
PDX-l IS REQUIRED FOR POSTERIOR FOREGUT PATTERNING AND 

D~~TIONOFTHEPANCREASANDDUODENUM 

By 

MARTIN F. OFFIELD 

Dissertation 

Submitted to the Faculty of the 

Graduate School of V anderbilt University 

for the degree of 

DOCTOR OF PHaOSOPHY 

in 

Cell Biology 

December, 1996 

Nashville, Tennessee 

r L 



To Donna and my parents 

who always believed in me 

lV 



ACKNOWLEDGEMENTS 

The financial support for the research of this dissertation was provided by 

the National Institutes of Health (grant #HD28062 to C.V.E.W. and #DK42502 

to C.V.E.W. and Mark Magnuson) and by the Howard Hughes Medical Institute 

(funding to Brigid L. M. Hogan). The research described in this dissertation was 

done in collaboration with the labs of Mark Magnuson and Brigid Hogan. 

Specifically, the electroporation of pdx-l targeting constructs and subsequent 

production of chimeric animals was carried out by Patricia (Trish) Labosky of 

Brigid Hogan's lab. It was Trish's expertise in this area that allowed us to move 

very quickly with these experiments. Linda Hargett was also involved in this 

process and helped in the breeding and maintenance of the mouse lines. Tom 

Jetton of Mark Magnuson's lab was responsible for much of the immunostaining 

necessary for the analysis of the pdx-l mutants. Tom was not only the supplier of 

many of the antibodies used in these analyses, but he has been an encyclopedic 

source of information on pancreatic gene expression and function. Tom has been 

more than helpful in our attempts to analyze and describe the defects seen in pdx­

I null animals. Mike Ray of Chris Wright's lab aided in the cloning of pdx -1 and 

also in the genotyping many of the animals drived from the pdx -1 mutant lines. 

I would like to express my gratitude to the members of my committee. 

Claude Nagamine was a great resource during my first few years when I was 

attempting to clone the XIHbox-8 homolog by PCR approaches. Claude has also 

been very helpful in my academic process; when my mentor, Chris Wright, was 

unavailable, I have frequently gone to Claude with questions regarding the 

various meetings, forms, etc. that are all part of one's graduate training. Bob 

v 



Coffey provided key insights that helped to shape my understanding of the 

alimentary tract. Advice from Bob was critical in our analysis of the gut defects 

which we encountered in the homozygous null mutants generated by this 

research. Mark Magnuson and members of his lab (especially Tom Jetton) were 

key co-laborers in this research. Their expertise in endocrinology and pancreatic 

function were very important in the analysis of the pancreatic and duodenal 

abnormalities which result from the loss of PDX-l function. Roland Stein and the 

members of his lab played a pivotal role in the initial identification of the insulin 

and somatostatin transcription factor (STF-l) as the rat homolog of XlHbox-8. 

This ultimately led to our cloning of the mouse homolog. Our continued 

interactions with the Stein lab are playing an important part in the 

characterization of the mechanisms of pdx-l transcriptional regulation. 

I am very grateful to my mentor, Chris Wright, who has been the most 

significant component of my graduate training. I knew little of the techniques of 

molecular biology when I fIrst joined the lab, and I attribute my current level of 

expertise in this area to Chris. I have also gained from Chris a greater ability to 

critically evaluate my own scientific work and the work of others. Chris has an 

innate drive for excellence in all that he does which has provided much of the 

impetus to make all that I do not just good, but great. Although this has many 

times caused conflicts between us, Chris has been patient with my stubbornness 

and, at times, short temper. Through it all, my skills as a scientist have been 

sharpened. I have the highest regard for both Chris and his wife, Jane, who have 

been more than my colleagues; they have been friends to me in many ways 

during my graduate career. 

I would also like to express appreciation to my fellow graduate students in 

vi 



the Department of Cell Biology. AI Candia and Laura Gamer were senior 

graduate students in Chris's lab during my fust few years at Vanderbilt. They 

both taught me most on the experimental techniques that I learned in my fust two 

years. Laura's research, which is discussed in this dissertation, was foundational 

to my own. My early discussions with Laura were formative in my understanding 

of the function of the homeobox gene, XlHbox-8. To the current members of the 

Wright lab, Mandy Frisch, Abby Cheng, Caroline Erter, Maureen Gannon, Karuna 

Sampath and Mike Ray, I will miss you all. Thanks for your friendship and 

"comic relief'. I am also grateful for my friends and fellow classmates, Brenda 

McAdory, Scott Eblen, Jean Witty and Don Pierce. They were my companions 

through the early trials of Biochemistry and Cell Biology. I truly enjoyed the time 

which we were able to spend together both academically and socially. To the 

members of the Greenstein, Miller and Hogan labs I would like to say thank you 

for your friendship and encouragement. To everyone else in the department, I 

appreciate all the "little things" that you all did over the past six years. These 

years have been very enjoyable, in part, because you were part of my life. I will 

miss you all! 

On a personal note, I would not have gotten through my graduate career 

without the love, prayer and support of my wife Donna. She has been a constant 

encouragement to me and has put up with my moodiness, exhaustion, and just 

not being at home. There has not been a day that she did not in some way 

encourage me and motivate me to keep going. 

When I was born, I had the most severe form of lumbar Spina Bifida. The 

spinal cord from the 3rd lumbar vertebra down was outside of the vertebra and 

completely disorganized. On top of this region was a large fatty tumor which had 

vii 



dissolved much of the vertebrae. My doctors at the time told my parents I would 

never walk, I would be mentally retarded and likely would not live more than a 

few years. Thankfully my parents did not heed the doctor's advice to place me in 

an institution and forget they had had me. Because of their faith in God and His 

ability to produce good even from the worst circumstances, they sought out other 

doctors, whose outlook was less pessimistic, to give me the treatment I needed. 

Over the next ten years various doctors continued to make predictions of my 

emanate demise. In spite of this, my parents kept these things from me and 

instilled in me the drive to always do my best no matter what my circumstances 

are. All that I am is due to the courage and values that I have learned from my 

parents and my own faith in God who promised that, "They that depend upon the 

Lord shall renew their strength. They shall mount-up with wings as eagles. They 

shall run and not be weary. They shall walk and not faint." (Isaiah 40:31). I am 

living proof! 

Vl1l 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS .............................................. v 

LIST OF FIGURES ..................................................... x 

LIST OF ABBREVIATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Xl 

Chapter 

r. GENERAL INTRODUCTION 

Establishment of the Embryonic Axes ........................... 2 
Establishment of the Three Germ Layers ......................... 4 
Homeobox Genes in Patterning During Development ............. 9 
Specification of the Primitive Endoderm ........................ 14 
Morphological Development of the Posterior Foregut ............ 18 
XlHbox-8/PDX-l in Pancreatic & Duodenal Development ........ 21 

II. CLONING OF THE MURINE XlHbox-8 HOMOLOG 

Introduction ................................................ 27 
Methods and Materials ....................................... 27 
Results ..................................................... 30 
Discussion .................................................. 35 

ill. ANALYSIS OF PDX-l FUNCTION BY GENE TARGETING 

Introduction ................................................ 37 
Methods and Materials ....................................... 38 
Results ..................................................... 44 
Discussion .................................................. 64 

IV. GENERAL DISCUSSION 

Insights into Endodermal Patterning . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71 
Molecular Data Concerning Pancreatic and Hepatic Induction ..... 73 
Potential Ramifications for Diabetes ............................ 79 
Future Directions ............................................ 80 
Summary ................................................... 83 

REFERENCES ....................................................... 84 

IX 



LIST OF FIGURES 

Figure Page 

1. Organization of the Mouse Hox and Drosphila Hom-C Homeobox 
Clusters .................................................... _ . _. 12 

2. Hox Gene Patterning in the Hindbrain .... _ . _ .. _ . _ ............ _ ... _. 13 

3. Patterning of the Primitive Endoderm ..... _ .... _ ................. __ . 14 

4. Cloning Attempts Using XlHbox-8 Probes .... __ . _ ................ _ . 31 

5. Restriction Mapping of #21.. Clone of pdx -1 . _ .. _ . _ ........ _ ......... 34 

6. Targeted Mutagenesis of pdx-l ............. _ .. _ .................. 39 

7. Gross Analysis ofpdxXBko Animals ............ _ .............. _ ..... 46 

8. Time Course ofPDX-l/~gal Fusion Expression ............ _ ......... 48 

9. Tracking of Pdx -1 Expression Tissues in pdxlacko Embryos .......... _ . 50 

10. Aberrant Pancreatic Duct Structures in pdx-l Embryos ....... _ ....... 52 

11. Pancreatic Marker Expression in pdxXBko and pdxlacZko Embryos ...... 55 

12. GLUT2 Expression in the Dorsal Ductule ..... _ .. _ .................. 56 

13. Analysis of the StomachlDuodenal Region ..... _ .................... 57 

14. Absence of Brunner's Gland's in pdx-l -/- Mutants ................. 60 

15. Reduction in Neuroendocrine Cells in pdx-l Embryos ............. _ .. 62 

16. Quantitation of Enteroendocrine Cells in pdxXBko -/- Embryos .... _ ... 63 

17. Regionalization of the Early Posterior Foregut ..... _ . . . . . . . . . . . . . . . . . 72 

18. Patterning of the Developmental Fates of the Posterior Foregut .... _ ... 77 

x 



AlP 
AP 
Antp 
bFGF 
~gal 
BMP 
cDNA 
dATP 
DNA 
dpc 
dpp 
DV 
EDTA 
FGF 
GLUTI 
I-FABP 
IDX-I 
IPF-I 
kb 
L-FABP 
ml 
mM 
mRNA 
PAS 
PBS 
PCR 
RT-PCR 
SDS 
Shh 
SSC 
SSPE 
S1F-I 
TGFI3 
Ubx 
IN 

LIST OF ABBREVIATIONS 

anterior intestinal portal 
anteroposterior 
Antennapedia 
basic FGF 
~ galactosidase 
bone morphogenetic protein 
complementary DNA 
2' -deoxyadenosine-5' -triphosphate 
deoxyribonucleic acid 
days post-coitum 
days post-partum 
dorsoventral 
disodium ethylenediamine tetra-acetate 
fibroblast growth factor 
glucose transporter 2 
intestinal fatty acid binding protein 
islet and duodenal homeobox gene 1 
insulin promoter factor I 
kilobase(s) 
liver fatty acid binding protein 
milliliter 
millimolar 
messenger ribonucleic acid 
periodic acid-Schiff s reagent 
phosphate buffered saline 
polymerase chain reaction 
reverse transcriptase-mediated PCR 
sodium dodecyl sulfate 
Sonic hedgehog 
standard saline citrate 
saline, sodium phosphate EDT A 
somatostatin transactivating factor I 
transforming growth factor ~ 
ultrabithorax 
ultraviolet light 

Xl 



CHAPTER I 

GENERAL INTRODUCTION 

Probably the fundamental question which is faced by all who study the 

processes of development is how a one dimensional DNA code is translated into a 

three-dimensional structure--the developing embryo (Gehring, 1987). Because of 

the difficulty in experimentally manipulating mouse embryos at early stages, it has 

been difficult to address the questions of early patterning events in this system. 

Due to the size and resiliency of their embryos, as well as the ability to maintain 

them in simple salt solutions, amphibians were the choice of many early 

embryologists who were trying to identify the cues responsible for setting-up the 

basic embryo pattern. Early morphological analysis of amphibians revealed that 

the establishment of the embryonic axes was the first step in this process. The 

first component of axis formation is determined maternally through the vegetal 

deposition of yolk and other factors. Fertilization leads to second messenger 

cascades and cortical rotation leading to the positioning of the dorsoanterior 

region opposite the site of sperm entry. These regional inequalities lead to the 

specification of the early axes and to the establishment of the three germ layers 

through the interaction of the animal and vegetal hemispheres. The patterning 

due to the mutual interactions of the three germ layers ultimately leads to the 

development of the various organ systems and supporting tissues. Though all of 

this has been known among embryologists for many years, the biochemical 

mechanisms of these processes have been more elusive. Much progress, however, 

has been made recently in identifying the factors which are involved in axis 
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formation, early tissue inductions, and patterning of the three germ layers in 

Xenopus. Comparative work indicates that similar molecular mechanisms are 

utilized not only in mice, but also in other vertebrates. 

Establishment of the Embryonic Axes 

Axis Formation in Xenopus 

Many of the initial studies designed to elucidate the mechanism of early 

axis formation were carried out in amphibians due to the ease of manipulating the 

embryos at these very early stages. In Xenopus prior to fertilization, the earliest 

components which lead to the establishment of the embryonic axes are the 

disproportionate stores of yolk plates and other factors vegetally, and conversely 

the animal hemisphere possesses the nucleus, as well as higher concentrations of 

both ribosomes and glycogen granules. All of the neural and mesodermal tissues 

arise from the animal hemisphere, whereas the vegetal hemisphere contributes to 

the endodermal structures of the alimentary tract. A potential signaling molecule 

which is vegetally localized is VgI, a Transforming Growth Factor ~ (TGF~) family 

member, whose mRNA is tethered to the vegetal cortex of mature eggs (Melton, 

1987). The potential role ofVgl protein will be discussed below. XCAT-2 

mRNA, which is structurally related to Drosophila nanos--a posterior 

determinant, is also localized to the vegetal hemisphere (Mosquera et al. 1993). 

Its role in amphibian development, however, is not yet determined. 

The point of sperm entry provides the second half of the information 

necessary for setting up the anteroposterior (AP) and dorsoventral (DV) axes. 

The cortical rotation, which follows this event, results in a region of reduced 
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pigmentation, known as the gray crescent, on the opposite side of the embryo. 

From this region will arise the dorsoanterior structures of the head and notochord 

while the region of sperm entry will give rise to ventral structures such as the 

blood islands. In Xenopus, fertilization together with the maternally derived 

animal-vegetal axis determines the embryonic orientation with the mediolateral 

and right-left axes being inferred from the apposition of these two primary axes. 

Though the morphological aspects of these events are fairly well understood, the 

biochemical pathways which confer polarity have not been fully deduced. 

Several studies, however, have indicated that sperm fusion with the egg 

membrane results in activation of the Phospholipase C second messenger 

pathway (Busa et al. 1985) leading to production of inositol-l,4,5-triphosphate, 

subsequent Ca++ release, and activation of Protein kinase C leading to other 

downstream effectors. It is currently not known how this second messenger 

system might act in specifying the dorsoanterior regions. However, the recent 

information concerning the interactions between the Xenopus wingless related 

genes (Xwnt family members) and ~-catenin provides some important clues. This 

will be further considered below in light of mesoderm induction. 

Murine Axis Formation 

Axis formation in mice is not as well defined as in amphibians. No 

apparent asymmetries are known to be present in the rodent egg prior to 

fertilization, and likewise sperm entry does not appear to affect the embryonic 

axes. Rather, much of the information necessary for axis formation appears to be 

derived from the maternal uterine axes (Smith 1985; Brown et al. 1992). The DV 

axis appears to correspond to the mesometrial-antimesometrial axis of the uterus 
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with the dorsal embryonic side being towards the mesometriaJ side of the uterus. 

The AP and left-right embryonic axes are aligned with the right-left and oviduct 

to cervix maternal axes, respectively. The two possible orientations of these two 

embryonic axes appears to be randomly determined by the position of the 

primitive streak which forms towards either the right or left uterine wall. Again, 

the molecular cues that are responsible for orienting the zygote are not yet 

known. 

Establishment of the Three Germ Layers 

Mesoderm Induction in Xenopus laevis 

Due to the localized deposition of presently unknown factors (although 

some candidates have been identified) to the vegetal and animal hemispheres, the 

default state of the animal half as ectoderm and the vegetal half as endoderm is 

predetermined maternally. Therefore, the next major event following axis 

specification is mesoderm induction. The current thinking on mesoderm 

induction has been heavily influenced by the work of Nieuwkoop (1969, 1973, 

and 1977) in which the upper animal cap and the lower vegetal half was 

separated from the equatorial blastomeres. He found that if these are kept 

separate, neither produces mesoderm. However, if they are combined all types of 

mesoderm are produced as a result of a signal from the vegetal hemisphere to the 

animal hemisphere. He further showed that the type of mesoderm-induced 

depended on the DV location of the vegetal explant. The dorsal vegetal 

blastomeres could induce dorsal mesoderm while the ventral vegetal blastomeres 

induced primarily ventral mesoderm. These results led Nieuwkoop to postulate 
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that there was a gradient of a mesoderm-inducing factor which emanated from the 

dorsal vegetal region, designated the Nieuwkoop Center. Similar experiments by 

Dale and Slack (1987) led them to believe that there were two separate signals 

provided by the vegetal blastomeres. Based on recombinations of single non­

dorsal vegetal blastomeres with animal caps, they inferred that the signal from the 

Nieuwkoop Center specifies dorsal mesoderm while another signal specifies 

primarily ventral mesoderm. According to this model, intermediate types of 

mesoderm would subsequently be specified within the marginal zone by a third 

signal emanating from the newly induced dorsal mesoderm. The source of this 

third signal is called Spemann's organizer based on the work of Spemann and 

Mangold (1924). Their work demonstrated that, when implanted on the ventral 

side, this region could not only induce other types of mesoderm, but could recruit 

host cells into forming a secondary axis in which the grafted tissue contributed 

primarily to the notochord. This "Three Signal Model" was subsequently 

elaborated in a review by Smith, et al. (1985). This has more recently been 

modified to a "Four Signal Model" (see for review Sive 1993; Christian and Moon 

1992) to include the ventralizing molecules that will be discussed below. 

Since these studies were carried out, much effort has been given to 

identifying and characterizing potential mesoderm inducers. Early attempts 

focused on conditioned media from transformed cell lines while later efforts have 

utilized various molecular cloning approaches (see Smith 1993 for review). 

Because there have been numerous reviews devoted to this particular subject 

(Sive, 1993; Hogan, 1995; Kimelman et al., 1992; Melton, 1991 to name a few), I 

will attempt to provide a consensus view of the molecular mechanism of 

mesoderm induction and patterning. As mentioned above, the fIrst step in this 
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process occurs at the time of fertilization as the resulting cortical rotation specifies 

the Nieuwkoop Center. The experimental characteristics of the Nieuwkoop 

Center are as follows: 1) it is localized to the vegetal hemisphere on the side 

opposite sperm entry, 2) is capable of inducing naive ectoderm to form a 

functional organizer, and 3) becomes incorporated into the gut endoderm 

following gastrulation. Xwnt-8, noggin and Vgl were early candidates that were 

shown to meet these criteria to some degree. Both Xwnt-8 and noggin fulfill the 

2nd and 3rd qualifications; however, Xwnt-8 is made too late and on the ventral, 

not dorsal, side. Likewise, noggin mRNA is not correctly localized. In UV­

ventralized embryos (which blocks cortical rotation and establishment of the 

Nieuwkoop center; reviewed by Gerhart, et al., 1989), both Xwnt-8 and noggin 

are capable of rescuing complete axes. Therefore it is thought that Xwnt-8 is 

mimicking another Xwnt family member's activity, and/or noggin translation or 

processing is, in fact, correctly localized. In the case ofVgl, the mRNA is 

localized vegetally but the protein appears to be under some type of post­

translational regulation, because unprocessed protein is abundant throughout 

cells of the vegetal hemisphere (Melton, 1987). However, when this regulation is 

by-passed by fusing the pro-region from BMP-2 to the mature-region of V g 1, the 

resulting protein is processed and induces dorsal mesoderm in animal cap explants 

(Thomsen and Melton, 1993; Dale et al., 1993). When mRNA from this construct 

is injected into UV-treated embryos, the resulting BMP-2/Vgl protein can mimic 

the Nieuwkoop center signal and rescue a complete axis. Recently, the chick 

V g 1 homolog also has been shown to be capable of inducing a secondary axis 

when expressing cells are implanted next to pre-gastrulation embryos 

(unpublished observations of Jonathan Cooke, NIMR London, and Jane Dodd, 
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Columbia. NY). The fact that Vg1 is tethered in Xenopus to the vegetal cortex 

prior to fertilization but then released soon afterwards implies that its localization 

is required for a very early inductive signal emanating from within the vegetal 

regIOn. 

The potential candidates within the X wnt family that are capable of 

inducing a secondary axis are Xwnt-1, 3A, 8, and Xwnt-8b (Torres et al., 1996). 

These are also capable of rescuing UV -ventralized Xenopus embryos. However, 

based on it spatiotemporal expression pattern, Xwnt-8b is possibly the best 

candidate at this time is. Xwnt-8b is maternally expressed and localized to the 

animal hemisphere during early cleavage stages and is also capable of rescuing 

complete axes (Cui et al., 1995). As alluded to earlier, Xwnt involvement in axis 

determination appears to be mediated, at least in part, through a component of the 

cytoskeleton, ~-catenin (known for its role in adherens junctions; for review see 

Gumbiner, 1995). ~-catenin's role in this pathway appears to be independent of 

its involvement in cell adhesion, because expression of truncated forms lacking 

the domains necessary for binding to cytoskeletal components are still capable of 

inducing a secondary axis in Xenopus embryos (Funayama et al., 1995). Rather, it 

appears that X wnt signals result in an increase in nuclear localized ~-catenin, and 

this then is involved in trans activating downstream targets (Yost et al., 1996). 

This is apparently a very early step in determining the dorsalizing center since 

detection of nuclear ~-catenin on the dorsal side precedes other dorsal markers 

(Schneider et al., 1996). Recently, it was shown that free ~-catenin and the 

transcription factor LEF-l (lymphoid enhancer-binding factor-I) form a complex 

which is translocated to the nucleus and together these two molecules bind to 

DNA(Behrens et al., 1996). Though it is not yet known what the target genes of 
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this complex might be, this does suggest that ~-catenin might directly function in 

regulating the transcription of genes required for axis specification. 

It appears that both Xwnts and noggin require a third factor, which is a 

TGF~ family member, in order to induce dorsal mesoderm. When animal caps from 

Xwnt-8 injected embryos are cultured alone no mesoderm is formed. However, in 

the presence of activin, dorsal mesoderm is induced. Because both Xwnt-8 and 

noggin can induce a secondary axis when injected into ventral vegetal 

blastomeres, this other factor must be vegetally localized and possibly in a latent 

state. The candidates for this factor include activin, which is expressed in the 

marginal zone, or Vgl. Since Xwnt, noggin, and VgI are all capable of generating 

a secondary Nieuwkoop Center, they could be part of an regulatory mechanism 

which is initiated by cortical rotation leading to a local production of a wnt family 

member and local production of functional noggin and V g 1, all of which might 

positively feed back on each other. 

The identity of the ventral mesoderm inducing signal (which also emanates 

from the vegetal blastomeres) has received less attention. Basic fibroblast growth 

factor (bFGF) which is expressed at the high levels in the marginal zone has been 

suggested as possible candidate (see Kimelman et al. 1992). The fact that bFGF 

levels are highest in the responding cells, however, may imply that its production 

is in response to the actual ventral mesoderm inducing signal. If this is the case, 

then the nature and identity of this other signal is not yet apparent. The final 

component of the Four Signal Model is the ventralizing signal within the marginal 

zone which opposes the dorsalizing effects of the Organizer. Two factors have 

been shown to be more highly expressed ventrally and show this effect, BMP-4 

(Jones et al. 1992; Dale et al. 1992) and Xwnt-8 (when delivered after the mid-
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blastula transition; Sokol and Melton 1991). Both of these, when delivered after 

the mid-blastula transition, have been shown to inhibit the effects of activin on 

mesoderm induction in cultured explants. 

Murine Germ Layer Specification 

It is unknown whether the types of pre-gastrulation inductive events seen 

above also occur in mouse development. Because Xenopus, chick, and mouse 

fate maps are roughly equivalent and the molecular players seen during 

gastrulation are very similar (see Hogan et al., 1994), it is likely that similar 

mechanisms for axis specification and mesoderm induction are also utilized. The 

differences will likely be attributable to the differences in the topological 

arrangements of the pre-gastrulation tissues which give rise to the embryo proper. 

Prior to gastrulation in mouse, the embryonic tissues are contained within 

the epithelial epiblast layer (Snow, 1977). The events of gastrulation (from Hogan 

et al., 1994) begin around 6.5 days post-coitum (dpc) as cells at the future 

posterior side of the egg cylinder begin to detach from the epithelium and take up 

positions between the epiblast and the extraembryonic endoderm. The mesoderm 

of the head process, notochord, and gut endoderm are the fIrst cells to egress 

followed by intermediate, lateral and extraembryonic mesoderm. Through the 

migration and proliferation which occurs during gastrulation, the overt embryonic 

axes are established and the proper juxapositioning of the three germ layers is 

accomplished leading to subsequent steps of patterning along the AP axis. 
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Homeobox Genes in Patterning During Development 

Some of the key players involved in embryonic patterning and subsequent 

differentiation are the members of homeobox class of transcription factors. From 

flies to man the positional specification provided by the homeobox genes has 

been implicated as providing the molecular superstructure upon which the 

developing embryo is built. Though it is not yet clear what the mechanisms are 

which establish the correct patterns of expression of these genes, it is clear that 

the loss of function in these genes results in regional deletions and/or changes in 

pattern. 

Homeobox Genes in Drosophila melanogaster 

The flIst homeotic mutations were reported by Bridges and Morgan (1923) 

in the fruit fly, Drosophila. The early observations involved mutagenizing 

through chemicals or radiation and noting how certain mutations which resulted 

from these treatments caused large scale changes in the fates of body structures 

(antennae becoming legs, halteres becoming wings, or shifts in segment identity 

anteriorly or posteriorly). Subsequent molecular genetic analysis of these 

mutated genes led to the discovery of a large family of genes termed homeotic 

genes. Comparison sequence of the antennaepedia (Antp) and ultrabithorax 

(Ubx) homeotic genes resulted in the identification of the homeobox (McGinnis, 

et al., 1984a & b; Scott & Weiner, 1984), a DNA binding motif, consisting of 60 

amino acids that form four a helices, that has become the hallmark of this gene 

family. The study of the role that the Drosophila homeobox genes play in 

development indicates that they function primarily in specifying segment 

identities (Lewis, 1978; Gehring, 1986; Akam, 1987; Scott et al., ; Kaufman et al., 
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1990). Even more intriguing was the finding that many of the homeotic genes in 

Drosophila were located in two clusters, the Bithorax and Antennapedia 

Complexes, collectively called the HOM-C complex, which are tandemly arrayed 

on Drosophila chromosome 3. Each of the genes in these clusters is oriented in 

the same 5' to 3' direction. Further, this precise chromosomal arrangement also 

appears to have some link to each gene's expression and area of primary influence 

along the anterior to posterior axis, as was first noted by Lewis (1978). Those 

genes at the 3' end of the cluster are expressed and influence development at 

more anterior regions relative to the other members of the cluster--a phenomenon 

termed colinearity. Homeobox genes which are similar to the members of the 

Drosophila HOM-C complex have been identified in other insects as well as in 

members of other phyla including amphioxus (Garcia-Fernandez and Holland, 

1994), flatworms (Bartels et al., 1993), sea urchin (Mao et al., 1996), mollusks 

CWray et al., 1995), annelids (Aisemberg et al., 1993; Dick and Buss, 1994), 

nematodes (Salser and Kenyon, 1992), hydra (Schummer et al., 1992), and 

sponges (Degnan et al., 1995). At this time, the presence of a HOM-C related 

cluster has only been demonstrated for the flour beetle (Tribolillm castanellm, 

Beeman et al., 1989) and nematode (Caenorhabditis elegans, Wang et al., 1993) 

among these other organisms. 

Homeobox Genes in Vertebrates 

Even more surprising was the discovery that not only do insects and lower 

organisms have such homeobox genes, but that from Drosophila to man complex, 

multicellular organisms have similar homeobox genes that play key roles in the 

areas of regionalization and tissue specification (Akam, 1989). Using the 
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sequence encoding the 

homeodomain, the DNA 

binding domain, from 

Drosophila Antp, low 

stringency homology 

screens resulted in the 

initial cloning of a small 

group of Xenopus 

homeobox homologues 

(Carrasco, et al., 1984; 

Muller, et al., 1984). The 

numbers of vertebrate 

homeobox genes has 

greatly increased since 

the isolation of these 

Mouse Box and 
Drospbila Bomeobox Clusters. There are 
four separate vertebrate clusters designated A, B, C, 
and D while in Drosophila there is only one cluster 
which is split into the Antennapedia and Bithorax 
complexes. In vertebrates, as in Drosophila, the order 
of the genes within each cluster 3' to 5' indicates its 
region of influence along the anterior-to-posterior 
axis. This figure was taken from a review by 
Krumlauf, et al. (1993). 

early clones. As the chromo-somal loci of these homeobox genes were mapped in 

mouse and man, it was found that many were tightly clustered in the same 

collinear relationship observed in Drosophila (Akam, 1989). Though Drosophila 

has only the HOM-C cluster (which is split into the Antennapedia and Bithorax 

complexes), most vertebrate species have four such clusters designated as Hox 

clusters A, B, C, and D (see Fig. 1; reviewed by Krumlauf, 1992). The expression 

data of many of these genes in the region of the hindbrain (see Fig. 2, review by 

Krumlauf, et al., 1993) implies that, as was seen in Drosophila, these genes are 

also involved in regionalization and patterning along the body axis and in 

metamerism of the vertebrate hindbrain. 
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ectoderm 
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Hox-B • • • 0 group 

Hox-A • • • 0 

Hox-O • • 0 

ANT-C lab pb Zen/pb Dfd 
Figure 2. Box Gene Patterning in the Hindbrain. A summary of the expression 
patterns of several hox genes in the region of the hindbrain and the branchial 
arches. The arrows extending from the rhombomeres indicate neural crest cells 
which arise from these regions. The shading patterns indicate different genes as 
indicated in the diagram of the Hox clusters below. The expression of these genes 
has been shown to be important in the processes of regionalization and tissue 
specification for several of the genes shown. This figure is modified from 
Krumlauf,1993. 

Null mutations of several murine Hox genes have shown that there are 

several similarities in the roles which these vertebrate homologues play in 

development. The HoxC8 (Le Mouellic, et al., 1990; Le Mouellic, et al., 1992), 

HoxA3(Chisaka & Capecchi, 1991), and HoxAl (Lufkin, et al., 1991; Chisaka, et 

al., 1992; Carpenter, et al., 1993) induced mutations all indicate that the anterior 

most boundary of expression designates the region of the embryo where a 

homeobox gene has its influence. For each of these, the homozygous mutant 

animals showed the absence or malformation of tissues and structures from within 

the region corresponding to the gene's anterior expression domain. The HoxA 1 

null versus the HoxA3 null indicates that where there are expression patterns 
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Figure 3. Patterning Of the Primitive Endoderm. The above figure depicts 
how that, just as has been shown in the neurectoderrn and mesoderm, there are 
also tissue specific transcription factors which appear to be important in the 
processes of tissue specification and differentiation. This is not meant to represent 
a complete listing, nor does this figure properly show each individual gene's 
pattern of expression. It is likely the combinations of developmentally regulated 
transcription factors which is important in determining tissue specificity and 
cellular fate. This listing contains Antp-like homeobox genes (Pdx-l, Cdx-l, Cdx-
2, TIP-I, and HOX D 9 to 13), LIM domain genes (lsl-1), zinc-fmger motif genes 
(GATA-GTl), POU domain genes (Epoc-l), and forkhead-like homeodomain 
genes (HNF-la, HNF-lb, HNF-3a, HNF-3b, HNF-3g, HNF-4) to illustrate how that 
multiple gene families interact in regionalizing the gut as has been shown in the 
hindbrain (see review, Krumlauf, et al., 1993). 

which overlap or fall within the same region of the embryo, each gene can 

contribute to the differentiation of a subpopulation of cells within the region. 

Specifically, HoxAI appears to act on the neurogenic neural crest lineage within 
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its most anterior region of expression while HoxA3 appears to specify the 

mesenchymal neural crest from this same region. It is also apparent from the 

HoxAl (Lufkin, et aI., 1991; Chisaka, et aI., 1992; Carpenter, et aI., 1993) and 

HoxA2 (Rijli, et aI., 1993; Gendron-Maguire, et aI., 1993) null mutant mice that 

these genes' sphere of influence can extend beyond those regions where their 

expression is seen. Cells or tissues which apparently never express a particular 

homeobox gene can be influenced by its expression in other cells or tissues 

because of a growth factor or hormone, which is released by the expressing cells, 

or by direct inductive events through cell-to-cell interactions between the two 

populations. The types of large scale respecification or homeotic transformations 

as seen in Drosophila (e.g. antennae to legs), however, have not yet been 

reported for vertebrate loss of function or gain of function mutants. The types of 

respecifications seen in mutant mice are more subtle: duplications in ear ossicles in 

HoxA2 null mice (Rijli, et aI., 1993; Gendron-Maguire, et aI., 1993); shifts in axial 

skeletal elements to more anterior morphology as seen in HoxC8 (Le Mouellic. et 

aI., 1990; Le Mouellic, et aI., 1992) and HoxB4 (Ramirez-Solis, et aI., 1993) null 

mutants; and posterior shifts in axiaI skeletal elements as seen in HoxD4 gain of 

function mutants (Lufkin, et aI., 1992). In general, vertebrate homeobox genes 

like their Drosophila homologs appear to function in determining the broad fates 

of cells within a defined region along the AP axis. 

Specification of the Primitive Endoderm 

Within the gut, there are other homeobox genes as well as transcription 

factors from other gene families that have been reported and appear to playa role 

in patterning and/or differentiation of endodermaI derivatives of the primitive gut 
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(see Fig. 3). Figure 3 illustrates how different transcription factors have been 

shown to have regional expression patterns rather than merely organ specific 

patterns of expression. Much data has accumulated concerning the members of 

the Hepatocyte Nuclear Factor (HNF) transcription factor family and the role they 

appear to play in liver-specific gene expression. HNF-la and B are both 

expressed as early as 8 dpc in mouse lateral plate mesoderm and primitive 

endoderm and in the lung, stomach, liver, and intestine of adult tissues (Mendel, et 

al., 1991). Mendel, et al. further show that, while HNF-l a is capable of directing 

transcription from liver specific promoter sequences, this appears to be a tissue­

specific phenomenon as these same liver-specific genes are not expressed in the 

lung or stomach where HNF-la is also expressed. This would imply that liver­

specific co activators are required for trans activation by HNF-la. HNF-3a and B 

have been shown to be expressed in the gut endoderm at very early stages of 

mouse development (Ang, et al., 1993). Gualdi, et al. (1996) have recently 

demonstrated the early expression of HNF family members within the endoderm is 

involved in hepatic specification. The Drosophila homologue of the mouse HNF-

4 gene, a member of the steroid receptor super family, is expressed in the liver and 

intestine and has been cloned and characterized in Drosophila development 

(Zhong, et al., 1993). Zhong, et al. have shown that the Drosophila HNF-4 

protein is expressed in the developing mid-gut and fat-bodies. Further, null 

mutants for the Drosophila HNF-4 gene lose these gut structures indicating that 

the Drosophila gene, and likely the mouse homolog, are necessary for the 

development of these structures where they are expressed. 

Recently, Sonic hedgehog (Shh), a diffusible signaling molecule implicated 

in limb and axial patterning (see for review, Johnson et al., 1994), has been shown 
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to be expressed in the endoderm of the caudal intestinal portal and to be involved 

in patterning the hindgut in chick (Roberts et al., 1995). Specifically, they 

showed that the abdominal B-related members of the Hox A and D clusters are 

expressed in a nested pattern within the hindgut. These boundaries of expression 

correspond to later anatomical boundaries within the gut. Through misexpression 

of Shh, they showed that it was capable of inducing these genes within 

competent endoderm, thus providing another example of hedgehog family 

members providing a signal that is involved in embryonic patterning. 

Members of the caudal gene family also appears to playa role in 

endodermal differentiation. Both Cdx-l and 2 are expressed in the duodenum, 

small intestine, and colon (James & Kazenwadel, 1991). The chicken homolog, 

CHox-cad, has been shown to be expressed in the lung, liver, pancreas, and the 

epithelial lining of the intestine (Doll & Niessing, 1993). Cdx-2/Cdx-3 has been 

shown to be expressed in rat islets and to weakly drive transcription from 

elements of the insulin promoter (German, et al., 1992). The 1s1-1 transcription 

factor has been reported to be expressed only in cells derived from pancreatic 

islet cells, as shown by northern blot analysis (Karlsson, et al., 1990). The 151-1 

protein has a LIM domain and a highly diverged homeodomain which shows 

only 25-30% identity to other homeodomain proteins (Karlsson et al., 1990). 

They report that 1s1-1 is able to bind to a region of the insulin promoter by 

electrophoretic mobility shift assay. Other transcription factors in the gut 

derivatives have also been reported: the Epoc-l POU domain gene in the thymus 

and stomach (Yukaw, et al., 1993); GATA-GT1, 2, and 3 zinc-fmger proteins of the 

stomach and intestine (Tamura, et al., 1993); and the TTF-l homeodomain protein 

of the thyroid and lung (Guazzi, et al., 1990). 
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Morphological Development of the Posterior Foregut 

The vertebrate gut derivatives (Le. lung, liver, pancreas, etc.) all begin as 

simple evaginations of the gut epithelium into the surrounding mesenchyme. 

These outgrowths are due to epithelial-mesenchymal interactions which vary 

between organs. The signals which are exchanged between these two tissues 

result in both proliferation and differentiation as the initial outgrowth expands, 

branches and lobulates. Studies of lung epithelial-mesenchymal interactions have 

shown that gut-associated mesenchyme from different regions provides region 

specific signals which are necessary for the development of each organ (Deucher, 

1975). This study showed that lung epithelium could be redirected in its 

differentiation by mesenchyme from other regions such that it would adopt 

gastric, intestinal, or hepatic fates. The signals mediating these interactions and 

the target genes which lie downstream are unknown in most cases, although 

some of the players are now being identified. 

Hepatic and Pancreatic Development 

The hepatic and pancreatic outgrowths are the first structures to develop 

from the primitive gut and the early tissue interactions have been well studied for 

both of these. At 8.5 dpc, the foregut pouch endoderm extends rostrally into the 

headfold, with its anteroventral surface in contact with pre-cardiac mesoderm and 

the posterodorsal surface continuous with notochordal mesoderm (Wessells and 

Cohen, 1967). Starting at -9.0 dpc, the pancreas and liver arise from bidirectional 

endodermal outgrowths of the posterior foregut. While most of the ventral 

outgrowth acquires a hepatic fate, the caudal-most portion forms the ventral 
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pancreatic bud; the dorsal outgrowth produces the dorsal pancreatic bud. 

Previously, tissue recombination studies showed that pre-cardiac mesoderm 

induces hepatic endoderm (see for review LeDouarin, 1975), while axial 

mesoderm induces pancreatic endoderm (Wessells and Cohen, 1967). The liver 

and pancreas primordia are also, at least superficially, similar in their mechanism of 

induction and epithelial-mesenchymal interaction. Unlike the situation described 

above for the lung endoderm, both the liver and pancreatic precursors receive an 

early instructive signal which imparts the information necessary for the proper 

differentiation of the endoderm. Although both of these tissues require the 

presence of mesenchyme, this is a non-instructive influence (Le. mesenchyme from 

other organs can be substituted) which consists, at least in part, of a diffusible 

peptide signal (Golosow and Grobstein, 1962)--consistent with it being some type 

of secreted factor. Gualdi et al. (1996), using tissue recombinations between pre­

cardiac mesoderm and various regions of the primitive gut, have also provided 

evidence that the inductive influence of the pre-cardiac mesoderm is dominant 

over the programs of non-hepatic endoderm, including that which gives rise to 

the dorsal pancreas. Collectively, these data suggest that the posterior foregut 

patterning and subsequent differentiation could be the result of an interplay 

between the opposing hepatic and pancreatic influences, with the endoderm 

producing either hepatic or pancreatic cell types according to the relative 

strengths and/or proximity of these signals. 

Duodenal Development 

The duodenum, which is derived, at least in part, from the "non-induced" 

endoderm of this same region, is not simply a conduit in which to combine the 

19 



exocrine products of the liver and pancreas with gastric contents. Rather, the 

duodenal epithelium is a complex mixture of cell types, each with a unique and 

necessary task to carry out in digestion (Walsh and Dockray, 1994). 

Differentiated cell types are not apparent within the duodenum until after the 

transition from a pseudostratified to columnar epithelium which occurs at around 

16 dpc (Roth et aI., 1991). The current inability to detect differentiated cell types 

at earlier time points could merely be a reflection of a lack of markers for these 

cells at early stages of differentiation. Most of the differentiated cell types are 

apparent post-natally and the remainder can be detected soon afterwards (Walsh 

and Dockray, 1994). 

Beginning at the neck of the duodenum, the first anatomical feature of 

note is the Brunner's glands. These are epithelial evaginations into the 

submucosa, which form just before birth. The secretion of a bicarbonate and 

mucin mixture by these glands contributes to the acidic to basic pH shift that 

occurs as gastric contents move into the intestines. Moving caudally, the 

duodenum is lined with villi which are covered primarily by columnar epithelium 

with interspersed goblet cells and enteroendocrine cell types. The latter of these 

is a family of cell types, each of which is distinguished by the peptide factor it 

produces (reviewed by Solcia et al, 1987). These cell types monitor components 

of the lumenal milieu and feedback on the digestive system to regulate gastric and 

intestinal contractions, control pancreatic and hepatic secretions, potentiate the 

response to blood glucose levels by pancreatic ~-cells, as well as other functions 

(Walsh and Dockray, 1994). Since each of these cell types play unique roles in 

digestion, one might expect that their location within the gut might be somehow 

influenced by their function, and this is the case. For example, the CCK cells, 
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which sense fatty acid levels and release cholecystokinin (CCK) to regulate 

hepatic bile secretions (necessary to emulsify lipids), are present in high numbers 

within the proximal duodenum. This provides a rapid, pliant response to newly 

released gastric contents. The profiles of these various cell types along the gut 

suggests that the duodenum and the rest of the gut display complex patterning at 

both the macroscopic and microscopic levels 

XlHbox-8IPDX-1 in Pancreatic & Duodenal Development 

XlHbox-8 in Xenopus Development 

The XlHbox-8 Antp-like homeobox gene, which lies outside the four 

homeobox gene clusters, has been shown to be involved in endodermal 

development during Xenopus embryogenesis. Immunolocalization using affinity 

purified antibodies to the C-terminal end of the XIHbox-8 protein has shown that 

the XIHbox-8 protein was expressed in a narrow band within the endoderm of 

the posterior foregut (Wright, et al., 1988). However, no expression is seen in the 

surrounding mesoderm, heart, or in any neural structures at any stage examined, a 

feature which is unique to XIHbox-8 among vertebrate Antp-class homeodomain 

proteins. More recently, work by Laura Gamer (Gamer & Wright, 1995) has 

detected XlHbox-8 mRNA as early as stage 12.5 neurula embryos. This work has 

further shown that XIHbox-8 is expressed autonomously within the dorsal region 

of vegetal explants taken prior gastrulation (stage 8-9). However, UV ventral­

ization eliminates XIHbox-8 expression in these cells. Because UV treatment 

blocks the formation of the Nieuwkoop center, this implies (at least in amphibians) 

that the initial signal(s) that leads to XIHbox-8 expression does not come from 
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adjacent mesodermal tissue after gastrulation; rather, the early dorsalizing signals 

are likely responsible for XlHbox-8 induction, either directly or indirectly. 

During organogenesis, XlHbox-8 expressing cells within the future 

duodenum begin to proliferate at opposing dorsal and ventral sites growing out 

to form the dorsal and ventral pancreatic buds by st. 38 (Wright, et al., 1988). As 

the pancreas differentiates giving rise to the various endocrine and exocrine cell 

populations, XlHbox-8 expression is seen throughout the pancreas and in the 

endodermally derived epithelium of the duodenum (Garner & Wright, 1995). In 

the adult pancreas, expression is seen in the exocrine duct cells and a proportion 

of the acinar cells. In the islets, 91 % of insulin producing ~-cells also express 

XIHbox-8, 47% of somatostatin producing O-cells. and only 6% in glucagon 

expressing a-cells co-express XlHbox-8. Based on these expression data, it 

appears that XIHbox-8 plays a key role in specifying the fate of the region of the 

endoderm which gives rise to the pancreas and may playa role in the 

differentiation of the ~-celllineage. 

XlHbox-8 Homologues in Rat and Mouse 

XIHbox-8 homo logs were cloned by three independent groups in mouse 

and rat, and these are also expressed exclusively within the pancreas and 

duodenum during development. Islet and duodenal homeobox gene-l (IDX-I; 

Miller, et al., 1994) and somatostatin trans activating factor 1 (STF-l; Leonard, et 

al., 1993) were cloned by PCR from rat cDNA libraries of immortalized cell lines 

derived from pancreatic islet cells. Insulin promoter factor 1 (IPF-l; Ohlsson, et al., 

1993) likewise was cloned by PCR from a mouse immortalized insulin producing 

cell line. These three genes all share 100% identity in the homeodomain with 
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XlHbox-8 and are 67% similar N-terminal of the homeodomain (Peshavaria, et al., 

1994). The XlHbox-8 N-terminal antibody also cross reacts with the STF-l 

protein isolated from the ~ TC-3 ~-like cell line (peshavaria, et al., 1994). 

Immunolocalization studies of adult mouse pancreas with the XlHbox-8 N­

terminal antibody have shown remarkable similarity with those in Xenopus. 

Expression in mouse is seen in the duct cells and primarily within the j3-cells of 

the islets (91 % of insulin expressing cells co-express STF-l; Peshavaria, et al., 

1994) as seen for Xenopus. Miller, et al. (1994) used degenerate PCR primers to 

the highly conserved third helix of the homeobox with rat islet eDNA as the 

template and isolated eleven different DNA sequences. Only the sequences 

corresponding to IDX-l/STF-l had deduced amino acid sequences which were 

100% identical to XlHbox-8. Cdx-4 was the next most similar at 70% identity 

(over the region amplified). This would seem to indicate that there are no other 

XIHbox-8-like genes that are expressed in this tissue. Based on this and the 

concordance of the expression data, IDX-l/STF-l and IPF-l appear to be the rat 

and mouse homologues of XlHbox-8. In order to consolidate the nomenclature 

for this gene, the name PDX-l (Pancreatic! Duodenal homeoboX gene 1) has 

recently been approved by the International Committee for Mouse Nomenclature 

to replace the previous names, IPF-l, ID X -1, and STF-l. 

Transactivation by PDX-l 

Several groups have studied the ability of PDX-l to transactivate putative 

downstream target genes (Le. insulin and somatostatin). Based on electromobility 

shift assays using rat Insulin-II regulatory elements, PDX-l is capable of binding 

to both the Flat-E and the IPF elements (Peshavaria, et al., 1994). This has been 
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corroborated by Peers, et al. (1994) by similar techniques and DNase footprinting. 

In vitro assays in insulin-producing cell lines indicate that the Fiat-E element is 

primarily responsible for driving expression in these cells (Peshavaria et al., 1994), 

based on mutational analysis of the two elements. Studies of the involvement of 

PDX-l in somatostatin expression have demonstrated that PDX-l also binds 

specifically to both the TSE-I and TSE-II elements and wild type PDX-I is capable 

of driving reporter gene expression from these elements (Miller et aI., 1994; 

Leonard et al., 1993). 

The trans activation domain of POX -1 has been mapped by two separate 

techniques. Using GAL4IPDX-l fusions to drive GAL4 reporter constructs, it was 

determined that the fIrst 84 amino acids possess a transactivation domain while 

the region C-terminal to the homeodomain appears to inhibit this activity (Peers et 

al., 1994). Similar activities were detected using N-terminal and C-terminal 

deletions of PDX-l (utilizing the DNA binding domain ofPDX-l) to drive reporter 

expression from somatostatin regulatory elements (Lu et al., 1996). For both 

insulin and somatostatin transactivation, PDX-l has been shown to act 

synergistically with a cofactor. In the case of insulin, the helix-loop-helix 

transcription factor, Panl1E47, has been shown to bind the Far and Nir elements 

of the insulin gene and interact with PDX-l to drive reporter gene expression 

from insulin regulatory elements (Peers et al., 1994). Peer, et al. report that this 

interaction does not affect PDX-l binding, rather the effects are only seen at the 

level of trans activation. The somatostatin gene, however, utilizes the mammalian 

extradenticle homolog, Pbx (Peers et al. 1995). This study indicates that the 

PDX-l/ Pbx interaction requires the conserved homeopeptide, located N-terminal 

to the homeodomain, as well as the N -terminal portion of the homeodomain. In 
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contrast to the report by Peers, et aI. for insulin transactivation, this study 

demonstrated that this interaction stabilized PDX-l binding resulting in an 

increase in reporter expression. 

Based on the above in vitro studies and the coincidence of PDX-l and 

insulin expression, PDX-l appears to playa role in endogenous insulin 

expression. This contention is further supported by the observation that chronic 

hyperglycemic conditions that lead to loss of insulin expression also result in a 

loss of PDX-l expression (peshavaria et al., 1995). It is uncertain what role PDX-

1 plays in endogenous somatostatin expression since PDX-l is only made by a 

small fraction of mature somatostatin-expressing cells of the pancreas (Peshavaria 

et al., 1994). PDX-l may be required for certain earlier stages of development or 

for a subpopulation of somatostatin expressing cells. 

XlHbox-8 and PDX-I are unique in that based on all known expression 

data their only function appears to be within the pancreas and duodenum. An 

increased understanding of how PDX-l functions in pancreatic and duodenal 

development could be important in gaining a better understanding of diseases 

like diabetes. The study of PDX-l in pancreatic/duodenal development promises 

not only to provide information regarding the steps in pancreatic and duodenal 

differentiation, but also to help elucidate how Antp-like homeobox genes 

function in regionalization, specification, and differentiation in the vertebrate 

embryo. The PDX-I expression profile and the data which show that it is 

capable of regulating pancreatic gene expression indicate that PDX-l could play 

a vital role in specifying the pancreatic fate as well as directing pancreatic 

differentiation. 

This dissertation describes my initial attempts at cloning the mouse 
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XIHbox-8 homolog, pdx-l; as well as the actual cloning and mapping of the 

locus using the rat STF-I cDNA sequence. Also described are the details of a 

genetic test of the function of PDX-I using the techniques of gene targeting to 

generate two null alleles in mouse. This work attempts to provide some answers 

to the question of what role PDX-l plays in pancreatic andlor duodenal 

patterning and differentiation. Utilizing a targeting strategy which results in a ~-

galactosidase (~gal) fusion to PDX-l this study was able to address the question 

of whether PDX-l is required to maintain its own expression or the survival of 

the cells which normally express it. Analysis of these animals also provides three­

dimensional information concerning PDX-l's spatiotemporal expression patterns 

which was not previously apparent from standard in situ hybridization and 

immunohistochemistry techniques. 
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CHAPTER II 

CLONING OF THE MURINE XlHbox-S HOMOLOG 

Introduction 

Following the characterization of XlHbox-S in Xenopus by Wright, et ai. 

(19SS) and based on the patterning roles that other homeobox genes seemed to 

play in vertebrates it seemed likely that XlHbox-S played a pivotal role in the 

development and differentiation of the pancreas and duodenum. In order to test 

this hypothesis it was necessary to transition to the mouse system in order to take 

advantage of the genetic approaches for gene targeting and production of 

transgenic animals. The frrst step towards this end was the cloning of the mouse 

homolog of XlHbox-S. Several approaches were used to accomplish this 

including genomic and cDNA library screening, PCR with degenerate primers, 

and RT-PCR from pancreatic/duodenal RNA with degenerate primers. 

Methods and Materials 

Southern Blotting 

Potential probe regions from the Xenopus XlHbox-S cDNA (see Fig. 4) 

were tested by Southern blot prior to library screening. Wild-type mouse ICR 

strain DNA was digested with BamBI, Pstl, and EcoRI and electrophoresed on 

O.S% agarose gels. The DNA was transferred to supported nitrocellulose 

(Schleicher and Schuell) by capillary action with 20X SSC (see Sambrook et aI., 

19S9), and subsequently baked for 1-1.5 hr at SO°C under vacuum. The filters 
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were blocked for 3-6 hrs in a solution consisting of 40% formamide, 0.5% SDS, 

5X SSPE, 5X Denhardt's solution, 0.02% sodium pyrophosphate, 6-7% dextran 

sulfate, and 125 units/ml heparin sulfate. Hybridization were carried out in the 

same solution at temperatures ranging from 30 to 45°e to determine which 

probes seemed to cross react at single copy levels and to ascertain which 

conditions provided the best signal to noise ratio. Random primed 32p_dA TP 

labeled DNA probes were generated as previously described (Fienber and 

Volgelstein, 1983). Following overnight hybridization, the filters were washed 

once in 2X sse at room temperature and twice in 2X sse at the empirically 

determined temperature. The filters were exposed to X-ray film from overnight to 

several days, according to the level of signal. 

Following the cloning of pdx-l, high stringency conditions were 

employed for same species hybridizations used in mapping the locus. A 

hybridization temperature of 42-45°e was used with 40% form amide, as above. 

Library Scree~ng 

The libraries used were as follows: a 8.5dpc mouse cDNA library, a AZap 

10.5 dpc mouse cDNA library, a A200l mouse genomic library, and AFixIT l29/Sv 

mouse genomic library. Four different Xenopus cDNA probes derived from 

X1Hbox-8 sequences were utilized on separate screens, as illustrated in Fig. 4. 

Ultimately, a 900 bp portion of the rat XlHbox-8 homolog was obtained as a gift 

from Mark Montminy, and it was cut in half at a Mlul site 5' of the homeodomain; 

each half was used on two separate screens of the 129/Sv genomic library. For 

each screen, 4-6 plates were plated for cDNA libraries and 6-8 plates for genomic 

libraries with 2.5 to 3xl05 pfu/plate. Following overnight incubation, plaques 
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were lifted onto supported nitrocellulose using standard procedures and baked as 

above. The filters were hybridized using the empirically determined conditions 

(hybridization with the rat STF-l probes were done at 50°C) with 32p_dA TP 

labeled DNA probes, generated as above. Positive clones were plaque purified 

and subcloned into the Bluescript vector for sequencing and further analysis. 

peR Techniques 

Standard conditions were used, as recommended by Perkin-Elmer Co., 

consisting of the following: buffer containing 50 rnM KCI, 10 rnM Tris HCI (pH 

8.6), 1-6 rnM MgC~, 200 nglml gelatin, 10-200 rnM dNTP's, 2.5 units Taq 

polymerase, plus the appropriate primers. Three separate degenerate primers were 

utilized for these experiments, one sense strand primer made to the fIrst 

homeodomain of XIHbox-8 a helix whose sequence was AA Y AARMGNACN­

MGNACNGC (designated XlH85', ambiguities indicated by Sanger ambiguity 

codes), one antisense primer made to the third helix and specific for the XIHbox8 

specific histidine whose sequence was TTYTGRAACCADATYTTDATR 

(designated XIH83'), and a second antisense primer was made to a region of the 

third helix which is common to Antp-class homeodomain proteins (designated 

BB21, personal communication from Bruce Blumberg). The reaction conditions 

for these primers were determined using Xenopus genomic DNA as template and 

mouse template with single copy amounts of XIHbox8 plasmid clones. The 

MgC~ , dNTP concentrations, and annealing temperature for each primer set were 

empirically determined. 

For RT-PCR reactions, RNA was isolated from I dpp (day post-partum) by 
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removing the pancreas and proximal duodenum and freezing them in liquid 

nitrogen. The tissue was homogenized in guanidium isothiocyanate and purified 

on a CsCI gradient. First strand synthesis was done using Avian Reverse 

Transcriptase with random hexamer primers and 10 ug of RNA template. This was 

then used in PCR reactions with both primer sets at the conditions determined. 

Results 

Initial Library Screens 

A 8.5 dpc mouse cDNA library was screened using a probe extending from 

the 3' end of the homeobox to a downstream Pstl site (Fig. 4). Low stingency 

conditions (30°C hybridization and washes) were used and over 100 clones 

were isolated. These were subsequently subcloned into Bluescript and analyzed 

by standard Sanger dideoxy sequencing from each end, using vector specific T3 

and T7 primers, and using the BB2l homeobox specific primer (see Methods and 

Materials). Though several novel homeobox genes were cloned, none appeared 

to be homologous to X1Hbox-8 (there was less than 85% homology within the 

homeodomain sequences and none had the XlHbox-8 specific, histidine residue 

within the third helix). 

A "Zap 10.5 dpc mouse cDNA library was also screened with the entire 

coding region of X1Hbox-8. Reduced stringency was used, 35% formamide, 

40°C annealing temperature, and 47°C for the final wash (see Methods and 

Materials). Several clones were purified from this screen which were 

subsequently sequenced using the degenerate homeobox primer, as above, but 

none of these clones contained a homeobox of any type. 
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Figure 4. Cloning Attempts Using XIHbox-8 Probes. The above figure 
illustrates some of the preliminary library screens to clone the XlHbox-8 homolog. 
(A) Panel A shows a diagram of the near full length cDNA of XIHbox-8 which 
was used for producing the probe fragments. Fragment a extends from the AUG 
to the stop codon and was used to probe the ",Zap 10.5 dpc mouse cDNA library. 
Fragment b includes from just upstream of the initiator AUG down to a Mboll site 
just upstream of a repetitive DNA region which encodes a His repeat within the 
protein. This was used on one attempt at screening a ",200 I mouse genomic 
library. Fragment c extends from the 5' end of the cDNA to a BamHI site just 
downstream of the His repeat and was used twice for screening the ",200 I mouse 
genomic library. Fragment d extends from the same BamHI site downstream to 
an EcoRI site in the 5' end of the homeodomain. This was also used twice in 
screening the ",200 I mouse genomic library. Fragment e is the same fragment 
which was used for producing the C-terminal antibodies to XIHbox-8. This was 
used on the initial screen of a mouse 8.5 dpc cDNA library. Panel B shows a 
scanned autoradiograph of a Southern of BamHI 0), EcoRI (2), and PstI (3) 
digested mouse genomic DNA probed with fragment c. 

Several different fragments of the XlHbox-8 cDNA were tested at low 

stringency on ICR mouse genomic Southems to determine the optimum probe 

and conditions. Three fragments from the N-terminal end of the protein were 

identified which gave good signal-to-noise ratios on genomic Southems (see Fig. 

4). Because the pancreatic contribution of mRNA isolated from whole embryos 
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would be expected to be small and due to the possible presence of pancreatic 

RNases, it is possible that mRNA's from the pancreas could be under-represented 

in a cDNA library. To account for this possiblity, these probes were used several 

times to screen a A,2001 mouse genomic library. Multiple clones were isolated, 

but none of the clones was related to XlHbox-8 by sequence analysis. 

PCR Cloning Attempts 

Degenerate PCR primers were made based on the XlHbox-8 homeobox 

sequence. A 5' sense primer was made to the amino acid sequence NKRTRT A 

from the 5' end of the homeobox. A 3' anti-sense primer was made to the amino 

acid sequence HIKIWFQ, which should be specific for XIHbox-8 since the 

histidine at this position is glutamine in all other Antp-like homeobox genes 

which have been described in vertebrates (Gehring, et al., 1994). The degenerate, 

homeobox specific primer described above was also used. The reaction 

conditions were optimized using plasmid clones of XlHbox-8 and Xenopus 

genomic DNA as templates. Fragments of the expected size were cloned from 

Xenopus DNA reactions to confmn that XlHbox-8 was being amplified. The 

optimized conditions were used with mouse genomic DNA and modified further. 

The conditions included 2-3 mM MgCl, 100-150 mM dNTP (in addition to other 

components which were not optimized, see Method and Materials), and 46°C 

annealing temperature for 35-40 cycles with both primer sets. The band of the 

expected size was cloned from several separate reactions. Over a hundred clones 

were analyzed by dideoxy sequencing. Although clones containing sequences 

corresponding to several known homeobox genes (several were members of the 

HOX clusters) and two novel genes were isolated, none of these appeared to be 
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homologous to XlHbox-S, based on the degree of homology within the 

homeodomain. 

Due to the possibility that an intron could fall within the homeodomain of 

the XlHbox-S homolog, RT-PCR was utilized in an attempt to amplify the 

XlHbox-S homolog directly from pancreatic mRNA. Mter first strand synthesis 

from random hexamers with reverse transcriptase, this was used as the template 

for PCR reactions. The reaction was gel purified and the expected band size was 

purified and subcloned. These were analyzed by dideoxy sequencing. Although 

some contained homeobox sequences from previously cloned genes, none 

showed any similarity to XlHbox-S. 

Homology Screen Using rat STF-l XlHbox-8 Homolog 

After the i~tial attempts to clone the mouse homolog of XlHbox-S using 

Xenopus sequences, a portion of the cDNA of the rat STF-I gene containing the 

entire coding region (obtained by PCR and subcloned into pBluescript as a 

BamHI fragment) was acquired in 1993 from Mark Montminy (Salk Institute). 

STF-l, as described in Chapter I, is 100% identical in the homeodomain and 67% 

identical N-terminal of the homeodomain, as compared with the XlHbox-S 

sequence. Both the 5' region (400 bp BamHI-MluI fragment not including the 

homeodomain) and the 3' region (500 bp MluI-BamHI fragment) of this sequence 

were used as probes to screen a mouse 129/Sv strain genomic library. These two 

screens were carried out by C.V.E.W. and Michael Ray. The 5' probe gave high 

background (Le. thousands of hybridizing plaques) using moderate stringency 

(35% formamide and washing at 50°C in O.IX SSC), and therefore the 3' 

homeodomain containing portion was used with slightly higher stringency (40% 
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formamide and washes at 50°C in O.IX SSC). Four independent positive clones 

were obtained and plaque purified. Southern analysis of DNA samples from these 

clones using STF-I cDNA probes revealed that the #2 clone contained both 5' 

and 3' cDNA regions and appeared to contain the largest amount sequence 5' of 

the putative transcriptional start site. This clone was chosen for detailed mapping 

and sequence analysis. 

Characterization of #2/... Clone 

The #2 clone was subcloned into Bluescript as a single Sal! fragment (Sal! 

sites are from the AFixII vector and flank the XhoIlSau3A insertion site), as five 

independent Xbal subclones, and as two Sal!IBamHI subclones. These were 

restriction mapped and individual maps were compared and combined to generate 

the complete map of the locus (see Fig. 5). To define the intronlexon boundaries, 

the BB21 homeodomain specific primer (which reads in an antisense direction) 

and a primer made to the 5' cDNA sequence were used to sequence the 3kb and 

Map of #2A Clone of pdx-1: 

exon I exon2 

Figure 5. Restriction Mapping of#2A Clone ofpdx-l. Of the four pdx-l 
clones which were isolated from the 129Sv genomic library, the #2 clone 
appeared to contain all of the coding regions as well as -6 kb of upstream 
sequences, based on the initial Southern blotting results. The entire insert from 
this clone, as well as the Xbal and BamHI fragments from this clone, were 
sub cloned into Bluescript and extensively restriction mapped. The above map 
represents the entire region contained within the #2 clone, based on the 
compilation of these results. 
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9kb Xbal subclones, respectively. This revealed an intronlexon boundary lying 

just upstream of the homeodomain sequence in a position almost identical to that 

in XIHbox-8. The initiation start site was mapped by RNase protection by 

C.V.E.W. (data not shown) and found to be quite complex, consisting of at least 3 

start sites lying near the Sad site just 5' of the 1st exon (Fig. 5). This has also 

been reported to be the case for the rat homolog (using a combination of primer 

extension and RNase protection; Sharma et al., 1995). These initiation sites lie 

just 5' of the longest pdx-l cDNA obtained from a screen of a cDNA library from 

the ~TC3 cell line (data not shown). 

Discussion 

Both the rat and mouse homo logs show a high level of sequence 

homology in the N-terminal and homeodomains, as was previously noted. It is 

unclear, therefore, why the initial homology screens failed to recover any pdx:-l 

clones. At 8.5 dpc, only very low levels of PDX-l expression are detectable in 

the primitive gut endoderm (Guz et al., 1995, and Chapter ill), but by 10.5 dpc 

PDX-l is expressed at much higher levels in both pancreatic buds (see Chapter 

ill), and would be expected to be well represented within the 10.5 dpc library 

which was screened in the initial attempts at cloning pdx-l. Likewise, pdx-l 

should have been equally represented within the genomic libraries. It appears 

that at least part of this failure can be attributed to the N-terrninal regions of pdx-l 

and XIHbox-8 cDNA which gave false positives and high background (with both 

the Xenopus and rat probes) on genomic Southems and when used for library 

screens. The PCR cloning strategy from pancreatic cell lines which resulted in the 

cloning of the rat STF-IIIDX-l (Leonard et al., 1994; Miller et al., 1994, 
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respectively) and mouse IPF-I (Ohlsson et al., 1993) was able to circumvent these 

problems by essentially screening for any homeodomain containing gene(s) 

within these lines. 

The #2 clone obtained from the genomic screen with the STF-I 3' cDNA 

sequences contains all of the coding region of pdx-l and -6 kb of 5' sequences 

and -4 kb of 3' sequences. Transgenic analysis of these sequences in 

collaboration with Laura Gamer indicates that the enhancer elements necessary 

for pancreatic and duodenal expression are contained within the 5' sequences 

(data not shown). The sequences from this clone have been used exclusively for 

the gene targeting experiments detailed in Chapter 3, for subsequent targeting 

and transgenic experiments which are in progress, and will not be covered in this 

dissertation. 
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CHAPTER III 

ANALYSIS OF PDX-l FUNCfION BY GENE TARGETING 

Introduction 

As described in Chapter I, the Hox cluster homeobox genes play critical 

roles in pattern formation along the main body and limb axes during early 

embryogenesis (for review see Krumlauf, 1994; McGinnis, 1994). In addition, 

several homeobox genes located outside the Hox clusters are essential for the 

development of specific organs. Mutations in pit-I, which is expressed in the 

developing pituitary, lead either to reduction in pituitary function or to loss of the 

pituitary gland (Camper et al., 1990; Li et al., 1990). Similarly, inactivation of the 

Boxll gene, which is expressed, among other places, in the mesodermal 

precursors of the spleen, leads to asplenia in homozygous mutant mice (Roberts et 

al., 1994). 

This chapter details the use of gene targeting to study the role of pdx-l in 

endodermal development, with special reference to the development of the 

pancreas. Two separate targeting strategies were used, both of which are 

expected to generate null mutations. The second approach, in which a ~gal 

reporter cassette was inserted into the pdx-l locus, allows the easy detection of 

the endodermal cells normally expressing pdx-l in the presence and absence of 

functional PDX-l protein. 

Using a similar strategy, Jonsson et al. (1994), reported thatpdx-l -/- pups 

are apancreatic and die postnatally with a highly elevated urine glucose level. 

Both of the targeted mutations reported here also result in a failure to generate 
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the pancreas. However, the pancreatic buds form and undergo some ductal 

outgrowth and branching, but pancreatic endocrine and exocrine differentiation 

is blocked. The pdx-I -1- animals also suffer malformations of the rostral 

duodenum, often resulting in a block to gastric emptying, and the abundance of 

enteroendocrine cells is greatly reduced in the rostral duodenum. These fmdings 

offer important additional information regarding the role of pdx-I in the 

determination and differentiation of the posterior foregut, specifically regarding 

the proliferation and differentiation of the endodermal precursors of the pancreas. 

Methods and Materials 

Pdx-l Gene Targeting Constructs 

As described in Chapter II, a 500 bp MluI-BamBI fragment of the rat STF-l 

cDNA (a gift of Mark Montminy) was used to isolate murine genomic clones from 

a l29/Sv library under high stringency. The #2'}... clone contains the entire pdx-I 

locus as shown in Fig. 6A. All fragments for constructs and probes described in 

this chapter derive from this clone. Gene targeting constructs were produced in a 

pUC-based vector (pKO-I; a gift of Manfred Blessing) that contains PGK-II and 

MCI thymidine kinase cassettes flanking an MClneor cassette. Unique XhoI and 

BamBI sites are present on the PGK-IItk and MCltk sides of the neor cassette, 

respectively. The same 3' arm of homology was used in both XBko and XSlacZ 

constructs, and was made by inserting a blunt-ended 1.5 kb PstIIXbaI fragment 

from the 3' end of the locus into the filled-in BamBI site in pKO-I. Orientation 

was determined by restriction mapping and sequencing. For XBko, the 5' arm of 

the targeting construct was made by inserting a blunt-ended 7 kb XballBamHI 
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Figure 6. Targeted Mutagenesis ofpdx-l. (A) pdx-l contains two exons; the 
second exon contains the homeodomain coding sequence (lighter box). Targeted 
deletions of homeobox sequences were produced with the XBko construct, 
which replaces intron and protein coding sequences of the second exon with a 
MClneor cassette, and the XSlacZ construct, which fuses a nuclear targeted B­
galactosidase cassette (with its own 3' SV-40 poly-A signals followed by the 
MClneor cassette driven by its own promoter) in frame with PDX-I. The XBko 
construct contains 7 kb of 5' homology and 1.5 kb of 3' homology (thickened 
lines on the pdx-llocus map). The XSlacZ construct contains 9 kb of 5' 
homology, from the 5' Xbal site to the Smal site in the homeobox, and the same 
3' region of homology as XBko. Both constructs contain 5' PGK-ll thymidine 
kinase and 3' Mel-thymidine kinase cassettes (transcription direction for tk and 
neor cassettes is indicated by arrows). Homologous recombinants were detected 
using the 3' probe (500 bp Xbal-EcoRl fragment) on Southern blots of EeoRI 
digested DNA by an sao bp shift from 3 kb (endogenous locus) to 3.S kb 
(targeted locus). Further Southern blot analysis of targeted lines used EeoRl, 
Pstl, and Xbal digested DNA probed with both the 3' probe and 5' probe (2 kb 
Xbal-EeoRl, internal probe). (B) Southern analysis of DNA samples from a 
complete litter of pdxXBko pups (derived from +1- mating) digested with EeoRl 
and probed with the 3' probe. Abbreviations: Xh, Xhol; H3, Hindlll; X, Xbal; 
Rl,EcoRl; S,Sacl; Sm,Smal; P ,Pstl; B,BamHL 

fragment, containing the frrst exon, into the filled-in Xhol site. The structure of 

the XBko construct was confmned by extensive restriction mapping, and 

sequencing from primers derived from the 5' end of the 7 kb XbaliBamHI 

fragment, the 3' end of the neor cassette, and 3' end of the 1.5 kb Pst -Xba 

fragment. 
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For the XSlacZko PDX-lI~gal fusion protein gene targeting construct, the 

5' arm of homology extends from an Xbal site (upstream of exon 1), to a Smal site 

in the second exon. Because of the additional Smal site in the intron, this region 

was assembled in several steps. First, a 450 bp XballSmal fragment, upstream of 

the second exon, was inserted into the Xbal and Smal sites of the pPD 1.27 lacZ 

expression vector (which encodes a nuclearly targeted ~gal, followed by SV40 

polyadenylation signals; a gift from Andrew Fire; Fire et al., 1990). Second, the 

90 bp Smal fragment including the 5' end of exon 2 was inserted into the Smal 

site to fuse PDX-l N-terminal sequences in frame with the ~gal coding region. 

The structure was confmned by sequencing with an antisense primer located at 

the 5' end of the lacZ cassette. Third, the 9 kb Xbal fragment containing exon 1 

was inserted into the Xbal site. Orientation was confIrmed by sequencing with a 

primer reading out from the 5' end of the Xbal fragment. Finally, the fused PDX­

lI~gal sequences were excised with Sal! and Notl, blunt-ended and inserted into 

the fIlled-in Xhol site of the pKO intermediate above (contain the l.5kb 3' 

homology inserted into the BamBI site). Orientation was confIrmed by 

sequencing with the primer at the 5' end of the Xbal fragment. 

Constructs were released from the vector by Notl digestion prior to 

electroporation. The alleles resulting from homologous recombination of XBko 

and XSlacZ are designated pdxtmlCVW and pdxtm2CVW, respectively, according to 

the guidelines of the International Committee on Standardized Genetic 

Nomenclature for Mice (Jackson Labs). For clarity, these alleles are refered to as 

pdxXBko (derived from XBko construct) and pdxlacZko (from XSlacZ construct). 
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Electroporation and Selection of ES CeO Clones. 

For each targeting construct, 4x107 ES cells (129 strain-derived line R1; 

kind gift from Drs. Janet Rossant and Andras Nagy) were electroporated with 

200 J.1.g of the linearized targeting construct in 0.8 ml phosphate buffered saline 

(PBS) with one pulse of 800 V/3 ~ from a Gene Pulser (Biorad). ES cells were 

then subjected to positive-negative selection with geneticin (GrnCO) and 

gancyclovir (Syntex) according to standard protocols (Hogan et al., 1994; 

Winnier et al., 1995). Mter 7-10 days, individual clones (700 for XBko, and 500 

for XS1acZ) were isolated and DNA screened for the presence of the targeted 

allele. 

DNA Analysis 

DNA from doubly resistant ES cell clones was prepared as previously 

described (Hogan et al., 1994), and samples were screened by EcoRI digestion 

and Southern blot hybridization with the 3' external probe (Fig. 6A). ES cell 

cultures from targeted lines were expanded and DNA isolated from these was 

analyzed by Southern blot analysis of XbaI, EcoRI, and Pstl digests with the 3' 

probe, and internal 5' probe (Fig. 6A). Pups and embryos were genotyped by 

Southern blot analysis using EcoRl digestion and the 3' probe. DNA from pups 

was obtained from tail snips at 3 weeks of age. For 18.5 dpc embryos, the 

cerebellum or a piece of liver was used to make DNA. For younger embryos, the 

extraembryonic membranes and/or the entire brain was used, depending on the 

age of the embryo. DNA was prepared as described (Hogan et al., 1994), and 

analyzed with the 3' probe. 
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Generation of Chimeric Mice 

ES cells were injected into C57BU6 blastocysts and transferred into 

pseudopregnant ICR females as described in Hogan et al. (1994). Male chimeras 

were bred to Black Swiss females (Taconic Farms) and agouti offspring were 

genotyped by Southern blot analysis. Heterozygous (Black Swiss x 129/Sv) 

offspring were interbred to produce homozygous animals. 

X-gal Staining 

PdxlacZko embryos and tissues were dissected in PBS and kept on ice until 

fixation. Embryos younger than 12 dpc were stained whole. For older embryos, 

the entire alimentary tract was dissected out. Fixation and staining was as 

previously described (Bonnerot and Nicolas, 1993). Briefly, tissues were fixed in 

4% paraformaldehyde at 4°C with agitation for 30-40 minutes, permeabilized 

(except for 9.5 dpc embryos, which were simply rinsed in PBS), and X-gal stained 

overnight at room temperature. Tissues were post-fixed in 4% paraformaldehyde 

at 4°C and then rinsed in PBS. Some tissues were cleared for photography by 

two 15 minute incubations in 100% methanol followed by 2: 1 benzyl 

benzoate:benzyl alcohol. Afterwards, these were rinsed twice with methanol 

before transfering to 100% ethanol prior to paraffm embedding. X-gal staining 

patterns are specific for pdx-l driven ~gal activity, because homozygous wild­

type embryos were devoid of background staining at the stages analyzed. 

Immunohistochemistry 

Paraffin or cryostat sections (5 Jlm) were hydrated to PBS and subjected to 

either immunoperoxidase or immunofluorescence staining. Immunoperoxidase 
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staining was carried out as previously described (Jetton et al., 1994). Primary 

antibodies to the following antigens (made in rabbit unless otherwise indicated) 

were used at the indicated dilutions: insulin (Zymed), prediluted; mouse 

monoclonal to human insulin (Zymed), prediluted; guinea pig anti-insulin (Linco), 

1: 1000; guinea pig anti-insulin C-peptide (Linco), 1: 1000; amylase (gift of R. 

MacDonald and G. Swift, Dallas), 1:1000; mouse GLUT2 (gift from 8. Thorens, 

Lausanne), 1:2000; glucagon (Linco), 1:1000; pancreatic polypeptide (PP; lCN), 

1:1000; somatostatin (lCN), 1:1000; neuron-specific enolase (NSE; Zymed), 

prediluted; Chromagranin A (Zymed), prediluted; glucagon-like peptide-l 

(GLP-l; Peninsula), 1: 1000; gastric inhibitory peptide (GIP; Peninsula), 1: 1000; 

secretin (Peninsula), 1: 1000; cholecystokinin (CCK; Peninsula), 1 :2000; serotonin 

(Zymed), prediluted. Primary antibodies were incubated overnight at room 

temperature or 4°C. For immunoperoxidase detection, goat anti-rabbit­

horseradish peroxidase (HRP) antibody (Jackson Immunoresearch; 1 :500) or 

donkey anti-mouse-biotin 19G (Jackson Immunoresearch; 1:500) followed by 

Z-Avidin-HRP (Zymed Laboratories; 1:500) were incubated for 1 hour at 22°C. 

Immunoperoxidase was detected with DAB~02 for 2-5 minutes. Some samples 

were counterstained with hematoxylin. For immunofluorescent studies the 

following secondary antibodies (Jackson Immunoresearch; "ML grade") were 

used: donkey anti-rabbit-mC, 1:250; donkey anti-rabbit-Cy3 at 1:1000; donkey 

anti-guinea pig-FITe, 1:250; and donkey anti-guinea pig-Cy3, 1:1000. Some 

samples were counterstained with the nuclear dye, YO-PRO-l (Molecular Probes; 

1: 10,000 dilution in PBS). 

Fluorescently labeled samples were imaged on a Zeiss LSM 410 confocal 

microscope. Excitation wavelengths were 488 nm from an Ar-Kr laser (for 
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YO-PRO-1 or FITC) and 543 run from a HeNe laser (for Cy3). Auorescence 

images were ascribed green (YO-PRO-1 and FITC) or red pseudoco10rs (Cy3), 

and were digitally optimized using the Zeiss system software (v.3.56b). TIFF 

images (512 X 512 pixel) were transferred to either a Silicon Graphics Indigo 

imaging workstation or a Macintosh PowerMac 8100 for secondary optimization 

and formatting, and printed on a Tektronix dye sublimation printer. 

Periodic Acid-Schiff Staining 

Sections were hydrated to tap water, oxidized in 0.5% periodic acid (w/v) 

for 10 minutes, washed for 5 minutes, rinsed briefly in demineralized water and 

stained in Schiffs reagent (Fisher) for 10 minutes. Following three rinses in 9.5% 

sodium metabisulfite (w/v), sections were washed, counterstained with Harris's 

hematoxylin (Sigma Chemical). 

Results 

Targeted Mutagenesis of pdx-l 

Two different targeting constructs were used to disrupt pd.-c-l (see Fig. 

6A). In the XBko construct, the protein-coding sequences in exon 2 are deleted, 

including those encoding the DNA-binding homeodomain. In XS1acZ, nuclear 

targeted ~gal is fused in-frame with PDX-1 at the 5' end of exon 2, deleting the 

homeodomain and bringing ~gal activity under the control of pdx-l 

promoter/enhancer elements. Positive-negative selection was carried out, and 

doubly resistant ES cell clones were screened by Southern blot analysis, which 

confmned precise targeting for both XBko and XSlacZ without rearrangement, 
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duplications, or additional random insertions (Fig. 6A,B; data from 5' probe not 

shown). The targeting frequency was 1 in 34 of doubly resistant clones for XBko 

(13 lines), and 1 in 43 (7 lines) for XSlacZ. 

Chimeras were produced from 3 lines for pdxXBko (lines BAS, CB8, and 

CC4), and 4 lines for pdxlacZko (3D2, 3D4, 2E3, and 2G2). Gerrnline transmission 

was obtained for all seven lines, and breeding to Black Swiss mice generated 

heterozygotes. No reduction in the viability or fertility of pdx-l heterozygous 

mice was detected, and male and female heterozygotes were bred to produce 

homozygous mutant animals for each allele. Pups of genotype pdx-l +/+, +/-, 

and -/- are born in the Mendelian distribution of 1:2: 1 (e.g. Fig. 6B). For pdxXBko 

the ratio (percent of total) was 23:50:27 (n=230), and for pdxlacZko it was 

27:47:27 (n=60); thus no embryo loss in utero is caused by the mutation. The 

homozygous null mutant phenotype is indistinguishable between animals derived 

from both targeted alleles, and data from a detailed analysis of CC4 and BA5 

(pdxXBko), and 2E3 and 3D4 (pdxlacZko) are reported here. 

The homeodomain helix-tum-helix motif provides a sequence-specific 

DNA recognition function (see Gehring et al., 1994). Certain Drosophila 

homeodomain proteins have some function without their homeodomains 

(Fitzpatrick et al., 1992), and the production of mammalian Hox gene rnRNAs 

lacking the homeobox has been reported (e.g. Murphy and Hill, 1991). There has 

been no evidence that this could be the case for pdx-l; therefore, the loss of the 

DNA-binding domain in both of these targeted mutations is thought to generate 

null alleles of pdx-l. This conclusion is supported by the following: (1) PDX-l 

was not detected in 9.5 dpc -/- embryos (pdxXBko) by irnrnunostaining with 
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Figure 7. At 1 day post-partum 
dpp), the pdxXBko -/- pups (bottom) begin to show signs of growth retardation 
and apparent dehydration, compared to wild-type littermates (upper). (B) By 6.5 
dpp, pdx-l -/- animals are extremely dehydrated. Though their stomachs contain 
milk (arrowhead), they show -60% reduction in weight compared to wild-type 
littermates. (C and D) 18.5 dpc -/- embryos (right) show a complete absence of 
pancreatic tissues and malformations at the stomach/duodenal junction (see Fig 3 
for these malformations). (E) In many 1 dpp -/- pups (left), a stomach/duodenal 
obstruction occurs, as evidenced by stomach distension and a lack of gastric 
emptying. The small intestines appear to be empty (white arrowheads; note the 
light-colored wild-type gut, indicating milky gut contents). Abbreviations: s, 
stomach; p, pancreas; d, duodenum; sp, spleen; c, colon. 

antibodies against the N-terminus ofPDX-l (data not shown), and (2) there was 

no dominant negative effect in pdxXBko +/- or pdxlacZko +/- animals. 

Gross Analysis of Homozygous pdx-l Mutants 

Immediately after birth, pdxXBko and pdxlacZko -/- null mutants are 

indistinguishable from +/+ or +/-littermates. However, within the first day post 

partum (dpp), -/- animals show signs of growth retardation and dehydration, 
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although they feed because their stomachs contain milk (Fig. 7 A). By 1 dpp, the 

stomachs of some -/- mutants are distended because of a lack of gastric emptying 

into the gut (Fig. 7E), which may result from malformations at the stomach-

duodenum junction that are described below. pdxXBko -/- pups can survive until 

at least 6.5 dpp (Fig. 7B), but the animals were not maintained longer for ethical 

reasons. At this age, pdxXBko -/- pups still have milk in their stomachs, but they 

are severely dehydrated, having a thin and cracking skin with very little fur, and 

are much smaller (up to 60% less by weight) than +/+ or +/-littermates. The 

developmental retardation in -/- pups is likely attributable to malnutrition 

resulting from lack of digestion in the absence of a pancreas and functional rostral 

duodenum (see below), and/or diabetic consequences of the loss of pancreas 

(Jonsson et al., 1994). Heterozygotes are healthy and otherwise indistinguishable 

from +/+ littermates at the level of examination described here. However, because 

PDX-l may be an insulin gene trans activator (see Chapter I), physiological 

defects under certain feeding conditions in heterozygous pdx-l +/- animals 

cannot be ruled out. 

Dissection of pdxXBko -/- pups at 1 dpp revealed that the liver, gall 

bladder, spleen, stomach, common bile duct, and other viscera are present and 

normal, but that the pancreas is noticeably absent in all cases (Fig. 7C,D). This 

observation is entirely consistent with the conclusion of Jonsson et al. (1994) that 

a similar null mutation of pdx-l blocked pancreatic development. 
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~gal Expression in pdxlacZko Heterozygotes Detects pdx-l Expression 

In pdxlacZko +/- animals analyzed between the ages of 8.0 dpc and adult 

(n=35), pdx-l expression (as visualized by X-gal staining) marks endodermal 

tissues previously shown to express pdx-l endogenously (Guz et al., 1995, 

Figure 8. Time Course of PDX-lI~gal fusion expression. Embryos from 6.5-
9.5 dpc, derived from heterozygous pdxlacZko matings, were analyzed by X-gal 
staining for their expression of the PDX-lI~gal fusion protein. (A) The earliest 
expression is at -8.0 dpc (7 somites) detected on the left side of the anterior 
intestinal portal (AlP). (B) By 8-9 somite stages, the left expression has spread 
and a small area on the right side is also staining. (C-F) Progressing towards -9.0 
dpc, the ventral staining continues to spread and intensify, as this region becomes 
constricted into the future common bile duct. At -9.0, the fIrst dorsal staining is 
detected marking the region of the future dorsal outgrowth. Abbreviations: 
AlP, anterior intestinal portal; v, ventral; d, dorsal. 
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Miller et al., 1994; Ohlsson et al., 1993), while +1+ embryos remained completely 

unstained. Thus, the PDX-lI~gal fusion protein expression provides a sensitive 

way of tracing cells expressing pdx-l, without alterations caused by the neor 

cassette located 3' of the lacZ reporter (Fig. 6A). 

To identify the earliest time point at which pdx-l is expressed, 6.5-9.5 dpc 

embryos derived from heterozygous matings were analyzed by X-gal staining. 

The appearance of a few X-gal positive cells is fIrst seen at -S.O dpc (7 somites) 

on the left side of the anterior intestinal portal (Fig. 8A). At -S.5 dpc, the 

numbers of staining cells increases on the left side and a few positive cells are 

seen on the right side at this time point (Fig. 8B). By 9.0 dpc, the ventrally 

stained regions have fused and constricted to form the presumptive common bile 

duct (Fig. SF). Also at this time, light staining of the dorsal gut epithelium 

demarcates the region of dorsal pancreatic bud outgrowth. This X-gal marked 

expression of pdx-l precedes the expression reported previously by Guz et al. 

(1995) using immunohistochemical detection with the XlHbox-8 N-terminal 

antibody, and also precedes the expression of other early pancreatic markers. 

This reporter gene approach provides a more complete understanding of the 

tissues expressing PDX-1 than previous analyses of the endogenous antigen, 

which is unusually sensitive to the fixation conditions (unpublished 

observations ). 

At 9.5 dpc, heterozygous embryos PDX-lI~gal is expressed throughout 

the dorsal and ventral pancreatic buds and in the intervening endoderm of the 

presumptive duodenum (Fig. 9A). At 11.5 dpc, expression continues in the 

dorsal and ventral buds, and the duodenal epithelium staining is more intense 

than earlier (Fig. 9B). In addition, the epithelia of the cystic duct, common bile 
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Figure 9. Tracking of pdx-l Expressing 
and E) At 9.5 dpc, dorsal and ventral buds stain for ~gal expression in both 
pdxlacZko +/- and -/- embryos. The presumptive duodenum between the buds is 
also stained. The heads were removed to obtain DNA for genotyping, anterior is 
upper right. (B and F) The ventral (v) and dorsal (d) buds are much larger by 11.5 
dpc in wild-type +/- animals and stain throughout with X-gal. However, 
pancreatic buds are absent in -/-littermates. An extra duct structure (dd) 
replaces the dorsal bud. X-gal staining labels the antral stomach (a), duodenum 
(du), and common bile duct (c) in both +/- and -/- embryos. (C and G) At 16.5 
dpc, a similar staining pattern in seen in both wild-type +/- and -/-. Pancreatic 
tissues are still undetected in -/- embryos. (D and H) In both +/- and -/­
embryos, staining in the gut epithelium tapers off gradually from the distal 
duodenum to the ileum (arrowheads indicate punctate staining in the 
presumptive jejunum). The bracket in H indicates the region corresponding to 
the cuboidally lined discontinuity at the stomach/duodenal junction. 
Abbreviations: v, ventral bud; d, dorsal bud; c, common bile duct; dd, dorsal 
ductule; du, duodenum; a, antral stomach; s, stomach; p, pancreas. 

duct, and antral stomach are stained at 11.5 dpc (Fig. 9B). The PDX-l/~gal 

expression boundaries at the liver/common bile duct and at the antral/fundic 

stomach boundary are relatively sharp, whereas expression in the duodenum 

declines caudally, becoming increasingly punctate in the more distal gut (Fig. 9B). 
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At 16.5 dpc, PDX-lI~gal expression is maintained in the antral stomach, 

common bile duct and cystic duct, and in duodenal enterocytes and 

enteroendocrine cells (Fig. 9C,D; data not shown). The biliary ducts proximal to 

the common bile duct also express PDX-lI~gal (data not shown). At this stage, 

the embryonic gut has changed from a pseudostratified to a columnar epithelium, 

the pancreatic buds have fused, and differentiation of exocrine and endocrine cell 

types has started. Pancreatic PDX-lI~gal staining begins to be extinguished in 

non-islet cell types at this stage (see below). Towards the caudal expression 

domain of pdx-l in the gut mucosa, X-gal-positive cells are few in number and 

well dispersed, and co localization of the pdx-l expression with enteroendocrine 

peptide markers is very often encountered (data not shown). Just before birth 

(1S.5 dpc), pancreatic PDX-lI~gal expression becomes restricted mostly to the 

developing islets. In the gut, enterocytes and enteroendocrine cells of the rostral 

duodenum epithelium are all labeled, and scattered epithelial cells again stain in 

the more distal gut (data not shown). At all stages examined, X-gal staining is 

absent from mesodermal tissues (see below). 

PDX-lI~gaI Expression is Maintained in Homozygous Null Animals 

As summarized in Fig. 9, an analysis of embryos from 9.5-16.5 dpc (n=lS) 

shows that the intensity and anteroposterior extent of PDX-lI~gal expression in 

pdxlacZko homozygous null animals is similar to that in pdxlacZko heterozygotes. 

This includes conspicuous labeling of the early dorsal and ventral pancreatic 

buds, which are comparable to those in +/- Littermates (compare Fig. 9 A and E), 

and the endodermallining of the prospective duodenum (Fig. 9E,F). At 11.5 and 
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16.5 dpc, the expression boundaries at 

the liver and within the stomach are 

the same in +/- and -/- littennates 

(Fig. 9F,G,H). This strongly suggests 

that PDX-l is not necessary for 

maintaining its own expression, nor for 

the survival of the endodennal cells 

that nonnally express it, although at 

this level of analysis the loss of a 

relatively low number of scattered 

cells cannot be ruled out. Most 

notably, the generation of the 

pancreatic buds does not require 

pdx-l function. 

Loss of PDX-l Function Blocks 

Pancreatic Bud Outgrowth. 

At 11.5 dpc, a separate 

outgrowth derived from the ventral 

pancreatic bud is no longer visible in 

.. 
Aberrant Duct 

Structures in pdx-l -/- Embryos. (A) 
At 16.5 dpc, a regular branching pattern 
is seen in the pancreas of +/- embryos. 
(B and C) In -/- mutant littermates, the 
pancreatic tissues are replaced by small 
irregularly branched dorsal ductules 
(dd) lined by a PDX-lI~gal-expressing 
epithelium. These vary somewhat in 
size and complexity but are seen in all 
-/- animals (n=24). (D) Similar dorsal 
ductules are produced in pdxXBko 
embryos (n=61), shown here at 18.5 
dpc. Abbreviations: du, duodenum; a, 
antral stomach; s, stomach; p, pancreas; 
dd, dorsal ductule. 

pdxlacZko -/- embryos (Fig. 9F), possibly because the cells derived from the 

ventral bud became incorporated into the biliary duct, or died. The common bile 

duct is greatly shortened, and the liver primordium is juxtaposed to the duodenum 

(Fig. 9F). The extensive dorsal pancreatic outgrowth of normal +/+ or +/-

embryos (Fig. 9B,C,D) is replaced by a short ductular structure in pdxlacZko -/-
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animals (e.g. Fig. 9F; Fig. 10). A "duodenal" gut tube is seen in mutant embryos, 

and it is of similar length to that in wild-type embryos, as judged by the domain of 

PDX-l/~gal expression (e.g. Fig. 9F,G). At any stage examined, homozygous null 

mutant embryos for either mutant allele never displayed necrotic plaques that 

might indicate large areas of cell death caused by the absence of PDX-l function. 

However, this level of analysis cannot rule out the possibility of increased levels 

of apoptosis in some regions due to the absence of PDX -1 function. 

The dorsal ductule derived from the dorsal bud in -/- animals persists into 

perinatal stages and goes through some outgrowth and irregular branching (Fig. 

10), although it is stunted greatly compared to the dorsal pancreas of pdxlacZko 

+/- embryos (e.g. compare Fig. 9C with 9G, and Fig. lOA with IOB,C,D). 

Similarly abrogated ductular trees were noted in all-/- mutant embryos (from 

11.5-18.5 dpc) in both pdxXBko (Fig. IOD) and pdxlacZko (Fig. IOB,C) animals. 

Such ductal structures, other than the normal pancreatic and biliary ducts, are 

never present in +/+ or +/- embryos. 

Pancreatic Marker Expression in pdx-l -/- Mutant Embryos 

Immunostaining was used to determine whether any cells present in or 

around the dorsal ductule of pdx-l -/- embryos express markers of specific 

mature pancreatic cell types. As reported previously (Pang et al., 1994; Teitelman 

et aI., 1993), glucagon-positive cells are found in +/- 9.5 dpc embryos as small 

clusters peripheral to, and dispersed within, the pancreatic bud (Fig. lIA). Similar 

populations of glucagon-positive cells are found in the pancreatic buds of -/­

embryos (Fig. lIB). In both +/- and -/- pancreatic buds, the peripheral 

glucagon-positive cells do not express pdx-l, as indicated by absence of 
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PDX-l/~gal expression, but the pdx-l expression status of glucagon-positive 

cells within the bud is somewhat uncertain because of masking by intensely X­

gal-positive cells. 

In 11.5 dpc pdxlacZko heterozygotes, glucagon-positive cells are again 

detected within the pancreatic buds, and in clusters of X-gal negative cells at the 

bud periphery (Fig. lIC). In pdxlacZko -/- mutant embryos at the same stage, a 

small number of glucagon-positive cells is found at, or close to, the junction of the 

dorsal ductule with the gut lumen (data not shown), but glucagon-positive cells 

are absent from distal regions of the dorsal ductule (Fig. lID). 

At 16.5 dpc and later, pdxlacZko heterozygotes show large numbers of 

glucagon- and insulin-positive cells in the emerging islets (Fig. llE,G), and 

amylase expression in the developing exocrine acini (Fig. IlF). In 16.5 dpc 

pdxlacZko homozygous null embryos (n=3), PDX-l/~gal negative, glucagon-

positive, cells are detected within the dorsal ductule (e.g. Fig. Ill), but amylase is 

still not detectable (compare Fig. IlF with J). In light of the role proposed for 

pdx-l in the derivation of mature ~ cells in the pancreatic islet (Guz et al., 1995), 

an extensive search for insulin-expressing cells in homozygous null mutants was 

done, under conditions in which wild-type sibling tissues displayed numerous 

insulin-positive cells (Fig. 11 G,H). No insulin-positive cells were detected by 

immunohistochemical analysis of the entire serially sectioned dorsal ductule and 

rostral duodenum, in a total of three embryos at 16.5 dpc (Fig. 11 K), or five 

embryos at 18.5 dpc (Fig. IlL). 

To further characterize the dorsal ductule, immunostaining was used to 

examine the expression of the glucose transporter-2 (GLUT2; Thorens et al., 

54 



I 

. . .... 

... ' 
... ;, 
h: 

;-. p 

.. , .. 
\ . 

~, ,-
, ,. 

.1 

.' 
~ . 

" . 

'::A~y 18~5'" ;." ;hts 
Expression in pdxXBko and pdxlacZko Embryos. 

(A and B) At 9.5 dpc in pdxlacZko -/- and +/- embryos, brown glucagon-positive 
cells are found in clusters (black arrowheads) at the endoderm/mesenchyme 
boundary and within the X-gal stained buds (white arrowheads). (C) At 11.5 
dpc, wild-type +/- pdxlacZko embryos contain larger numbers of glucagon­
expressing cells. (D) In 11.5 dpc -/-littermates, the dorsal pancreatic bud is 
replaced by the dorsal ductule (dd). Glucagon-expressing cells are not detected 
in distal regions of this ductule, but are found in tissue that is closer to the 
duodenal lumen (data not shown). (E) In 16.5 dpc +/- pdxlacZko embryos, 
glucagon-positive cells (n) are seen in the budding islets. (I) In -/-littermates, 
glucagon-positive cells (arrowheads) are seen within the X-gal stained epithelium 
of the ductules (dd). (F and 1) Amylase is also detected at this stage in pdxlacZko 
+/- embryos in the acini (a), but is not seen in -/- animals. (G and H) A high level 
of insulin expression is seen at 16.5 and 18.5 dpc, respectively, in the developing 
islets of wild-type +/- pdxlacZko embryos, but is not detected at either time point 
(K,L) in the dorsal ductule or the malformed rostral duodenum in pdxlacZko -/­
littermates. Panels H,L were hematoxylin counterstained, but not X-gal stained. 
Abbreviations: dd, dorsal ductule; i, islet; ~, beta cell; a, acini; a, alpha cell. 
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Figure 12. GLUT2 Expression 
in the Dorsal Ductule (left). The 
dorsal ductule and rostral duodenum 
were immunostained for insulin, 
glucagon, and GLUT2 expression at 
16.5 and 18.5 dpc and imaged by 
confocal microscopy. All sections 
were stained for insulin (assigned a red 
pseudo-color), and double-stained for 
glucagon (Glu) or GLUT2 (indicated 
in lower right corner, assigned green 
pseudocolor). Note that no insulin­
positive cells are present in any panel. 
(A) High levels of GLUT2 are detected 
in the epithelial lining of the cystic duct 
(c) of pdxlacZko+/- embryos at 18.5 
dpc. (B) GLUT2 in the villi is found 
primarily on the basolateral surfaces 
(arrowhead) of the epithelium. (e) 

dorsal ductule (dd) epithelium of 
litter-mates has a cuboidal 

morphology similar to the cystic duct 
in A, and equally intense GLUT2 
!exptres1;ion. (0) The GLUT2 signal in 

abnormal duodenal epithelium is 
more intense than that in the villi 
(circular cross-sections within the 
lumen). (E and F) At both time points 
(16.5 dpc shown), glucagon-positive 
cells are found at the tips of the 
GLUT2-positive evagin-ations of the 
dorsal ductule epithelium (white 
brackets), as well as within the 
epithelium proper (see Fig. Ill). 
Abbreviations: c, cystic ducts; dd, 
dorsal ductule; d, duodenum; Glu, 
glucagon. 

1990), while also double-staining for insulin or glucagon. In wild-type embryos, 

the GLUT2 signal is intense in the common bile duct epithelium (Fig. 12A) and, as 

in rat (Thorens et al., 1990), is expressed at lower levels in the basolateral surfaces 

of the columnar epithelial cells of the duodenal villi (although apical staining is 

apparent in some cells; see Fig. 12B,D). GLUT2 is also expressed at relatively 

high levels in the early pancreatic buds (Pang et al. 1994), but is then 

downregulated so that only very low levels exist in the pancreatic duct 
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+/+ Figure 13. Analysis of the 
StomachIDuodenaI Region(left). 
The junction of the stomach and 
rostral duodenum was analyzed at 1 

~ 
dpp and 18.5 dpc on serial sections by 
H&E staining. At I dpp (A) and 18.5 
dpc (B), the stomach/duodenum 
junction of +1+ animals is well-defined 
with the pylorus (p) opening into the 
rostral duodenum. Brunner's glands 

.' (b) are found in a collar around the 
neck of the duodenum. This region of 
pdx-I -/-littermates at both stages 

I (C, I dpp; D, 18.5 dpc) is malformed 
- - (unlabeled brackets). In most -/­

animals, this region forms an 
undulated cavity lacking villi and lined 
by cuboidal epithelium that is 
continuous with the common bile duct 
and dorsal pancreatic ductule. (E) In a 
few -/- embryos, such a cavity is not 
present; but the abnormal smooth 
cuboidal epithelium (arrowhead) is 
clearly present. (F) Comparison at 
higher magnification of the cuboidal 
epithelium (black arrowhead) with 
normal villus columnar epithelium 

_/_ (open arrowhead) in the duodenum of 
pdxXBko -/- embryos, indicating the 
differences in morphology and H&E 
staining of the two epithelia . 

. Abbreviations: s, stomach; p, 
pylorus; d, duodenum; b, Brunner's 
glands. 

epithelium of late gestation embryos (data not shown; Bob Girnlich, Genetics 

Institute, personal communication). In contrast, the epithelium of the dorsaluctule 

in pdx-l -/- mutants expresses GLUT2 intensely (Fig. 12C), with several 

evaginations showing somewhat decreased GLUT2 signal intensity. Many of 

these evaginations have small clusters of glucagon-positive cells at their distal tips 

(Fig. 12C,E,F), in addition to glucagon-positive cells within the dorsal ductule 
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epithelium itself (Fig. Ill). 

Based on the morphology of the dorsal ductule and the absence of 

expression for specific markers, it appears that differentiation of islets, mature 

pancreatic ~ cells, and acinar cells is blocked in pdx-l -/- embryos, in agreement 

with the findings of Jonsson et al. (1994). Non-epithelial and epithelial glucagon­

positive cells are found, but they are intimately associated with a GLUT2-positive 

dorsal ductule epithelium, and therefore these cells could be more related to 

embryonic glucagon-positive cells than mature islet cell types (see Discussion). 

Malformations at the StomachlDuodenal Junction ofpdx-l -/- Null Mutants 

During the analysis of the defects in pancreatic development, structural 

abnormalities were noted centered around the rostral duodenum of pcL'C-l -/­

embryos that might explain the lack of gastric emptying and subsequent stomach 

distension (Fig. 7E). These defects are illustrated in Fig. 13. In normal, late 

gestation embryos, the pyloric sphincter lies at the stomach/duodenum junction, 

and villi covered by a columnar epithelium protrude into the gut lumen 

throughout the rostral duodenum (Fig. 13A,B). In pcL'C-l -/- animals, the pylorus 

is very contorted, although at least some of its tissues are recognizable, such as 

the characteristic smooth muscle bands (data not shown). Because the 

expression of PDX-lI~gal extends over the antral stomach (Fig. 9,10), this could 

indicate a direct role for pdx-l in the differentiation of antral stomach tissues, 

although it is possible that the pylorus defects are a consequence of the adjacent 

gut tube malformations described below. 

In pdx-l -/- animals, the villi of the rostral-most duodenum are replaced 

by an area of smooth cuboidal epithelium (Fig. l3C-F), continuous with the dorsal 
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ductule epithelium, resembling the cystic/biliary duct epithelium both in its 

morphology and in its GLUT2 expression (compare Fig. 12A with C,D). Similar 

structural alterations are also seen in pdxlacZko homozygous null embryos, and the 

cells in this abnormal epithelium express PDX-l/~gal (data not shown). The 

topology of the gut lumen over this region is changed profoundly from a fairly 

straight tube in normal embryos to a diverticulated or spiraled tube, and parts of 

the lumen are tightly constricted compared to the wild-type duodenum. Of 6 

pdxXBko -/- animals analyzed, three 18.5 dpc embryos and two I dpp pups 

showed this phenotype. The remaining 18.5 dpc -/- animal showed an almost 

normal connection of the pylorus and rostral duodenal lumen, but the columnar to 

cuboidal conversion of epithelium and absence of villi was obvious (Fig. 13E). 

Absence of Brunner's Glands in Pdx-l -/- Mutants 

Brunner's glands are epithelially derived, submucosal glands that secrete 

bicarbonate and mucin into the duodenal lumen via connecting ducts. In mouse, 

they are apparent just prior to birth and are located in a collar around the neck of 

the duodenum adjacent to the stomach (Fig. 13A,B). A small number of circular 

structures with a superficial similarity to Brunner's glands were observed in some 

pdxXBko -/- gut sections (Fig. 14B,D). To characterize these structures, sections 

of pdxXBko -/- and +/+ littermates were stained with periodic acid/Schiff s 

reagent (PAS), which detects the basic mucins of the lumenal surface and 

perinuclear Golgi in Brunner's gland cells (Fig.14A,C). The structures found in 

pdx-l -/- embryos differ from wild type Brunner's glands in several ways. As 

shown in Fig. 14D, they do not stain with PAS, either lumenally or intracellularly. 
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Second, they are seen only in a few 

mid-longitudinal sections, while the 

wild type Brunner's glands fonn a 

continuous ring around the neck of 

the pylorus. Finally, the degree of 

complexity in the lobulation of the 

normal glands is not apparent in the ... --

pdx-l -/- animals. EGF has also 

been reported to be expressed in 

the Brunner's glands of rats and 

humans (Poulsen et al, 1986). 

However, immunolocalization of 

EGF detected no expression in 

either wild type or pdx-l -/-

animals at perinatal stages (data not 

shown). This is in agreement with 

previous reports on studies in 

mouse (Beerstecher et al., 1988). 

The findings reported here suggest 

that these structures seen in mutant 

animals are likely sections through 

the base of the duodenal crypts. A 

Figure 14. Absence of Brunner's Gland's 
iopdx-I-I- Mutants. (A) In +/+ 18.5 dpc 
embryos, the Brunner's glands, located just 
below the pylorus (Fig. 7 A), stain 
characteristically with PAS. (B) Circular 
structures morphologically resembling 
Brunner's glands are seen in some sections 
of -/- embryos. (C) High magnification of 
bracketed region in A shows PAS staining 
the mucins on the lumenal surface and 
within the perinuclear Golgi (arrowheads) 
of Brunner's gland cells. (D) The indicated 
region of pdx-l -/- gut shown in B has a 
different morphology from that of 
Brunner's glands, and is PAS-negative 
(arrowhead indicates lack of perinuclear 
Golgi staining). 

second possibly is that these could be incompletely formed and dysfunctional 

Brunner's glands. It remains to be seen whether pdx-l is directly involved in the 

differentiation of these glands, or if their failed development is secondary to the 
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abnormal morphogenesis of the rostral duodenum in homozygous null embryos. 

However, Brunner's gland development involves epithelial budding and 

differentiation, which is reminiscent of the processes of pancreatic outgrowth. 

Numerous clustered evaginations of the PDX-lI~gal-positive epithelium were 

noted in the rostral-most duodenum of pdxlacZko -/- embryos at 16.5 dpc (data 

not shown). These evaginations were not seen in older -/- embryos, and it is 

possible that they represent a transient stage of abnormal Brunner's gland 

development. Nevertheless, the absence of mature Brunner's glands supports the 

hypothesis that loss of PDX-l function affects duodenal differentiation as well as 

pancreatic development. 

Enteroendocrine Cells are Decreased in pdx-l -/- Embryos. 

Interspersed among the mucosal enterocytes, the mammalian gut 

epithelium contains enteroendocrine cells that are characterized by their 

morphology and their secretion of specific peptide hormones (see Solcia et al., 

1987 for review). The relative abundance of the different cell types varies 

regionally along the gut; thus, they are useful markers of gut patterning. 

Therefore, wild-type +/+ and -/- tissues were analyzed from 18.5 dpc embryos for 

the distribution and number of these cell types by immunohistochemistry with 

neuroendocrine peptide antibodies. Late gestation embryos were analyzed 

because enteroendocrine cells are detected properly only after the gut has 

changed from a pseudostratified to a columnar epithelium with villi (occuring in 

mice between 16 and 18 dpc) and because neuroendocrine peptide expression is 

upregulated after 17 dpc in preparation for feeding (Roth et al., 1991). Postnatal 

animals were not analyzed due to variable pathological effects on the gut 
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Serotonin Secretin CCK Serotonin 

Confocally imaged immunolocalization of cells (red pseudo-
color) shows abundant serotonin, secretin, and CCK-positive cells in the rostral­
most duodenum of 18.5 dpc pdxXBko +/+ animals. Nuclei were counterstained by 
YO-PRO-1 (green pseudocolor). (E-G) Similar analysis of pdxXBko -/- embryos 
reveals -60% reduction in these neuroendocrine cells in the frrst 1 mm segment of 
columnar epithelium (see Fig. 10). The lumen of the aberrant cuboidal epithelium 
of the rostral-most duodenum is indicated (asterisks). (D and H) Immuno­
peroxidase detection in both +/+ and -/- embryos shows the characteristic 
morphology of these cells interspersed among the mucosal enterocytes 
(arrowheads indicate serotonin-positive cells). 

epithelium likely stemming from the digestive problems in these animals (Fig. 

l3C). 

Cells positive for most gut neuroendocrine peptides (see Methods and 

Materials) were detected in pdxXBko -/- and +/+ littermates, but only secretin, 

CCK, and serotonin-positive cells were numerous enough for statistical 

comparisons. In pdxXBko +/+ embryos, CCK, secretin, and serotonin expressing 

cells are abundant in the rostral duodenum just below the pylorus, and their 

numbers decline sharply towards the distal duodenum (Figs. 15 and 16). A 

reduction of approximately 60% in the numbers of all three cell types occurs in 
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A B 
Reduction in Neurendocrine Ceo-types 

within the Proximal Duodenum 

Peptide Segment +1+ -1- % normal 

1 Serotorm 1 44 (+1-6.6)a 17 (+/-4.4) 38 
2 27 (+1-6.1) 16 (+1-2.9) 59 
3 25 (+1-7.9) 23 (+/-4.4) 92 

2 Secretin 1 33 (+1-9.3) 14 (+/-4.7) 42 
2 27 (+1-5.9) 13 (+1-3.8) 48 
3 15 (+1-6.3) 14 (+1-3.3) 93 

CCK I 33 (+1-6.3) II (+/-4.0) 33 
2 22 (+1-2.2) 15 (+/-4.2) 68 
3 19 (+/-4.3) 15 (+/-4.2) 79 

Figure 16. Quantitation of Enteroendocrine CeUs in pdxXBko -/- Embryos. 
(A) Neuroendocrine cells were counted over three 1 mm long segments of normal 
columnar epithelium in 18.5 dpc pdxXBko +/+ and -/- embryos (four of each 
genotype). Segments 1 and 2 were adjacent, but differences in gut folding and 
sectional plane led to segment 3* often being separated from segment 2, as 
indicated by the double-headed arrow. In -/- embryos, segments 1 and 2 were 
displaced approx. 0.3 mm from the pylorus because of the abnormal cuboidal 
epithelium. For each segment (1,2,3) in ail 8 embryos, markers were scored on 
four non-adjacent longitudinal sections, thus avoiding double-scoring of cells. 
(B) For each embryo analyzed, the average number of positive cells within 
segment 1,2, or 3 was calculated. For each segment, the table shows the mean (+ 
standard error of the mean, s.e.m.) of the four animals' individual averages. All 
three cell types show -60% reduction in segment 1 of 18.5 dpc pdxXBko -/­
animals, but their levels approach that of wild-type embryos in distal segments 
(e.g. serotonin). 

the rostral duodenum of pdxXBko -/- embryos, while in the more distal duodenum 

their numbers approach normal (Figs. 15 and 16). 

The enterocyte population of the duodenum and distal gut in pdxXBko -/-

mutants was analyzed by immunohistochemistry for L-FABP and I-FABP (liver 

and intestinal fatty acid binding proteins; Cohn et al., 1992; Sweetser et aI., 1988). 

Neither marker is expressed in the abnormal cuboidal epithelium of the rostral 

duodenum (data not shown). Just distal of this region, where villi are present, the 
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expression of both enterocyte markers is indistinguishable between wild-type 

and mutant animals (data not shown). Furthermore, no obvious histological 

abnormalities or morphological defects in other regions of the gut were noted 

(data not shown). 

Discussion 

Jonsson et al. (1994) have previously reported that null mutation of the 

pdx-l gene prevents pancreatic development and differentiation of exocrine cells 

and islet ~ cells, resulting in extreme hyperglycemia and perinatal death. The 

analysis presented here of two similar pdx-l mutant alleles corroborates these 

results, but provides additional information with important ramifications regarding 

the role pdx-l plays in posterior foregut development and organogenesis. First, 

the formation of the dorsal and ventral pancreatic buds apparently occurs 

normally in pdx-l homozygous null mutants. The ventral bud is not maintained 

as a discrete structure, while the dorsal bud undergoes limited branching 

outgrowth and forms a stunted, irregular epithelial tree that persists in newborn 

pups. Glucagon-expressing cells are detected in the mutant dorsal ductule, but 

immunohistochemical analysis of late gestation embryos fails to detect any 

insulin- or amylase-positive cells in this region. The current analyses do not 

preclude the transient existence of a population of insulin- or amylase-positive 

cells in earlier embryos; however, these data support the conclusion that loss of 

pdx-l function prevents the differentiation of mature islets, acini, and ~ cells in 

perinatal embryos. Second, the architecture of the rostral-most duodenum is 

altered in perinatal pdx-l -/- embryos, such that it forms a contorted tube lined 

by a cuboidal (rather than columnar) epithelium that is continuous with the dorsal 
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ductule and bile duct epithelium. Third, Brunner's glands fail to differentiate in 

homozygous null animals, and enteroendocrine cells are greatly reduced in 

number in the villus epithelium of the rostral duodenum. 

pdx-l Expression in the Embryonic Gut 

The pattern of ~gal expression described here from the pdxlacZko allele 

agrees well with endogenous PDX-l expression (Guz et al., 1995; Ohlsson et al., 

1993; Miller et al., 1994; Leonard et al., 1993), but the sensitivity of the X-gal 

staining decribed here is able to detect pdx-l expressing cells at least 12 hrs 

earlier than previous studies. Further these results show for the first time 

expression in the antral stomach, common bile duct, and in the cystic and hepatic 

ducts adjacent to the common bile duct. These data therefore expand the 

potential sphere of influence for pdx-l gene function in gut differentiation. This 

analysis of the defects in pdx-l homozyogus null mice has focused on the 

pancreas and rostral duodenum, based on the previously reported pdx-l 

expression domain. However, in similar pdx-l homozygous null mutants 

generated by Thomas Edlund, the gastrin cells (a neuroendocrine cell type of the 

antral stomach) fails to differentiate from its somatostatin positive precursor 

(unpublished observations). This finding is entirely consistent with the 

expression data shown here within the antral stomach. If the biliary ducts were 

scored for more subtle differences in the expression of suitable markers, similar 

effects might also be seen in these regions. 

By analyzing mice homozygous null for a Krox-20/~gal fusion protein 

allele, Schneider-Maunoury et al. (1993) showed that the hindbrain rhombomeres 

normally expressing Krox-20 were formed but subsequently degenerated in the 
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absence of Krox-20 function. Based on this paradigm, removing PDX-1 

function could have caused the death of most or all endodermal cells normally 

expressing it. In contrast to this possibility, the persistence throughout 

development of PDX-l/~gal expressing cells in the rostral duodenum and 

pancreas in pdxlacZko -/- embryos indicates that these cells do not require pdx:-l 

function for their surviVal, and that the establishment and maintenance of 

embryonic pdx-l expression boundaries does not require PDX-1 function. 

Because of the stability of the ~gal enzyme and the non-quantitative nature of 

the X-gal staining procedure, this analysis cannot exclude the possibility that 

PDX-1 could positively or negatively regulate its own expression to some degree. 

pdx-l and Pancreatic Development. 

These results strongly suggest that the endodermal expression domain of 

pdx-l is a major component of the developmental program of the pancreas. The 

blocked proliferation and differentiation of pancreatic exocrine and endocrine 

cell types inpdx-l-/- animals, described here and by Jonsson et al. (1994), 

provides strong evidence consistent with this proposal. As outlined in Chapter r, 

early classical studies suggest pancreatic development results from a primary 

instructive induction of the endoderm by axial mesoderm, and secondary 

mesenchymal signals that induce outgrowth and branching morphogenesis. The 

latter signals are apparently non-instructive, since similar effects are produced by 

heterologous mesenchyme (Wessells and Cohen, 1967). Further, transfilter and 

protease experiments suggest that the signals are comprised of diffusible 

polypeptides (Go los ow and Grobstein, 1962; Wessells and Cohen, 1967). The 

production of a dorsal pancreatic bud and its subsequent change in architecture 
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to a branched epithelial outgrowth in pdx-l -/- embryos could represent a partial 

response to the mesodermal signals described above. However, without the 

specific developmental instructions provided by pdx-l expression, pancreatic 

precursors cannot proliferate fully and do not differentiate into mature pancreatic 

cell types, as evidenced by the lack of amylase and insulin expression, and loss of 

normal tissue morphology. The analysis of the phenotype of Boxll homozygous 

null mutant mice (Roberts et al., 1994) suggests that a similar situation exists 

during development of the spleen, because the splenic precursors are generated 

normally, but then fail to differentiate and are lost through apoptosis (Dear et al., 

1995). 

These data are consistent with the conclusion that the dorsal ductule 

represents pre-pancreatic tissue arrested in an "early embryonic" state. In pdx-l 

-/- embryos, the epithelium throughout the dorsal ductule remains GLUT2-

positive at 16.5 dpc and 18.5 dpc, which contrasts the change in wild-type 

embryos from uniform GLUT2 expression in the buds to very low level 

expression in the mature pancreatic ducts. Notably, glucagon-expressing cells are 

present in the dorsal bud, and are still found in the later ductule derived from it, in 

pdx-l -/- animals (Figs. 11 and 12). Together with the finding that many 

glucagon-positive cells in the 9.5 dpc bud do not express PDX-lI~gal (Fig. IIA), 

this suggests that the induction of some islet a-cell precursors could be 

independent of pdx-l function (Fig. lIB). It is currently unknown, however, 

what relationship the early glucagon-expressing cells have to the later islet cell 

type and bona fide a cells in the mature pancreas. The glucagon positive cells 

detected within the epithelium of the dorsal ductule of pdx-l -/- animals may 

represent scattered endocrine precursors that in the absence of PDX-l function 
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are unable to differentiate into mature islet cell types. A rigorous test of this 

possibility will require the development of methods for determining the lineage 

relationship of early "pre-endocrine" cells to mature islet cells. 

pdx-l and Duodenal Development. 

The pdx-l gene is clearly required for normal rostral duodenal patterning, 

although it is not involved in the production of columnar epithelium, villi, and 

enteroendocrine cells per se, as they are all present in the more distal duodenum 

of pdx-l -/- animals, and outside the pdx-l expression domain. As described in 

Chapter I, posterior foregut patterning may involve opposing hepatic and 

pancreatic programs. Therefore, the mutant duodenum phenotype in pdx-l -/­

animals could be explained by an expansion of "hepatic influences" in the 

absence of pdx-l function, and resulting in the rostral-most duodenum adopting a 

bile duct-like fate. Consistent with this proposal, the cuboidal epithelium 

replacing the villi lacks enterocyte-specific marker expression, and resembles the 

bile duct epithelium both in morphology and GLUT2 expression. In addition, 

scattered GIP and secretin positive cells have also been detected within the 

cuboidal epithelium (data not shown). This is also true of the biliary ducts; 

however, these cell types are also seen within the epithelium of wild type 

duodenum. The examination of other well-defined regional markers, once they 

become available, will be useful to more clearly defme what the aberrant region of 

the pdx-l -/- duodenum represent. 

Although the above hypothesis is attractive in many respects, it is also 

possible that the cuboidal epithelium in the rostral duodenum represents tissue 

arrested at an early, but probably abnormal, morphogenetic state. The change in 
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the epithelial phenotype could be due to a failure in the transition from a 

pseudostratified gut epithelium to the normal columnar cell type, and the resulting 

epitelium is unable to proceed to a more advanced architecture, fonning neither 

villi, enterocytes, nor enteroendocrine cells. Finally, it is possible that the absence 

of proper differentiation in the rostral duodenum and/or the absence of a 

directional pancreatic outgrowth simply results in a local disorganization, and 

allows the spread of cuboidal epithelium, continuous with the biliary duct and 

dorsal ductule, into the rostral-most duodenum. 

Just distal to the deformed rostral duodenum, superficially normal villi are 

formed, and enterocytes and most enteroendocrine cell types are produced. 

Defects in patterning are apparent, however, in pdx-l -/- mutants, as evidenced by 

a substantial suppression in the numbers of enteroendocrine cells. One 

explanation for this phenotype is that pdx-l acts locally in the rostral duodenum, 

together with other factors, to affect directly the numbers of enterocyte versus 

enteroendocrine cells born from their common stem cells in the endodermal 

crypts. This is in contrast to the differentiation block seen in the gastrin 

expressing enteroendocrine cells of the stomach of pdx-l -/- mutants produced 

by Thomas Edlund (as mentioned above). Alternatively, the reduction in the 

numbers of enteroendocrine cells in the duodenum could be caused indirectly by 

interactions with the malformed, rostral-most duodenum and/or the blockage in 

pancreatic development. 

In summary, the data presented here show that the initial generation and 

outgrowth of the pancreatic progenitors does not require pdx-l function. Their 

production therefore occurs via separate regulatory pathways upstream of pdx-l , 

by early endodermal programs in which pdx-l plays a redundant role, or they are 
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directly induced by the adjacent mesoderm. Nonetheless, these data strongly 

suggest that pdx-l is required for the proper differentiation program of the 

posterior foregut as a whole, including the duodenum, rather than affecting only 

pancreatic development. 
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CHAPTERN 

GENERAL DISCUSSION 

Insights into Endodermal Patterning 

A Model of Pancreatic and Hepatic Induction 

Early classical studies of pancreatic and hepatic development, outlined in 

Chapter I, suggest that the endoderm of the posterior foregut is patterned by two 

spatially distinct sets of signals, those derived from the pre-cardiac mesoderm, 

which lead to a hepatic program for development, and those of the axial 

mesoderm, which lead to a pancreatic program (see Fig. 17). If this model is 

correct, then the endoderm of the posterior foregut would be expected to display 

a window of competence to respond to either of these two signals. Second, the 

specification of hepatic, biliary, duodenal, and pancreatic fates might result from 

an interplay of the two opposing signals. There are several anecdotal pieces of 

evidence that are relevant to this proposed pancreatic/hepatic dual competence. 

In response to specific forms of pancreatic trauma, pancreatic duct cells will 

proliferate and efficiently regenerate mature pancreatic cell types (Shaw and 

Latimer, 1926). However, after ethionine-induced destruction of pancreatic 

tissue, regrowth in the presence of a mutagen results in the generation of 

hepatocytes, in addition to normal pancreatic cell types (Scarpelli and Rao, 1981). 

It is also of interest that ectopic pancreas formation in humans (Branch and Gross, 

1935; de Castro Barbosa et al., 1946) occurs most frequently in regions of the gut 

that are now known to express pdx-l (Le. intestine, biliary ducts, and stomach). 
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Figure 17. Model for Early Posterior Foregut Regionalization. The posterior 
foregut gives rise to the liver, duodenum, and the dorsal and ventral pancreatic 
buds. (A and C) The hepatic and pancreatic precursors are induced by the 
opposing pre-cardiac and notochordal mesodenn. These inductive influences 
result in the endodenn autonomous developmental program which is necessary 
for the development of these two tissues. (B and D) Based on the results 
reported here, it appears that the interaction or the combination of these two 
developmental programs is responsible for patterning the posterior foregut 
leading to the proper boundaries and specification of the hepatic, pancreatic, and 
duodenal derivatives. In support of this, in pdx-l -/- mutants, loss of the part of 
the pancreatic program which is mediated by pdx-l appears to result in a spread 
of hepatic influences into the region of the duodenum, and definitive pancreatic 
structures are completely lost. Abbreviations: n, neural tissue; c, cardiac 
mesodenn; fg, foregut pouch; no, notochord; db, dorsal bud; vb, ventral bud; cb, 
common bile duct; d, duodenum; dd, dorsal ductule. 
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Molecular Data Concerning Pancreatic and Hepatic Induction 

The results from the analysis of the two pdx-l null alleles described in 

Chapter ill and recent reports from the lab of Ken Zaret (Gualdi et al., 1996) both 

appear to consistent in many respects with the above model. The work by Gualdi 

et al. indicates that most, if not all, of the early, naive embryonic endoderm is 

competent to respond to hepatic signals emanating from the pre-cardiac 

mesoderm. They found that conjugating mouse endodermal explants from the 

dorsal midline (presumptive pancreatic and intestinal endoderm) with pre-cardiac 

mesoderm resulted in the induction of both albumin and a-fetoprotein (as 

detected by RT-PCR) within the endoderm (these markers are indicative of early 

hepatic induction). The responsiveness of this region of endoderm to hepatic 

signals had been previously undetected using classical histological 

characterizations (LeDouarin, 1975). Gualdi, et al. further demonstrated that the 

axial tissues provided signals that could repress the differentiation of normal 

hepatic endoderm. Recombinations of presumptive hepatic endoderm and pre­

cardiac mesoderm, which alone results in hepatic differentiation, when combined 

with non-hepatic endoderm and axial tissues (notochord, somites and neural 

tube), resulted in a block of albumin induction in both ventral and dorsal 

endoderm. These data support the idea that the posterior foregut is instructed by, 

at least, two sets of signals, a pre-cardiac/hepatic signal and other axiallnon­

hepatic signals which inhibit liver development and support other differentiation 

pathways (likely pancreas and duodenum). Further, the primitive endoderm 

appears to be responsive to both of these signals. 

In the case of pancreatic induction, it has been previously shown that 

contact of the dorsal endoderm with axial mesoderm prior to 8.0 dpc was 
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necessary for later pancreatic development (Wessells and Cohen, 1967). The 

expression of pdx-l described in Chapter m is ftrst detected at this same time but 

is seen on the ventral side, opposite and well separated from the axial mesoderm. 

This would seem to be in conflict with the expression of pdx-l being influenced 

by axial signals, since the ventral endodenn does not contact the axial mesoderm 

at 8.0 dpc. As mentioned in Chapter I, the study of XlHbox-8 in Xenopus has 

previously demonstrated that XlHbox-8 expression is, in fact, dependent on early 

dorsal signals. Wild type vegetal explants taken prior to stage 8 (preceding 

gastrulation) and cultured until stage 35 autonomously express XIHbox-8 protein 

and mRNA (Gamer and Wright, 1995). This demonstrates that XlHbox-8 

expression does not require the processes of gastrulation or signals from the 

mesoderm. It is interesting to note that the cells that will later express XIHbox-8 

are specifted at a time when they are juxtaposed to the source of dorsalizing 

signals. However, XlHbox-8 expression is only detected after these associations 

have been altered by the processes of gastrulation. It is possible that similar 

mechanisms are at work in the context of the mouse embryo. If this is correct, 

pdx-l expression could be specifted within a localized subset of the endoderm 

very early during murine gastrulation, or just before. The later initiation of 

expression would then be due to some type of embryonic clock mechanism or 

other non-instructive interactions with other tissues with which the pdx-l­

specified region contacts. Alternatively, pdx-l expression could be specifted by 

the axial mesoderm just prior to its initiation, before the gut tube begins to form. 

At 7.5 dpc, prior to head fold formation, the embryonic endoderm consists of a 

small, flat sheet of cells whose most posterior aspect is continuous with axial 

mesoderm and lies just beneath the node (see Hogan et aI., 1994). At this stage, it 
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is possible that signals from the axial mesoderm or the node specify the later 

pdx-l expression within the adjoining endoderm. As the head fold forms, the 

endoderm also folds so that some of these cells would become repositioned 

ventrally before the initiation of pdx-l expression at 8.0 dpc. Further 

experiments, described below, are necessary to distinguish these two possibilities. 

Though the above model appears to fit well with the current information 

concerning pancreatic induction/specification, it is likely that other local signals 

and tissue interactions are also necessary for normal pancreas development. One 

possible interaction that has not yet been considered is the potential interaction 

between the embryonic and extraembryonic endoderm. Fate mapping studies at 

- 7.5 dpc (see Hogan et aI., 1994) indicate that the posterior boundary between 

these two tissues marks the posterior-most aspect of the foregut endoderm. 

Interactions at this boundary could help to specify ventral pancratic outgrowth 

since at 9.5-10.0 dpc the position of the ventral bud is juxtaposed to the 

extraembryonic yolk sac endoderm. Other data of importance to early events in 

pancreatic development come from the analysis of the motor neuron marker, Isll, 

and mice that are -/- for this gene (Thomas Edlund, Helena Edlund, Sam Pfaff, 

and Tom Jessell; unpublished observations). Prior to 9.0 dpc, Isll is expressed 

within the dorsal-most lateral plate mesoderm (more ventral regions do not 

express Isll) adjacent to the future dorsal pancreatic outgrowth. This mesoderm 

later moves medially towards the notochord and surrounds the embryonic 

endoderm. In Isll -/- mice, although the ventral pancreatic bud is apparently 

unaffected, the dorsal pancreatic bud is completely lost. This suggests the 

competence of the ventral and dorsal buds are under the control of separate 

mesenchymal induction systems. The dorsal component is clearly dependent on 
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Isll. and the ventral component is specified by other unknown factors. 

With regard to endodermal patterning, the data from this dissertation 

suggests that pdx-l is necessary for specifying some of the boundaries between 

the various regions arising from the posterior foregut. Careful inspection of the 

earliest expression of pdx-l from 8.0 dpc to 9.0 dpc (Fig. 8) reveals that at -8.5 

dpc the two ventral regions of expression on the left and right sides of the AlP 

(Fig. 8C) are closely opposed to the region of the endoderm that is committed to 

hepatic fates. As this hepatic region evaginates into the pre-cardiac/pre-hepatic 

mesoderm, the cells that express pdx-l are drawn towards the midline, as the 

pdx-l expressing domain of cells continues to spread and intensify. This 

suggests that pdx-l expression could be inhibited medially by the presumptive 

hepatic endoderm or by the overlying pre-cardiac mesoderm (similar to axial 

inhibition of hepatic differentiation above). Conversely, in the absence of 

functional PDX-1 it appears that the boundary between the pancreas and liver is 

not precisely specified, as evidenced by the common bile duct being greatly 

shortened at 11.5 dpc (Fig. 9F) and by the malformations of the rostral duodenum. 

These defects could be caused by a dorsal shift in the biliary domain of the 

endoderm, into the rostral duodenum, in the absence ofPDX-l. Therefore, PDX-I 

might have some inhibitory effects on the hepatic program in that it assists in 

defining and limiting the hepatic program's area of influence. 

One question to be addressed is how could two overlapping endodermal 

programs specify four separate regional identities, liver, bile ducts, duodenum, and 

pancreas. It would seem that it would only be possible to specify three regions 

representing only the hepatic program, both programs, and only the pancreatic 

program. This could imply the existence of other components which are not yet 

76 



Cardiac 
Mesoderm 

• Axial Signal (diffusible) 

• Cardiac Signal (diffusible) 

~ Pancreatic Program 

~ Hepatic Program 

Axial 

Figure 18. Patterning of the Developmental Fates of the Posterior Foregut. 
The establishment of four distinct regions can be accomplished by the overlaps of 
the pancreatic and hepatic programs due to the nature of the signals which 
specify these programs. Both the pancreatic and hepatic programs appear to be 
comprised of a cell autonomous component within the endoderm and a diffusible 
component released by the axial and pre-cardiac mesoderm. As illustrated above 
the strengths and overlaps of these components could provide the necessary 
patterning information to specify the hepatic, biliary, duodenal, and pancreatic 
regions of the posterior foregut. 

identified which would define part of the region of overlap as bile duct and part 

as rostral duodenum. This is not necessary, however, in order to rationalize the 

proposed model. The studies of Gualdi et al. (1996) described above found that 

the axial tissues inhibited hepatic development. It is plausible that, in a 

complementary way, the pre-cardiac mesoderm also inhibits pancreatic 
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development (based on the earlist expression of PDX -1, as mentioned above). 

Based on this scenario, each of the two development programs in the proposed 

model would consist of a cell autonomous endodermal component (perhaps the 

HNF family members for liver and PDX-l for pancreas) and a diffusible, distance 

dependent component emanating from the opposing mesodermal sources (see 

Fig. 18). The liver then would be specified by a high level of the pre-cardiac 

signal which induces the HNF family members. The lack of PDX-l expression 

might be due to the absence of the axial signal and/or repression by the hepatic 

influences. The biliary region would be specified by a moderate level of the pre­

cardiac signal and low levels of the axial signal resulting in the induction of both 

the HNF family members and PDX-l. This would be consistent with the 

expression data showing POX-lI~gal expression in the biliary ducts, which tapers 

sharply towards the liver, (Fig. 9 and data not shown). The rostral duodenum 

would likewise be specified by moderate levels of the axial signal and low levels 

of the pre-cardiac signal, again leading to the induction of the HNF family 

members together with POX-I. Finally, in the presence of high levels of the axial 

signal alone PDX -1 is induced, leading to pancreatic specification. If the 

malformation of the rostral-most duodenum seen in the pdx-l -/- animals 

represents a shift towards hepatic fates, then POX-l must somehow mediate the 

inhibitory influence of the axial signal within the endoderm. This is based on the 

observation that in the absence of functional PDX-l the biliary region is allowed 

to spread into the gut to the exclusion of the rostral duodenum. However, as 

previously stated (see Chapter ill Discussion), a transformation mechanism is not 

the only possible explanation of this phenotype. The malformed region of the 

rostral duodenum must be further evaluated in order test this hypothesis. Better 
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early markers are necessary to distinguish between the bile duct, pancreatic and 

duodenal epithelia. Once these are available, then the abnormal regions can be 

further analyzed and compared with the wild type structures. Also some 

techniques are needed for rigorous lineage tracing of the early endodermal 

components to their later differentiated structures. The mouse explant culture 

system described by Gualdi et al. should be very useful in evaluating potential 

tissue interactions which might be involved in posterior foregut patterning and/or 

differentiation. Markers specific for each of the four regions (liver, bile duct, 

duodenum, and pancreas) at early stages of differentiation would be necessary for 

these studies. Using combinations of competent endoderm with potential 

signaling regions and analyzing for the expression the region specific markers, the 

components of the proposed model could be thoroughly tested. 

Potential Ramifications for Diabetes 

These observations of the function of POX-l in normal pancreatic 

development may someday lead to genetic treatments for diseases such diabetes. 

In disease states such as insulin-dependent diabetes mellitus (IDOM) in which the 

islets are lost (due to a poorly defined autoimmune response), one might envisage 

various forms of intervention designed to replace or regrow islets from the 

existing pancreatic tissues. However, adult islets are known to have a poor 

regenerative capacity (Lazarow, 1952). Although there are a couple of examples 

of islet regeneration from ductal precursors (the embryological source of islet stem 

cells, Higuchi et al., 1992; Gu and Sarvetnick, 1993), this has been seen only in 

transgenic model systems, and this regeneration was also accompanied by other 

adverse affects of the trans gene. Because the expression of pdx:-l becomes 
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restricted during pancreatic development, it is possible that pdx-l expression in 

non-~-cells is indicative of an undifferentiated state. Transient over-expression of 

pdx-l in adult pancreatic ducts might then allow the regeneration of islet cell 

types. In support of notion, during ~-cell regrowth following streptozotocin 

treatment, all of the newly proliferating cells express pdx-l (Gladys Teitelman, 

unpublished observations). Currently, however, it is unknown exactly what role 

PDX-1 plays in these events as well as other aspects of pancreatic differentiation. 

Further studies, described below, are necessary to ascertain whether PO X -1 is 

necessary for normal islet production and ~-cell differentiation and whether 

reinitiation of POX -1 expression in the ducts would be sufficient to support islet 

regeneration. 

Future Directions 

Defining pdx-l 's Mechanisms of Transcriptional Regulation 

The study of the positive and negative transcriptional regulatory elements 

within the pdx-l locus will provide important information concerning upstream 

events that lead to the normal pattern of pdx-l expression. These analyses are 

already underway using both in vivo and in vitro approaches. The mapping of 

pdx-l regulatory elements in transgenic mice has been partially accomplished in 

collaboration with Laura Gamer, formerly of C.V.E.W.'s lab, and the lab of Mark 

Magnuson. These experiments have used regions of the 14.5 kb #2')... clone. 

described in Chapter n, to drive the expression of lacZ reporter constructs. The 

initial results indicate that the cis-acting sequences necessary for driving pdx-l 

expression in the duodenum and pancreas appears to be contained within a -4 
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kb Xbal - Sac! region upstream of the frrst exon (see Fig. 5). There also appears 

to be at least two regulatory regions, one that directs islet specific expression and 

one that drives the expression throughout the pancreas and duodenum. The 

most rigorous test of the putative regulatory regions would be the rescue of 

normal pancreas and duodenum development in pdx-l -/- animals by transgenic 

copys of the pdx-l coding regions together with the apparent regulatory regions. 

This experiment has been initiated by myself, Laura Gamer, and Maureen Gannon 

in collaboration with Mark Magnuson. These experiments are being continued 

by Maureen Gannon in the lab ofC.V.E.W. 

Similar studies are also being done in immortalized cell lines, representing ex, 

~, and non-pancreatic cell-types, in collaboration with the lab of Roland Stein. 

Transient transfection of reporter constructs driven by regions of the pdx-l locus 

has defined a -1 kb region that drives expression in insulin-producing cell lines. 

It is compelling that, these sequences correspond to the islet specific region 

defmed in transgenic mice. DNasel hypersensitivity studies in insulin-producing, 

~TC3 cell lines have revealed three sites, two of which correspond closely with 

the regions mapped in transgenic animals and one which would correspond to 

the pdx-l promoter. A higher resolution mutational analysis of the -1 kb region is 

ongoing, but should soon result in identifying the specific element(s) in this 

region that are necessary for pdx-l expression specifically in ~-cells. The 

identification of these elements ultimately will lead to the upstream transcription 

factor(s) that control pdx-l transcription, which is an important long term goal of 

the C.V.E.W.lab. 
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Analysis of pdx-l 's Role in Later Stages of Pancreas Development 

Because null mutations of PDX-l block pancreatic differentiation 

completely, the analyses described in this dissertation have been unable to 

demonstrate what role, if any, PDX-l might play in later stages of pancreas 

development. To address this problem, a third strategy has been designed using 

the CREIlox system (Sauer and Henderson, 1989; Sauer, 1993). The 10xP 

recombination sites to be placed flanking exon 2, at positions which should not 

affect normal PDX-l function (Gu et al., 1993). Mice carrying this allele will then 

be bred to transgenic mice which express CRE from cell-specific (e.g. using the 

insulin enhancer) or later stage specific enhancer/promoters. This should allow 

the function of PDX-I to be analyzed in certain cell types and/or after the initial 

stages of development. 

Pancreatic Specification and pdx-l Induction 

Although the general features of pancreatic induction and development 

are well established in the classical literature, there are still many questions 

regarding the early inductive mechanisms in mouse. The pdxlacZko allele 

described in this dissertation should be very useful in detecting and analyzing the 

initial steps in pancreatic induction. These data demonstrate that pdx-l 

expression (detected by the PDX-lI~gal fusion) precedes all other pancreatic 

markers currently available. Because the X-gal staining technique allows the 

detection of a single expressing cell, competent endoderm from pdxlacZko embryos 

should provide the basis for very sensitive assays of potential inducing tissues or 

factors. With tools such as the pdxlacZko allele, RT -PCR, as well as a much more 
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extensive selection of antibodies to key developmental players, it will soon be 

possible to address some of the questions regarding pancreatic induction using 

cultured explant recombinations. Specifically, the following questions need to be 

addressed: 1) What is the earliest stage when the pancreas and/or pdx-l 

expression is specified? 2) What tissue(s) is capable of such specification? and 3) 

What is/are the factor(s) which mediate this induction? 

Summary 

The study of PDX-l both in the Xenopus system and mouse has provided 

important information as to how the primitive endoderm is patterned and what 

types of interactions might be involved in pancreatic specification. The data 

contained within this dissertation, together with the recent reports concerning 

hepatic induction, support the following conclusions regarding posterior foregut 

patterning and tissue inductions: 1) This region of the endoderm is acted on by 

two opposing signals from the pre-cardiac and axial mesoderm, 2) The endoderm 

of this region is competent to respond to either of these signals, and 3) Both of 

these signals, and the developmental programs they establish, work in opposition 

to each other in order to establish the proper boundaries between liver, biliary 

ducts, pancreas, and duodenum. It is expected that this system will continue to 

be fruitful in providing an improved understanding of the processes of 

endodermal patterning, tissue inductions, and organogenesis. These mechanisms 

will then allow genetic interventions to be designed to treat not only pancreatic 

dysfunctions such as diabetes, but likely the paradigms generated here may be 

generally applicable to and help in designing similar schemes for treating other 

diseases. 
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