) ( ) 2
2

1
1

xx
xxfxxxxf∴ =⇒=−−

− −

2
51+

=α
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One must first factor the polynomial expression  using 21 xx −− α  and β . 

 

 

  9) 

 

( )( )xxxx βα −−=−− 111 2  (56) 

 

Now, use this factorization to split the generating function using partial fractions. 

 
( )( ) ( ) ( )x

B
x

A
xx

x
xx

x
βαβα −

+
−

=
−−

=
−− 11111 2

( )

(57) 

( ) xBBxAAxxBxAx (58) β + ⋅−⋅= 11 −α ⇒ = − β + − α

          (5

 

( ) ( )BABAxx 0∴ + = ⋅ − −β α + +

Therefore, 

 (60) αβ BA −−=1

 

from the coefficients of the x  terms on each side of Equation 59.  Also, 

 

) 

 

2) 

                (61.0 BABA =−⇒+=

).(                              (611 βαβ +−=⇒+−=∴ AAA α

 
.1

βα −
=∴ A

       (63) 

 

 



Fibonacci Sequence 28 

Now, substitute the value for  back into Equation 61.  Therefore, A

 

 
.11

αββα −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=B
(64) 

 

Now, recall from Equations 54 and 55 that 

 

2
51+

=α  and 
2

51−
=β . 

 

Therefore, 

 

      
5

1

2
52

1

2
5

2
1

2
5

2
1

1

2
51

2
51

1
==

+−+
=

−
−

+
=A . (65) 

 

Similarly, 

 

 

 ) 
5

1

2
52

1

2
5

2
1

2
5

2
1

1

2
51

2
51

1
−=

−
=

−−−
=

+
−

−
=B

    (66

 

Now, substitute the values for  and A B  from Equations 63 and 64 into Equation 57. 

 

                            (67) 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟
⎠
⎞

⎜
⎝
⎛
−

=
−− xxxx

x
βα 1

1
5

1
1

1
5

1
1 2∴
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However, according to Silverman (2006), ( )xα−1/1  can be expressed as the geometric 

series   Similarly, ( ) ( ) ...1 32 ++++ xxx ααα ( )xβ−1/1  can be expressed as the geometric 

series   Now, one must express the Fibonacci generating 

function formula as a power series.  Therefore,  

( ) ( ) ...1 32 ++++ xxx βββ

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟
⎠
⎞

⎜
⎝
⎛
−

=
−− xxxx

x
βα 1

1
5

1
1

1
5

1
1 2  

( ) ( )( ) ( )           (68) 

 
( ) ( ) ...1

5
1...1

5
1 3232 ++++−++++= xxxxxx βββααα

 

Now, combine terms appropriately.  Therefore,  

 

( ) ( )( ) ( ) ( )( )...1
5

1...1
5

1 3232 ++++−++++ xxxxxx βββααα  

                           (69) 

 
...

555
3

33
2

22

+
−

+
−

+
−

= xxx βαβαβα

 

Referring back to the original Fibonacci generating function formula 

 

( ) ...
1

4
4

3
3

2
212 ++++=

−−
= xfxfxfxf

xx
xxf  

 

 )    (70...
5555

4
44

3
33

2
22

+
−

+
−

+
−

+
−

= xxxx βαβαβαβα
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Equating the corresponding coefficients from Equation 70 yields 

 

,
5

,
5

,
5

,
5

44

4

33

3

22

21
βαβαβαβα −

=
−

=
−

=
−

= ffff … 

 

Therefore, 

 

 

            (71)

 

( ) .
5

1
5

nn
nn

nf βαβα
−=

−
=

Now, substitute the values for α  and β  from Equations 54 and 55 into Equation 71 in 

order to, once again, arrive at the explicit formula for the Fibonacci numbers: 

 

   

 

.
2

51
2

51
5

1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

nn

nf       (72)

  

The Fibonacci sequence’s characteristics as both a linear homogeneous recurrence 

relation with constant coefficients and a generating function demonstrate once again the 

relationship between the Fibonacci sequence and the golden ratio.  God has used the 

Fibonacci sequence to exhibit the interrelatedness of specific mathematical fields.  

Although various mathematical fields involve different topics and different methods of 

solution, both the Fibonacci sequence and the golden ratio represent mathematical 

concepts that bridge the gap between particular fields of mathematics.  These two 
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concepts reveal the perfect designing nature of God, the Creator of both the universe and 

knowledge.  

Lame’s Theorem 

 Gabriel Lame contributed numerous ideas to the realm of number theory during 

the nineteenth century (Rosen, 1999).  One of Lame’s most famous accomplishments was 

determining an upper bound for the number of divisions used by the Euclidean algorithm 

(Rosen, 1999).  Interestingly, Lame’s discovery involved the use of Fibonacci numbers.  

The following lemma and proof convey Lame’s findings. 

Lemma 

 Let  denote the th Fibonacci number.  Also let nf n ( ) 2/51+=α .  Prove that 

 whenever  (Rosen, 1999). n
n f<−2α 3≥n

Proof 

 The proof of this lemma can be completed by the induction method (Rosen, 

1999).  Let  be .  One must show that ( )nP 2−> n
nf α ( )nP  is true when  and 

.  First, verify that  and 

3≥n

+Ζ∈n ( )3P ( )4P  are true (Rosen, 1999). 

 

    ( ) :3P  3
23 2

2
51 f=<

+
==− αα  (73) 

    ( ) :4P 4

2

224 3
2

53
2

51 f=<
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
==− αα  (74) 

 

Therefore,  and  are both true.  Now, continue with the inductive step and 

assume that  is true  

( )3P

(kP

( )4P

) ( )2.. −> k
kfei α  for all nkk ≤≤∋ 3 , where .  4≥n
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Furthermore, one must show that ( )1+nP  is true ( )1
1.. −
+ > n

nfei α .  Since α is a solution 

to the quadratic equation , 01 =2 −− xx

 

   (75) 2 −α

 

Now, using the information from Equation 75 and basic algebra,  

 

( )1+ nαα 3−n  2321 −−− +==n αααα 33 −− =+⋅ nnn ααα

 

11 −+

3− =⋅ nα . (76) 

 

Furthermore, it has already been assumed that both 

 (77) 

 

and 

 

 (78) 

 

are true.  Now, the Fibonacci recursive definition, += nnn fff

12 +=αα

132 −− =+ nn αα

, can be used to prove 

the remainder of the lemma.  From Equations 76, 77, and 78, and the recursive definition 

of the Fibonacci sequence, 

 

 9) 

⇒

−> nα      (7

 

.

01=−α

1−+ nn ff

3
1

−
− > n

nf α

2−> n
nf α

1+ =nf
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Therefore, ( 1)+nP  is also true.  Thus,  

 

n
n f<−2α  whenever . 3≥n

 

Lame’s Theorem 

 Let a  and b  be positive integers with .  Then the number of divisions used 

by the Euclidean Algorithm to find 

ba ≥

( )ba,gcd  is less than or equal to five times the 

number of decimal digits in  (Rosen, 1999). b

Proof 

 For notational purposes, let  denote the n th Fibonacci number.  Also, let 

 and  in the Euclidean algorithm (Rosen, 1999).  Now, apply the Euclidean 

algorithm using both a  and b . 

nf

0ra = 1rb =

 

122110 0 rrrqrr <≤+=  

233221 0 rrrqrr <≤+=  

344332 0 rrrqrr <≤+=  
M  

 
             (80)
      

      (81) 
 

 

From Equations 80 and 81, one can determine that  divisions are needed to evaluate 

.  Also, from the Euclidean algorithm  we know that .  Therefore, 

, because from the algorith

      
 

n

,

m 

( ) nrba =,gcd

each 1≥iq  for 

1−< ii rr

1+ni ≤≤1 1− += ir  and riii qrr 1−< ii r .  Each 

nnn qrr =−1

112 −−− 1 0−= + ≤ < nnnn rrqrr nn r
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ir  must be m ied by an integ  is great than or equal to one   In 

lar, <nr er e, 2≥nq ause t ainder for nr  is zero an

Ζ∈nq .  Since +Ζ∈nr , 1≥nr .  Also, ≥nr  and 2≥nq ; there 21 ≥ .  Since 

third term of the Fibonacci sequ o, 31 frn ≥−

information 80, nnn rrr

ultipl er that ) .

rticu   Th efor bec he rem d 

fore the 

) is equ tw

 ( iqei ..

nn qr=−1

−nr

.  Using the 

pa 1−nr .

 from E

,  

ence (i.e

nr

1

. 3f

nq

, 

al to 

nrquation +≥+= −1

d

−11

1 f≥

−

use rn−

, 3f

−2 ; because 11 ≥−nq .  

Therefore, 131 +− frn ; beca  1≥nr .  It is clear from the Fibon

sequence that, 12 =f ; the 231 ff

≥+ rn 3 an

e

acci 

refor +=+ .  Also, recall from the Fibonacci 

recursive definition that 23 f4 ff +=

3 rnn

.  Continuing along the sam

1rn

e

3f

 line of reasoning, 

5f

 

   42 f1n22 rqn rnr =≥+≥+=−

ss will lead to 

   21

−−−

 

13 −

−

2

−

32

+ . (82) 

llEventua y, this pro
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1+=+≥+≥+= rr

 

iously 

nf
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nn ff

 the lemm
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 ≥b

d fr
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. (83) 
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It prev e’s Theorem
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          , for  and 1
1

−
+ > n

nf α 2>n
2

51+
=α . (85) 

 

 Equations 84 and 85, it is clear that 

 

 

inequality is preserved, because both  and  are positive fr m Equations 85 and 86 

and the logarithm function is an increasing function.  Therefore

 

 7) 

 

Using the value of 

Thus, from

               1+n bfb . (86) 

Now, one must take the logarithm of both sides of the inequality (Rosen, 1999).  The 

11 −− >⇒>> nn αα

b 1−nα o

, 

       (8

α

( ) ( ) .log1 10
1 αα −=− nnloglog 1010 >b

from Equation 85, 5/120.0209.0log10 =>≈α  (Rosen, 1999).  

Now, substitute r the value of5 fo/1  α10 .  Therefore,  log

 

   ( )
555 ⎠⎝

1log111log 1010
−

>⇒
−

=⎟
⎞

⎜
⎛−>

nbnb . (88) 

 

Now, let  be the number of decima (R

 

 

n

k osen, 1999).  Therefore, l digits in b  

                                                     (89)

 

.10 kb <
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Now, take the logarithm of both sides of the inequality (Rosen, 1999).  The inequality is 

reserv ecause bo  are positive.  T

 

           

p ed, b th b  and herefore,  k10 , +Ζ∈k

( ) kkkb ==⋅< 110loglog 1010   . (90) 

 

Thus, it is clear that 

 

 (91) 

 

Now, combine Equations 88 and 91. 

 

ons used by the Euclidean 

he number of decimal digits in .  Therefore, 

urther investigation of Lame’s Theorem 

 From Equation 88, it has been 

 

 

(93) 

Therefore, 

kb10log <

        (92

 

Since knn 5, ≤Ζ∈ + .  Recall that n  is the number of divisi

) 
nknknn

>+⇒−>⇒kbk −
>⇒

−
> 151511

>
55

log10

algorithm to find ( ) nrba =,gcd , and k  is t b

based upon Equation 92, Lame’s Theorem has been proven. 

F

previously established that 

 

.
5

1log10 >
nb −
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  (94) 

 

ince  and  must be at least the first term in the Fibonacci 

 

2 .       (95) 

 

 

. (96) 

 

 96, 

 

S  11 −+ +=≥ nnn fffb 1−nf

sequence, 

   1 ≥≥ +nfb

Thus, 2≥b .  Therefore, 

From Equations 94 and

   bn 10 loglog51 bbb 101010 log105log5 ⋅=⋅+⋅<⋅+< . (97) 

Therefore, according to Rosen (1999), 

 

bn 10log10 ⋅<  and ( )bb 1010 loglog10 Ο=⋅ .  Thus, 

 

(98) 

 

herefore,  divisions are needed to compute 

 

T  ( )b10logΟ ( )ba,gcd  by the Euclidean 

algorithm,

 

10 b

 when ba > . 

.log511log5 10 bnn ⋅+<⇒−>⋅

log5 10 1log515.12log5 1010 >⋅ ≈ ⇒> ⋅≥ b⋅ b

( ).log10 bn Ο<
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More Applications to Number Theory 

 The uniqueness of the relationship among the terms in the Fibonacci sequence le

Fibonacci and other mathematicians to develop theorems in the field of number theory 

that evidence the fascinating properties and characteristics of the terms in the Fi

sequence.  Using the Fibonacci numbers, mathematicians have also developed 

mathematical identities that are helpful in provin

d 

bonacci 

g those theorems.  This section will 

w of those theorems and identities. 

For the Fibonacci sequence, 

address a fe

Theorem 2 

( ) 1,gcd 1 =+nn ff  for every  (Burton, 2002). 

roof 

er that  

2002).  Therefo  their differenc

1≥n

P

 Assume there exists an integ divides both nf  and +nf  (Burton,

re, e 

 1>d  1

( )nfnfei −+1.. be divisible by d .  Since 

1+ += nn fff , 11 −+ =− nnn fff . lso, 1−

 

  A

would 

1−n  2−=− nfnn ff  must be divisible by  since 

 (99) 

ontinuing to work backwards, this method can be used to show that  

                        ,  , … (100) 

 

2| −d

d

both nf  and −nf 1  are divisible by d .  Therefore, 

 

nf

 

C

 

3| −nfd 4| −nfd
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Finally, it can be shown that  ; however, 1| fd 11 =f , and  can’t divide 1 when .  

Thus, a contradiction has been encountered in the proof.  Therefore, Theorem 2 has been 

proven. 

d 1>d

Identity 1 

 

 (101) 11 +−+ += nmnmnm fffff

 

Proof 

 The proof of this identity can also be completed using the induction method on  

(Burton, 2002).  First, let .  Thus, 

n

1=n

 

 (102) mmmm fffffff +=+= −−+ 12111 m

 

since both  and  are equal to one.  Equation 102 is identical to the Fibonacci 

recursive definition.  Now, assume 

1f 2f

11 +−+ += nmnmnm fffff

1

 for all .  One 

must now verify that the identity is true when 

kn ,...,4,3,2,1=

+= kn .  It has already been assumed that 

 

 

 (103) 11 +−+ = + kmkmkm fffff

k

 

and 

 (104) mkmkm fffff += −−−+ 11)1(
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Now, add Equations 103 and 104 together. 

 

   kmkmkmkmkmkm ffffffffff +++=+ −−+−+++ 1111)1(  

  ) 

 

      (105)( ) ( kkmkkm ffffff +++= +−− 111

 

Incorporating the Fibonacci recursive definition once again yields the following equation: 

 (106) 211)1( ++−++ += kmkmkm fffff

 

Equation 106 is identical to Equation 101 with 1+= kn .  Therefore, 

 holds 11 +−+ += nmnmnm fffff 2≥∀m  and . 1≥n

Theorem 3 

 For  is divisible by  (Burton, 2002). mnfnm ,1,1 ≥≥ mf

Proof 

 The proof of this theorem can be completed using the induction method on  

(Burton, 2002).  First , let  and  be any integer.  When 

n

1=n m 1=n , mfmmn ff == )1(

mf

 , 

which, of course, is divisible by .  Now, assume  is divisible by  for the cases 

  One must now show that  is divisible by .  Use Identity 1 

from Equation 101 

mf

( 1−

mnf

....,,4,3,2,1 kn = )1( +kmf

1+

mf

).. + += nfmffei nfmfnm  for the following equation: 

 

    mmkkm ff ++ =)1( . (107) 
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Therefore, 

 

. )                (10811)1( +−++ +== mmkmmkmmkkm ffffff

 

Earlier, it was assumed that  is divisible by ; therefore, an  may be factored 

from each term on the right-hand side of Equation 108.  Thus, the entire right-hand side 

of the Equation 108 above is divisible by .  Now, it is clear that the left-hand side of 

Equation 108 is also divisible by 

mkf mf mf

mf

mf ( ))..ei 1( +kmf|mf .  Therefore, for  is 

divisible by . 

mnfnm ,1,1 ≥≥

mf

Identity 2 

 

 (109) 2,3 113 ≥−= −++ nfff nnn

 

Proof 

 Apply Identity 1 ( )11 +−+ += nmnmnm fffff  to the left-hand side Equation 109.  

Therefore, 

 

111) 

nnnn fffffff 32 14313 +=+= −−+ n .  (110) 

 

Now, use the Fibonacci recursive definition as follows: 

 

( ) nnnnnnnnnn ffffffffff = .  (nf+− + = − +=+= +++−+ 11113 23223232
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Thus, 

 

 

 

  4) 

.2 13 nnn fff += ++          (112)

 

Now, apply the Fibonacci recursive definition once again. 

( ) 1111113 322 +−++++  13)      (1+ = + − = −= nnnnnnn ffffffff n−

 

Therefore, . 2,3 113 ≥−= −++ nfff nnn

Identity 3 

 

   (111... 254321 −=++++++ +nn fffffff

 

Proof 

 By the Fibonacci recursive definition, the following relations hold: 

 

12

11

675

564

453

342

231

++

+−

−=
−=

−=
−=
−=
−=
−=

nnn

nnn

fff
fff

fff
fff
fff
fff
fff

M
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Add all of the above equations together.  The terms on the left sides of the equations yield 

the sum of the first  Fibonacci numbers, and the terms on the right sides of the 

equations cancel except for the terms  and .  Therefore, 

n

2f 2+nf

 

. 5)    (112f254321 ... fffffff nn −=++++++ +

 

Since , 12 =f 1... 254321 −=++++++ +nn fffffff . 

Identity 4 

 

 (116) ( )11
2 1 −

−+ −+= n
nnn fff 1

 

First subtract  from both sides of Equation 116 in order to prove the following 

variation of Identity 4: 

11 −+ nn ff

 

( ) 1
11

2 1 −
−+ −=− n

nnn fff  (117) 

 

Start with the right side of Equation 117 and implement the use of the Fibonacci 

recursive definition (Burton, 2002). 

 

( ) 1121112111
2

−+−−−+−−−+ −+=−+=− nnnnnnnnnnnnnn ffffffffffffff  

 

( ) 11 −−+  (118) 2+−= nnnnn fffff
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Now, since  , the expression 11 −+ += nnn fff 1+− nn ff  from the right-hand side of the 

Equation 118 can be expressed as 

 

( ) 111 −−+ −   (119) 

 

Now substitute the value from Equation 119 into Equation 118. 

 

( ) 21111
2

−−−−+ +−=− nnnnnnn fffffff  

                          (120) 

 

) 

 

Therefore, 

                          (121

 

Now, the right and left-hand sides of Equation 121 are identical, except for the initial sign 

and the fact that all of the subscripts have been decreased by one on the right-hand side. 

By repeating the same argument, 

 

( )( ) ( )( )( )31
2

22
2

111
2 111 −−−−−−+ −−−=−−=− nnnnnnnnn fffffffff  

 

)      (122

 

Now, continue the same pattern.  After 2−n  steps have been completed, 

.1−= − + = − − =− nnnnnnnnn fffffffff

)( ) ( )( 2
2

12
2

1 1 −−−− −−=+−= nnnnnn ffffff

( )( )1 2
2

111
2

−−−+ −−=− nnnnnn ffffff .

( )( ) 31
2

2
21 −−− −−= nnn fff
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( ) ( ) .1 13
2

2
2

11
2 ffffff n

nnn −−=− −
−+

                (123) 

  

From the Fibonacci sequence, ,1,1 21 == ff and 23 =f .  Therefore, 

 

 

 4)       (12( ) ( ) ( ) ( ) ( ) 122
11

2 111211 −−
−+ −=−−=−−=− nn

nnn fff −n

 

Therefore, . ( ) 1
11

2 1 −
−+ −+= n

nnn fff

Identity 5 

 (125) 11212
2

2 −= −+ kkk fff

 

Proof 

 Identity 5 simply explores the case when kn 2=  for Identity 4.  First use Identity 

4 from Equation 116, but substitute kn 2= .  Therefore, 

 

                   ( ) 12
1212

2
2 1 −

−+ −+= k
kkk fff . (126) 

 

Since,  is an even number, we know that k2 12 −k

2
2 = kf

 is an odd number.  An odd power of 

 simply produces ( .  Therefore, . ( )1− )1− 11212 −−+ kk ff

Lemma to Theorem 4 

 If rqnm += , then ( ) ( )nrnm ffff ,gcd,gcd =  (Burton, 2002). 
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Proof 

 Since rqnm += , 

 

    ( ) ( )nrqnnm ffff ,gcd,gcd += . (127) 

 

Now, implement Identity 1 ( )11 +−+ += nmnmnm fffff  in Equation 127. 

 

 28)   (1

 

From Theorem 3,  is divisible by  when .  Therefore,   is 

divisible by .  Now, let  be represented by c .  Also, let  be represented 

by a  and let  be represented by b  (Burton, 2002).  Substituting these values into 

Equation 128 yields 

qnf nf 1,1 ≥≥ qn 1+rqn ff

rnf

nf

1+rqn ff qn ff 1−

 
 ( ) ( )bcafffff nrqnrqn ,gcd,gcd 11 +=+ +−  .      (129) 

 

Since  , we know that .  Because , 1| +rqnn fff cb | cb | ( ) ( babca ,gcd,gcd = )+ , because 

 is simply a multiple of b  (Burton, 2002).  Therefore, c

 

( ) ( ) ( )rqnrqnnrqnnm ffffffff ,gcd,gcd,gcd 11 +−+ nf∴ = = +

( ) ( )nrqnnrqnrqn ffffffff ,gcd,gcd 111 −+− + =                            (130) 
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 At this time, the claim must be made that ( ) 1,gcd 1 =− nqn ff .  The proof of this 

claim is essential to the completion of the entire proof of the lemma.  At this time, let 

 

(131) ( )nqn ffd ,gcd 1−=  

 

From Equation 131, it is clear that .  It has also been previously established from 

Theorem 3 that .  Therefore, .  From Equation 131, it is also clear that 

.  Therefore,  divides consecutive Fibonacci numbers  and . 

nfd |

fd |qnn ff |

d

qn

1| −qnfd qnf 1−qnf

However, Theorem 2 states that consecutive Fibonacci numbers are relatively prime 

.  Therefore, ( )( )1,gcd.. 1 =+ii ffei 1=d .  Thus, ( ) 1,gcd 1 =− nqn ff . 

 According to Burton (2002), the following number theory property must now be 

implemented: if , then ( ) 1,gcd =zx ( ) ( )yxyzx ,gcd,gcd = .  Let nfx =  ,  , and 

 in this property (Burton, 2002).  Since 

rfy =

1−= qnfz ( ) 1,gcd 1 =−qnf nf , the above property 

implies that ( ) ( )rf,nfgcdqnn ff , 1 =−gcd .  Therefore, 

 

( ) ( ) ( )nrqnrqnnrqnnm fffffffff ,gcd,gcd,gcd 11 +−+ +==  

 (132) 
( ) ( )nrnrqn fffff ,gcd,gcd 1 == −  

 

Therefore, ( ) ( )nrnm ffff ,gcd,gcd = . 
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Theorem 4 

 The greatest common divisor of two Fibonacci numbers is again a Fibonacci 

number; specifically, ( ) dnm fff =,gcd  where ( )nmd ,gcd=  (Burton, 2002). 

Proof 

 First, assume that  and apply the Euclidean algorithm to  and . nm ≥ m n

 

 

              (133) 
0

0

0
0
0

11

112

233231

12212

111

+=
<<+=

<<+=
<<+=
<<+=

+−

−−−

nnn

nnnnnn

rqr
rrrrqr

rrrrqr
rrrrqn
nrrnqm

M

 

Using the lemma to Theorem 4, 

 

       (134) 

 

Because  from Equation 133, Theorem 3 verifies that .  Therefore, 1| −nn rr
1

|
−nn rr ff

 

 (135) 

( ) ( ) .
nr

( )( ) ,gcd...,gcd,gcd,gcd
121 nrrrnrnm ffffffff

−
= = = =

( ) .,gcd
1 nnn rrr fff =

−

 

However,  is the last non-zero remainder from the Euclidean Algorithm for  and .  

Thus, .  Therefore, 

nr

m,

m n

( ) nrn =gcd
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( )                           (136) ( ) ,,gcd ,gcd1 dnmrr fffff
nnrn

= = =
−

 

where . ( ) dnmrn == ,gcd

 These theorems and identities in the field of number theory display not only the 

unique relationships among Fibonacci terms but also the rigid structure of the realm of 

mathematics.  Although many different languages are spoken throughout the world, there 

is the only one universal language: mathematics.  God has given humans the ability to 

communicate through the succinct, ordered language of mathematics in order to discover 

both His beauty and His sovereignty.  

Fibonacci Puzzles 

 Identity 4 can be used to explain a famous geometric deception related to the 

Fibonacci sequence (Burton, 2002).  This deception focuses upon the division of a square 

into four shapes: two triangles and two trapezoids.  The specific division of these shapes 

is evidenced in Figure 2 (Burton, 2002).  Once the square has been divided properly, the 

pieces are then rearranged to form a rectangle, which is exhibited in Figure 3 (Burton, 

2002). 

 Based upon the dimensions of Figure 2, the square has an area of sixty four units.  

However, when the four shapes are rearranged to create the rectangle in Figure 3, the area 

has changed.  The dimensions of Figure 3 reveal that the rectangle has an area of sixty 

five units.  How can this reconstruction of the square be valid?  The same four shapes 

seemingly produce two different areas when rearranged differently. 
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          8 

 

    3 
 
                          5                 3 
 
 
   5                                       5 
 
 
 
                    3         5 
 
 
Figure 2.  Square broken into 4 shapes with Fibonacci dimensions. 
 
 
 
 
 
     a                                 5 
   
                  
   
       b 
  5 
          c 
 
 
 
               d 
 
          13 
 
 
Figure 3.  Seemingly unified rectangle composed of 4 shapes. 
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 This anomaly can be explained using Identity 5 ( )1.. 1212
2

2 −= −+ kkk fffei .  The 

square must be broken into the four shapes using three consecutive Fibonacci numbers.  

An entire side of the square must have the dimension of an even term in the Fibonacci 

sequence (i.e. the number has an even subscript).  The other two dimensions are the two 

Fibonacci numbers that precede that even term in the Fibonacci sequence.  The 

appropriate dimensions of the square are illustrated in Figure 4 (Burton, 2002).  Figure 5 

demonstrates, however, that when the shapes are properly rearranged into a rectangle, the 

points and do not lie directly on the diagonal of the rectangle (Burton, 2002).  I

reality, the points ,ba d d form a small parallelogram with an area of exactly one 

square unit. 

,,, cba d n 

an,,c  

 
 
         kf 2

 
 
   f                   A        22 −k 22 −kf
                     B       
                          

                           12 −kf
          
 
                        C   D        12 −kf 12 −kf
           
            
 
          12 −kf
 
 

Figure 4.  Square with dimensions of specific Fibonacci terms. 
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                                       kf 2 12 −kf
     a 

 
       A 
                            D      12 −kf 12 −kf
                         b                      d   
            C   
     B  
               
 
                  c 
      
         f  12 +k

 
 
Figure 5.  Rectangle Fibonacci puzzle with unit parallelogram. 
 
 

Conclusion 

Ultimately, the Fibonacci sequence appears not only in the various branches of 

mathematics but also many different aspects of this world.  From number theory to 

nature, the Fibonacci sequence can be found in numerous arenas both inside and outside 

of the realm of mathematics.  The prevalence of this particular sequence is not 

coincidental; it has been divinely established and maintained.  The beauty of the 

Fibonacci sequence illustrates the aesthetic nature of God, our Creator and Sustainer of 

the universe.  The Fibonacci sequence is simply one of numerous evidences of God's 

sovereignty over the affairs of mankind. 
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