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Steady State Probabilities in Relation to Eigenvalues 

Eigenvalues and eigenvectors have numerous useful applications in mathematics and 

physics. One specific application is the use of eigenvalues to calculate steady-state probabilities 

and mean return times of ergodic chains. In “Operations Research, an Introduction,” Hamdy 

Taha uses the method of determining these probabilities from the constraints: π��⃑ = π��⃑ P and ∑ πjj  

where P is a stochastic matrix in which the row probabilities sum to 1. The author then solves the 

system of equations with these constraints and uses the solution to determine the steady state 

probabilities and mean return times (Taha 528). These steady state probabilities can be very 

useful in determining expected values and obtaining other results. It is clear from the initial 

constraint π��⃑ = π��⃑ P that this represents an eigenvalue problem as this can be restated as: 

0�⃑ = π��⃗ P − π��⃑  

π��⃑ (P − I) = 0�⃑  

Thus, this appears to be an eigenvalue problem in which 1 is an eigenvalue. However, this is 

notably different than the equations presented in “Linear Alegebra, 3rd Edition” by Fraleigh. 

There are differences between Taha’s technique of computing the steady state vector and 

Fraleigh’s technique of taking det(A − λI) = 0 to find the eigenvalue from the characteristic 

equation and then compute the eigenvectors (Fraleigh 290-91). Upon closer examination of these 

steady state problems, many questions arise in relation to the consistent result of an eigenvalue 
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Pellegrino 2 

equal to 1, the potential ability or inability to reproduce Taha’s results from Fraleigh’s method of 

using determinants, and the existence of eigenvalues other than 1. 

 The initial difference between Taha’s method and the techniques learned in linear algebra 

is that the eigenvectors computed in linear algebra appear on the right side of the unknown 

vector which are to be solved. Therefore, to ensure the same results, one must transpose the 

stochastic matrix P so that the columns sum to 1 instead of the rows: 

π��⃑ = π��⃑ P 

π��⃑ = PTπ��⃑  

(PT − I)π��⃑  = 0�⃑  

which moves π��⃑  to the right side. This right eigenvector follows Fraleigh’s method.  

After manipulating this to the form of a right eigenvalue problem, one is able to solve for 

the eigenvector π��⃑ , given that λ = 1. But to truly make this an eigenvalue problem, one must 

consider (PT − λI)π��⃑ = 0�⃑  and compute λ. Taha’s method assumes that λ = 1, but why is this 

always the case? When dealing with a stochastic matrix, the column entries all sum to 1. 

Subtracting 1 from the diagonal, as is the case of λ = 1, it is obvious that the columns sum to 

zero. Thus, since the matrix (PT − I) has columns that sum to zero, the sum of the row vectors is 

0 and the rows are linearly independent, proving that there is some nontrivial vector π��⃑  that 

satisfies the equation (PT − I)π��⃑ = 0�⃑  and thus 1 is always an eigenvector of this stochastic matrix 

PT. 

 The assumption is lack of knowledge as to what λ is for (PT − λI)π��⃑ = 0�⃑  and therefore it 

follows to compute it using Fraleigh’s method for a stochastic matrix PT whose column 

components sum to 1. Looking specifically at example 17.4-1 (Taha, 578-579), one finds: 
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P =  �
0.3 0.6 0.1
0.1 0.6 0.3

0.05 0.4 0.55
� such that PT = �

0.3 0.1 0.05
0.6 0.6 0.4
0.1 0.3 0.55

� 

 PT − λI = �
0.3 − λ 0.1 0.05

0.6 0.6 − λ 0.4
0.1 0.3 0.55 − λ

� 

Taking the determinant of (PT − λI) and setting it equal to zero, the result is 

det(PT − λI) = (0.3 − λ) ∗ [(0.6 − λ) ∗ (0.55 − λ) − (0.4) ∗ (0.3)] − (0.1) ∗ [(0.6) ∗

(0.55 − λ) − (0.4) ∗ (0.1)] + (0.05) ∗ [(0.6) ∗ (0.3) − (0.6 − λ) ∗ (0.1)] = 0. 

Using algebra to simply and solve for λ such that det(PT − λI) = 0 produces:  

−λ3 + 1.45λ2 − 0.49λ + 0.04 = 0 

Using Mathematica to compute the roots,  

In[6]:= Roots[-x^3 + 1.45 x^2 - 0.49 x + 0.04 == 0, x] 

Out[6]= x == 0.121922 || x == 0.328078 || x == 1 

one discovers the eigenvalues of 0.121922, 0.328078, and 1. 

Considering the eigenvalue of 1 and computing the corresponding eigenvector, one must 

first consider the matrix: 

PT − 1I = �
−0.7 0.1 0.05
0.6 −0.4 0.4
0.1 0.3 −0.45

�. 

The solution to the system is 

�
– 0.7 0.1 0.05
0.6 −0.4 0.4
0.1 0.3 −0.45

� �
x
y
z
� = �

0
0
0
�. 

Simplifying this matrix in Mathematica produces: 

In[8]:= RowReduce[{{-0.7, 0.1, 0.05}, {0.6, -0.4, 0.4}, {0.1, 0.3, -0.45}}] 

Out[8]= {{1, 0., -0.272727}, {0, 1, -1.40909}, {0, 0, 0}}. 
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Thus, there is a free variable for z which can define other variables as they relate to z. Choosing 

z=s, one has x=0.272727*s and y=1.40909*s and the eigenvector is  

s �
0.272727
1.40909

1
�. 

This is the eigenvector for the eigenvalue of 1. However, it is obvious that this does not match 

the steady state probabilities obtained by Taha’s methods. To obtain the same results, one must 

choose an s that causes the eigenvector to sum to 1 when dealing with probabilities. Thus, s is to 

be the inverse of the sum of all of the entries: 

s = 1
(0.272727+1.40909+1)

= 0.37288152.  

The new eigenvector is 

s �
0.272727
1.40909

1
� = 0.37288152 �

0.272727
1.40909

1
� =   �

0.101694858
0.525423621
0.37288152

�, 

which is equivalent to Taha’s solution in example 17.2-1. Therefore, one is able to obtain the 

same results with linear algebra methods. Taha’s method is simply an application of eigenvalues 

and eigenvectors. Adding the constraint ∑ πjj  has the same impact as choosing an s such that the 

eigenvector entries sum to 1.  

 Clearly the eigenvalue is 1 which produces the same results as Taha. However, this is not 

the only eigenvalue for the stochastic matrix. In the previous example, there were three 

eigenvectors. Most notable about the other two eigenvectors is that some of the entries have 

opposite signs, making it impossible for them to represent some probability. The eigenvector v ��⃑ to 

the eigenvalue 1 is called the stable equilibrium distribution of the stochastic matrix A and is also 

called Perron-Frobenius eigenvector. It can be proven that for a stochastic matrix A, it will 
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always have an eigenvalue of 1 and that all other eigenvalues will be less than 1. It does not seem 

as though these other eigenvalues carry any real significance as the eigenvalue of 1 does.  

 From this application, it is evident how helpful eigenvectors can be in solving problems. 

Taha used his knowledge and experience with eigenvalue problems to derive a shortcut to 

compute these steady state probabilities that consistently works every time. Significantly these 

stochastic matrices always have an eigenvalue of 1, and some other eigenvalues are less than 1.  
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