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MORPHOMETRIC VARIATION AS AN INDICATOR OF GENETIC 
INTERACTIONS BETWEEN BLACK-CAPPED AND CAROLINA 

CHICKADEES AT A CONTACT ZONE IN THE 
APPALACHIAN MOUNTAINS 

GENE D. SATTLER1 AND MICHAEL J. BRAUN 

Laboratory of Molecular Systematics and Department of Vertebrate Zoology, National Museum of Natural History. 
MRC 534. Smithsonian Institution. Washington. o.e. 20560. USA 

ABSTRACT.-We studied hybridization and introgression between Black-capped (Poecile 
atricapillus) and Carolina (P. carolinensis) chickadees along two transects in the Appalachians 
using four genetic markers and multivariate analysis of morphology. Genetic data revealed 
that at least 58% of the birds in the center of each transect were of mixed ancestry and that 
recombinant genotypes predominated among hybrids, demonstrating that hybridization is 
frequent and that many hybrids are fertile. Genetic clines generally were steep and coinci
dent in position, but introgression was evident well beyond the range interface. Introgression 
was higher at the one autosomal locus surveyed than in mitochondrial DNA or in two sex
linked markers, suggesting that the hybrid zone is a conduit for gene flow between the two 
forms at some loci. On a broad scale, morphometric variation was concordant with genetic 
variation. Clines in morphological variation based on principal components (PC) scores were 
steep and coincident with genetic clines. Also, a strong correlation within a population be
tween PC scores and an individual's genetic makeup suggested that a large amount of mor
phological variation was genetically determined. However, morphological analysiS indicated 
that hybrids were uncommon on one transect, whereas genetic data clearly showed that they 
were common on both. In addition, patterns of morphological variation were equivocal re
garding introgression across the hybrid zone. Thus, genetic data provided a complementary 
and more detailed assessment of hybridization, largely due to the discrete nature of genetic 
variation. Genetic markers are useful in understanding hybridization and introgression, but 
diagnostic markers may underestimate average gene flow if selection against hybrids main
tains steep clines at diagnostic loci. To gain a clearer picture of the genome-wide effects of 
hybridization. a much larger number of loci must be assayed, including non-diagnostic ones. 
Received 23 December 1998. accepted 1 October 1999. 

HYBRID ZONES are places where differentiat
ed forms meet, mate, and produce hybrids 
(Barton and Hewitt 1985). Because the bound
aries between otherwise discrete taxa blur in 
such areas, hybrid zones are useful for inves
tigating the process of speciation and the de
velopment of reproductive isolation between 
taxa (Moore and Price 1993, Hodges and Ar
nold 1994). Hybrid zones also may be viewed 
as natural laboratories where the interaction of 
populations differentiated at many genetic loci 
can be used to study micro evolutionary pro
cesses, and where evolutionary events of sig
nificance in their own right can occur (Harrison 
1990, Arnold 1992). 

1 Present address: Department of Biology and 
Chemistry, 1971 University Boulevard, Liberty Uni
versity, Lynchburg, Virginia 24502. USA. E-mail: 
edsattle@liberty.edu 

Morphological differences are often used to 
gauge the extent of genetic interactions be
tween hybridizing taxa. Some of the earliest 
studies of hybrid zones were done on birds, 
partly because plumage differences facilitated 
the identification of hybrids (e.g. Sibley 1950, 
Short 1963). When populations that meet along 
a common boundary are morphologically sim
ilar, however, inferences about genetic interac
tions can be elusive. Morphological intermedi
acy may not be readily apparent, and hybrids 
may be difficult to diagnose. In such cases, it is 
important to use multiple independent char
acters to assess evidence for hybridization. 
Classic avian examples are the Eastern (5tur
nella magna) and Western (5. neglecta) mead
owlarks, and the Eastern (Contopus virens) and 
Western (c. sordidulus) wood-pewees (Lanyon 
1966, Rohwer 1972, Rising and Schueler 1980), 
for which careful analyses of vocalizations and 

427 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

428 SATTLER AND BRAUN [Auk, Vol. 117 

morphology were necessary to demonstrate 
that hybridization between each of the species 
pairs was relatively infrequent. 

Black-capped (Poecile atricapillus) and Caro
lina (P carolinensis) chickadees are another such 
pair of hybridizing taxa for which it has been 
difficult to ascertain the extent of genetic ad
mixture. The two taxa meet in eastern North 
America along an extensive parapatric range 
boundary that stretches from New Jersey to 
Kansas, dipping southward in a peninsular 
fashion in the Appalachian Mountains (Brewer 
1963). Poecile atricapillus and P carolinensis are 
quite similar in morphology, with only mod
erate mensural and plumage differentiation 
(Rising 1968, James and Rising 1985, Pyle et a1. 
1987). Moreover, dinal geographic variation 
minimizes these phenotypic differences where 
the two meet (Duval 1945, Lunk 1952, James 
1970). Thus, although several studies of mor
phology have detected intermediacy and in
creased variability in the contact zone sugges
tive of hybridization (Rising 1968, Johnston 
1971, Robbins et a1. 1986), others have found lit
tle evidence of intermediacy (Tanner 1952; Mer
ri tt 1978, 1981). Clearly, the morphological sim
ilarity of these birds renders it difficult or im
possible to make inferences about introgres
sion beyond the range interface based on 
morphology alone (Robbins et a1. 1986). 

These chickadees also differ in song, which 
provides the most reliable means of field iden
tification. The difference in song is a principal 
reason why the two have traditionally been 
treated as separate species. Intermediate songs 
and / or bilingual birds occur at the range in
terface, suggesting that hybridization takes 
place (Johnston 1971, Ward and Ward 1974, 
Robbins et a1. 1986), but such mixed singing is 
limited to a narrow region relative to the range 
of each bird. However, heterospecific song 
learning between these chickadees has been 
demonstrated in the laboratory (Kroodsma et 
a1. 1995). Song learning probably also occurs in 
nature and has the potential to either mask or 
exaggerate apparent levels of hybridization 
and introgression. These and other studies 
(Grubb et a1. 1994, Kershner and Bollinger 
1999) call into question the behavioral and eco
logical mechanisms that have been proposed to 
maintain the distinctiveness of the species. 

Molecular genetic analyses with diagnostic 
marker loci can provide direct estimates of the 

extent of hybridization and introgression, po
tentially revealing the structure of a hybrid 
zone in greater detail than either morphology 
or behavior (Dowling et a1. 1989, Arnold et a1. 
1990, Szymura and Barton 1991). In the case of 
atricapillus and carolinensis, one isozyme differ
ence (Braun and Robbins 1986, Gill et a1. 1989) 
and three restriction fragment length differenc
es (Mack et a1. 1986; Gill et a1. 1989, 1993; Sa
waya 1990) are known. These four diagnostic 
molecular markers were used in southwestern 
Missouri to provide the first detailed assess
ment of genetic interactions between these 
chickadees (Sawaya 1990). Here, we use these 
markers to estimate levels of hybridization and 
introgression at the contact zone in the Appa
lachian Mountains and compare that with an 
assessment based on morphology. We evaluate 
the correlation of morphometric and genetic 
variation in these chickadees and assess the re
liability of morphometric variation in reflecting 
genetic interactions. These comparisons en
hance our ability to understand the evolution
ary significance of this and other hybrid zones. 

METHODS 

POPULATION SAMPLES 

We sampled 268 individuals from 12 populations 
in the study (Tables 1, 2). The sites that we sampled 
formed two transects that cross the range interface 
at the base of the Appalachian Mountains (Fig. 1), 
one on the eastern slope (Virginia transect) and one 
on the western slope (West Virginia transect). Where 
population samples were closely spaced (VA2 to 
VA4), population boundaries were determined by el
evation. For example, VA3 included all birds collect
ed on the floor of the Shenandoah Valley, whereas 
VA2 and VA4 were collected on the adjoining ridges 
above the valley floor to the west and east, respec
tively. Initially, we sampled a central "atricapillus
like" population (VA1/WV1) to serve as a common 
terminal population for both transects (Fig. 1). How
ever, because this sample showed genetic evidence of 
introgression from carolinensis (see Results), we col
lected a distant allopatric sample in northern Penn
sylvania to represent pure parental atricapillus. This 
parental sample (PA) was then treated as one of the 
terminal population samples of both transects (Ta
bles 1, 2). Parental samples OH and VA were collect
ed to represent the terminal carolinensis populations 
of the West Virginia and Virginia transects, respec
tively. 

All birds were collected with shotguns, frozen 
within one to four hours on dry ice or in liquid ni
trogen, and transferred to a - 80a C freezer. Collect-
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TA BLE 1. Data for chickadees collected on the West Virginia and Virginia transects, 1989 to 1992. 

Popula
tion' 

PA 
WV1 
WV2 
WV3 
WV4 
WV5 
OH 

PA 
VA1 
VA2 
VA3 
VA4 
VA5 
VA 

nb 

20 
20 
20 
31 
19 
19 
20 

20 
20 
33 
24 
21 
20 
21 

Location' 

West Virginia transect 
PA: Potter Co., 2.5 km S, 4.5 km E of Ole Bull State Park; 41°31 ' N, 77°39 'W 
WV: Pendleton and Tucker Cos., 9 km S, 11 km W of Petersburg; 38°54'N, 79°15'W 
WV: Randolph Co., 2 km S, 3.5 km E of Belington; 38°59'N, 79°54'W 
WV: Upshur Co., 3 km S, 9 km E of Buckhannon; 38°57' N, 800 08 'W 
WV: Upshur Co., 3 km S, 7.5 km W of Buckhannon; 38°57'N, 800 20 'W 
WV: Lewi s Co., 10 km S, 13 km W of Weston; 38°56 ' N, 800 37'W 
OH: Lawrence Co., 9 km S, 5 km E of Lawrence; 38°43'N, 82°34'W 

Virginia transect 
PA: Potter Co., 2.5 km S, 4.5 km E of Ole Bull State Park; 41°31 'N, 77°39 'W 
WV: Pendleton and Tucker Cos., 9 km S, 11 km W of Petersburg; 38°54'N, 79°15 'W 
VA: Shenandoah Co., 2.5 km N, 2 km E of Liberty Furnace; 38°54'N, 78°41'W 
VA: Shenandoah Co., 1 km S, 3 km W of Woodstock; 38°52 ' N, 78°33 ' W 
VA: Shenandoah Co., 6 km E of Edinburg; 38°50 ' N, 78°30'W 
VA: Rappahannock Co., 2 km S, 3.5 km E of Flint Hill ; 38°45 ' N, 78°03 'W 
VA: Charles City Co., 5.5 km N, 17.5 km W of Williamsburg; 37°20'N, 77°51 'W 

Distanced USNMc Date 

0.0 600060 to 600077 Jul91 
100.0 600078 to 600094 May 90 
155.4 600114 to 600131 May 90 
172.7 600132 to 600162 Apr 90, 92 
188.7 600212 to 600229 Apr 90 
212.5 600230 to 600247 Apr, May 90 
344.9 597882 to 597900 Jul91 

0.0 600060 to 600077 Jul91 
100.0 600078 to 600094 May 90 
153.6 600288 to 600319 Jul 89, Apr 91 
164.5 600320 to 600342 Jul89 
171.4 600267 to 600287 Jun, Jul89 
205.5 600095 to 600113 Apr 90 
387.0 600039 to 600059 Jun 91 

'" PA is treated as the atricapililis parental population sa mple fo r both transects. WVl and VA l are the same samples from the central Appalachians and serve as the second population at the alricapill fls end of 
both transects. 

b Includes all individuals used in genetic analyses. MorphologicaL analyses perfo rmed on males only. 
C Approximate center of area in which collection was made. Popul ation diameters s panned frorn a few km to a few tens of km . 
d Measured re lative to the atricap illu5 terminus o f each transect and perpendicular to the range interface as determined from Pete rjohn (1989), BDGIF (1989), Brauning (1992), and Buckelew and Hall (1994). The 

linear distance between PA and VA I / WVl is corrected because PA is displaced from the eas t / west-oriented transects. This di stance was estimated by measuring the distance from PA to the closest point of the 
range interface and subtra cting the distance between VA 1 / WVl and the closest point of the range interface . 

., Catalog numbers for specimens at USNM. Skins of 18 bird s included in genetic analyses were not salvageable and are no t represented here. Tissue samples from these 18 bird s are archived at the Labo ratory 
o f Molecul ar Systematics. 
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TA BLE 2. Sample size and percentage of hybrids, potential FI hybrids, and atricapillus alleles at four diag-
nostic geneti c markers . 

Popu la- Minimum Potential FI 
Percent atricapillus alleles 

tion ' n hybrid s (%) (%)b mtDNA GDA C7 ski 

West Virginia transect 
PA 20 0.0 0.0 100.0 100.0 100.0 100.0 

WV1 20 15.0 0.0 100.0 100.0 100.0 92.5 
WV2 20 15.0 0.0 95.0 100.0 100.0 95.0 
WV3 31 58 .1 16.1 64.5 59.6 59.6 62 .9 
WV4 19 57.9 5.3 5.3 6.7 6.7 31.6 
WV5 19 47.4 0.0 0.0 0.0 0.0 23.7 
OH 20 40.0 0.0 0.0 0.0 0.0 20.0 

Virginia transect 
PA 20 0.0 0.0 100.0 100.0 100.0 100.0 

VAl 20 15.0 0.0 100.0 100.0 100.0 92.5 
VA2 33 45 .5 12.1 87.9 94.0 94 .0 77.3 
VA3 24 62 .5 0.0 4.2 4.9 4.9 37.5 
VA4 21 28.6 9.5 4.8 11.4 11.4 19.0 
VAS 20 10.0 0.0 0.0 0.0 0.0 5.0 
VA 21 0.0 0.0 0.0 0.0 0.0 0.0 

.. PA is treated as the atricap illus paren tal population sample for both transects. WV l and VA 1 are the same samples from the central Appa· 
)ach ians and serve as the second popul at ion at the atricapilllls end o f bo th tra nsects. 

to Potenti al male F. hybrids mus t be he terozygous at the two sex-linked loci (GDA, C7) as well as at the one autosoma l locus (ski) because they 
are the homogametic sex. Potential fema le FI hybrids must be heterozygous at ski, and thei r mtDNA haplotype must be the opposite of thai of 
the two sex-li nked loci, because their mi tochondrial genome is materna lly inherited, whereas their single Z chromosome is paternally inherited. 

FI G. 1. Distribution of Poeciie utr icapillus and P caroiil1ensis in the Appalachian region, with locations of 
study sites comprising the West Virginia and Virginia transects, including parental samples. Exact localities 
are given in Table 1. Range bou ndaries are approximate (Peterjohn 1989, VDGIF 1989, Brauning 1992, Buck
elew and Hall 1994). 
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TABLE 3. Sample size (males only), morphological measures, and principal components scores of chickadee 
populations comprising the West Virginia and Virginia transects. Values are i :!: SE. 

Popu- Mass Wing chord Tail length 
lation' n (g) (mm) (mm) Tail:wing PC1 PC2 PC3 

West Virginia transect 
PA 13 11 .5 :!: 0.2 66.0 :!: 0.6 61.1 :!: 0.6 0.928 :!: 0.008 1.39 :!: 0.31 0.30 :!: 0.18 - 0.20 :!: 0.16 
WV1 13 11.2 :':: 0.1 66.9 :':: 0.4 62.7 :':: 0.6 0.936 :':: 0.007 1.62 :':: 0.20 -0.44 :':: 0.14 - 0.18 :':: 0.11 
WV2 13 11.7 :!: 0.2 66.6 :!: 0.6 62.1 :!: 0.7 0.934 :!: 0.006 1.83 :!: 0.31 0.27 :!: 0.19 - 0.18 :':: 0.12 
WV3 21 11.1 :':: 0.1 65.8 :':: 0.4 60.1 :':: 0.7 0.913 :':: 0.007 0.91 :':: 0.22 -0.01 :':: 0.13 -0.08 :!: 0.09 
WV4 11 10.6 :!: 0.2 64.5 :!: 0.6 56.9 :!: 0.5 0.883 :!: 0.008 - 0.25 :!: 0.28 - 0.02:':: 0.27 0.09 :':: 0.16 
WV5 11 11.1 :!: 0.1 65.0 :':: 0.4 56.9 :':: 0.5 0.876 :':: 0.005 0.17:!: 0.21 0.37 :!: 0.15 0.25 :!: 0.07 
OH 16 10.2 :':: 0.1 64.4 :!: 0.4 54.8 :':: 0.4 0.852 :':: 0.004 - 0.90:':: 0.21 - 0.27:':: 0.08 0.39 :':: 0.09 

Virginia transect 
PA 13 11.5 :':: 0.2 66.0 :':: 0.6 61.1 :':: 0.6 0.928 :':: 0.008 1.39 :':: 0.31 0.30 :':: 0.18 -0.20 :':: 0.16 
VAl 13 11.2 :':: 0.1 66.9 :':: 0.4 62.7 :':: 0.6 0.936 :':: 0.007 1.62 :':: 0.20 - 0.44 :':: 0.14 - 0.18 :':: 0.11 
VA2 15 11.1 :':: 0.1 66.1 :':: 0.5 60.7 :':: 0.7 0.919 :':: 0.009 1.06 :':: 0.22 -0.18 :':: 0.22 - 0.10 :':: 0.13 
VA3 12 10.3 :':: 0.1 63.0 :':: 0.2 54.6 :':: 0.5 0.867 :':: 0.007 - 1.25 :':: 0.11 0.08 :':: 0.17 0.00 :':: 0.07 
VA4 14 10.2 :':: 0.2 63.1 :':: 0.4 54.6 :':: 0.7 0.866 :':: 0.009 - 1.30 :':: 0.31 - 0.04 :':: 0.12 0.02 :':: 0.11 
VA4b 13 10.0 :':: 0.1 62.8 :':: 0.3 54.0 :':: 0.5 0.861 :':: 0.008 - 1.58:':: 0.17 - 0.10 :':: 0.11 0.02 :':: 0.12 
VAS 14 10.4:':: 0.1 62.9 :':: 0.3 54.1 :':: 0.4 0.860 :':: 0.005 - 1.31 :':: 0.17 0.26:':: 0.11 0.05 :':: 0.09 
VA 15 9.7 :':: 0.2 62.1 :':: 0.3 53.1 :':: 0.3 0.857 :':: 0.003 - 2.08 :':: 0.16 -0.17 :':: 0.18 -0.04:':: 0.06 

~ PA is treated as the atricapillus parental population sa mple fo r both transec ts. WV] and VA ] are the same sa mples from the central Appa-
lachians and serve as the second population at the africapill lj s end of bo th transects. 

b Omits one pure atricapilllls indi vidual from predominantly carolinensis- like VA4. 

ing was done during the breeding seasons (April to 
July) of 1989 to 1992 (Table 1), prior to or following 
the rearing of young. Study skins and tissue speci
mens were deposited at the United States National 
Museum of Natural History (USNM). All 268 indi
viduals, represented by 178 males, 82 females, and 8 
unsexed individuals (see below), were used in ge
netic analyses. Because these birds are sexually di
morphic in size, only males were included in mor
phometric analyses. Owing to excessive plumage 
wear or damage, we omitted 10 males from morpho
metric analyses, resulting in a total morphometric 
sample size of 168 males (Table 3). 

In using the generic names Poecile and Baeolophus, 
we follow AOU (1998), while remaining uncon
vinced by available data of the advisability of this re
vision (i.e. Slikas et al. 1996). 

MORPHOMETRfC ANAL YSfS 

Specimens were thawed in the laboratory, where 
the sex and age of each bird was determined by ex
amination of gonads and skull ossification, respec
tively. Birds were weighed to the nearest 0.1 g, and 
wing chord and tail length were measured by CDS 
to the nearest 0.5 mm by ruler before tissue collection 
and specimen preparation. Samples VA2, VA3, and 
VA4 each contained four to eight immature birds (i.e. 
hatched in that breeding season). We found no sig
nificant differences between adults and immatures 
for the three morphometric variables (Mann-Whit
ney U-tests, all P > 0.10), so the two age classes were 
combined in each sample. 

Other mensural and plumage characters have pre
viously been used to distinguish these chickadees 
(Rising 1968, James and Rising 1985). However, all 
mensural differences are highly correlated with 
overall size. Also, the subtle differences in plumage 
coloration between these birds are difficult to score 
on worn specimens (Rising 1968), and many of our 
birds were worn because they were collected during 
and immediately after the breeding season (when 
wear is greatest) to insure that we were working with 
locally breeding individuals. Robbins et al. (1986) 
found that mass, wing length, and tail length were 
sufficient to discriminate among parental popula
tions of the two species and to illuminate patterns of 
intermediacy in the hybrid zone; we follow that strat
egy here. 

We performed principal components analysis 
(PCA) on the untransformed data using the correla
tion matrix, thus weighting all variables equally 
(SAS 1987). All 12 population samples were included 
in the analysis. The three morphometric variables 
were distributed normally in each sample with the 
following exceptions. Mass, wing chord, and tail 
length were not normally distributed in VA4 due to 
the presence of a single individual characterized by 
our genetic markers as a pure atricapillu5 in this pre
dominantly carolinensis sample. PCA was performed 
both with and without this individual, with little ef
fect on the overall analysis. Mass also was not nor
mally distributed in VA, VAS, and WV4, and wing 
chord was not normally distributed in VA3. Trans
formations failed to normalize the variables in these 
populations, so untransformed values were retained 
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in the PC analyses. Extracted components were dis
tributed normally in each population sample. One
way analyses of variance (ANOVA) tests of the com
ponents were done for the West Virginia and Virgin
ia transects separately followed by a posteriori Tukey 
tests to assess the significance of morphometric dif
ferences among populations. All tests were per
formed with SAS (1987). 

GENETIC ANALYSIS 

Isozyme analysis.-Liver tissue was thawed and 
0.05 to 0.2 g homogenized in 150 fLL of deionized wa
ter with a pestle. Samples were centrifuged for 2 min 
and the supernatant aliquoted and stored at -80°C 
until use. Isozymes were separated on Titan III thin
layer cellulose acetate plates using Zip Zone electro
phoreSis chambers (Helena Laboratories, Beaumont, 
Texas). Gels were run at 200 V for 50 to 120 min using 
a 50 mM Tris/20 mM maleate buffer (pH 7.8), and 
stained by agar overlay using the guanine deaminase 
(GOA) staining recipe of Richardson et al. (1986). 
GOA is diagnostic for atricapillus and carolinensis 
(Gill et al. 1989, Sawaya 1990). It is also believed to 
be sex linked in these chickadees; only male hybrids 
display a heterozygous pattern for the marker (Sa
waya 1990, Sattler 1996). 

Genomic DNA extraction.-Pectoral muscle was 
thawed and 0.7 g from each bird mechanically ho
mogenized in 7.0 mL of extraction buffer (0.1 M 
NaCl, 0.1 M EOTA, 0.01 M Tris, pH = 8.0). The ho
mogenate was digested overnight at 55°C with pro
teinase K (200 fLg / mL) in the presence of 0.5% SOS 
and then digested with RNase (100 fLg/ mL) for 1 h 
at room temperature. NaCl was added to 0.2 M con
centration and samples were extracted once in an 
equal volume of a phenol-chloroform-isoamyl alco
hol solution (25:24:1) and twice in an equal volume 
of a chloroform-isoamyl alcohol solution (24:1), in
cubating each extraction at 55°C for 20 min. Total 
DNA was recovered by overlaying the aqueous so
lution with two volumes of cold 95% ethanol and 
spooling the high molecular weight DNA onto a 
glass rod, rinsing in 70% ethanol, and resuspending 
in 800 ILL of TE (10 mM Tris, 1 mM EOTA, pH = 8.0). 

Restriction analysis.-Restriction enzyme diges
tions were carried out overnight according to man
ufacturer's recommendations. Four micrograms of 
total genomic DNA were digested with 20 units of 
restriction enzyme and electrophoresed in 0.6% aga
rose gels using TBE buffer (89 mM Tris, 89 mM boric 
acid, 2 mM EOTA, pH 8.4) overnight at 30 to 50 V. 
Gels were soaked for 30 to 45 min in 1 L of 0.4 M 
NaOH and 0.8 M NaCI under gentle agitation to de
nature the DNA, then soaked in 1 L of 1.5 M NaCl 
and 0.5 M Tris HCI for 30 to 60 min prior to blotting 
onto MSI Magnagraph nylon membranes (Southern 
1975). Transfer was accomplished over 6 to 20 h us
ing lOx SSC (1.5 M NaCl, 0.15 M sodium citrate). 

DNA was crosslinked to membranes using a Strata
gene UV Strata linker 1800. Membranes were then 
rinsed in 2X SSC (0.3 M NaCl, 0.03 M sodium cit
rate), air dried, and stored at -20°e. 

Probes were labeled to high specific activity (10' to 
10· dpm/ fLg) with alpha 32p dATP by random prim
ing (Feinberg and Vogelstein 1983). Transfer mem
branes were prehybridized in a solution of 1 M NaCl, 
1.0% SOS, and 10.0% dextran sulfate for 1 to 3 h at 
65°e. Labeled probe was then added to a concentra
tionof2 x 106to2 X 1Q7dpm/mL(1 t02 X 10sdpm/ 
mL for mitochondrial probe) and hybridization car
ried out for 18 to 24 h at 65°e. One low-stringency 
wash (LOX SSC, 0.5% SOS, 1 mM EOTA) and two 
high-stringency washes (0.2x SSC, 0.1% SOS, 1 mM 
EOTA) were done at 48°e. Membranes were then 
wrapped in cellophane without drying and exposed 
to Kodak XRP film for 20 to 200 h using two Dupont 
Cronex intensifying screens. After autoradiography, 
some membranes were stripped of radioactivity in 
two changes of boiling 0.1 % SOS (1 Leach) and re
probed with mtONA. Fragment lengths were esti
mated by comparison with a size marker consisting 
of Hind III-digested bacteriophage lambda DNA and 
Hae III-digested bacteriophage ,+,X174 DNA. We did 
not attempt to score fragments smaller than 400 base 
pairs (bp). 

We used three probes to detect restriction frag
ment length variants that were diagnostic for atricap
illus and carolinensis. The first was a 1,200-bp frag
ment of the chicken oncogene ski (Li et al. 1986) that 
was used to probe Eco RI digests (Sawaya 1990). The 
second was a randomly cloned 4,000-bp fragment of 
Tufted Titmouse (Baeolophus bicolor) DNA designated 
C7 that was used to probe Pst I digests (Sawaya 
1990). The third was mitochondrial DNA (mtDNA) 
from carolinensis purified by subcellular fraction
ation and CsCI equilibrium-gradient centrifugation 
following Dowling et al. (1990). Three restriction en
zymes (Pst I, Pvu II, and Ava II) were used to identify 
species-specific mtONA haplotypes (Mack et al. 
1986, Sawaya 1990). 

Restriction fragment sizes for ski, C7, and mtONA 
agreed with those reported earlier (Sawaya 1990). 
Some intraspecific polymorphisms in restriction 
fragment pattern occurred in both atricapillus and 
carolinensis for C7 and mtONA haplotypes, but all 
fragment patterns could be unambiguously assigned 
to one or the other species based on their distribution 
in samples from parental populations and / or their 
relationship to parental haplotypes (Sawaya 1990, 
Sattler 1996). Ski is autosomal in these chickadees, 
whereas C7 is sex linked (Sawaya 1990, Sattler 1996). 

Screening with Pst I, Pvu II, and Ava II produced a 
size estimate for the mtONA genome of these chick
adees of 16,200 bp. MtDNA fragment profiles pro
duced by each enzyme were concordant in establish
ing atricapillus or carolinensis haplotypes for all in
dividuals. Although two distinct mitochondrial hap-
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lotypes occur in carolinensis along an east! west cline 
(Sawaya 1990; Gill et al. 1993, 1999), we encountered 
only the eastern haplotype. 

Identification of hybrids.-We defined a hybrid as 
any individual that possessed a mixture of atricapil
Ius and carolinensis alleles among the four diagnostic 
loci. Estimates of hybrid frequency are conservative 
because of the Iimi ted number of genetic markers 
available to characterize genetic ancestry. For this 
reason also, birds are classified for convenience into 
a small number of genetic classes (parental, potential 
F" and backcross or later-generation hybrid). The ac
tual genetic composition of the hybrid zone popu
lations is surely much more complex than this. Esti
mates of hybrid frequency are more conservative for 
females than for males because two of the marker loci 
are sex linked (GOA and C7), and females, being the 
heterogametic sex, have only one allele at such loci. 
The possibility of physical linkage of GOA and C7 on 
the Z chromosome could result in nonindependence 
of these markers, further increasing the chances of 
misclassifying later-generation hybrids as parentals. 
On the other hand, the number of potential F, indi
viduals will exceed the actual number in the popu
lation, because some later-generation hybrids will 
have genotypes consistent with F, status. 

RESULTS 

Genetic analysis.-The marker loci yielded 
unambiguous evidence of extensive hybridiza
tion in both Appalachian transects. At least 
58% of the birds in the center of each transect 
were of hybrid ancestry, based on admixture of 
the four marker loci (Table 2). The frequency of 
hybrids declined rapidly away from the range 
interface, except for the carolinensis side of the 
West Virginia transect. Here, hybrids remained 
at frequencies of 40% or higher as far as sample 
OH. Also, the central Appalachian populations 
VA1/WV1 and WV2 still included 15% hy
brids. However, all hybrids found more than 20 
km from the center of either transect were clas
sified as such on the basis of a single foreign 
allele at ski. 

Allele frequency clines for all four diagnostic 
markers were coincident in position, with the 
center of the hybrid zone lying between WV3 
and WV4 in West Virginia and between VA2 
and VA3 in Virginia (Table 2). Allele frequen
cies at three of the marker loci, GDA, C7, and 
mtDNA, were similar in all populations, and 
evidence for introgression at these loci was lim
ited to the central three samples of each tran
sect, WV2-4 and VA2-4 (Table 2). Introgression 
at ski was greater in both directions across the 

hybrid zone, affecting five populations in the 
Virginia transect and six in the West Virginia 
transect. In fact, the terminal carolinensis sam
ple of the West Virginia transect, OH, which 
lies about 160 km west of the center of the hy
brid zone, still had a frequency of 20% atricap
illus alleles at ski. 

With the exception of WV3, genes of one spe
cies or the other predominated in each sample 
(Table 2). In all population samples, backcross 
or other recombinant genotypes predominated 
among hybrids (Table 2). In the West Virginia 
transect, 75.0% of all hybrids were identified as 
such on the basis of a single foreign allele 
among the loci surveyed, whereas in the Vir
ginia transect the figure was 63.4%. In the West 
Virginia transect, potential F, hybrids made up 
less than 20% of any sample, whereas in the 
Virginia transect, potential FI hybrids consti
tuted less than 15% of any sample. 

Morphometric analysis.-Both parental popu
lation samples of carolinensis (OH, VA) aver
aged smaller than the parental sample of atri
capillus (PA) in all univariate measurements 
and in the ratio of tail length to wing chord (Ta
ble 3), a character commonly used to distin
guish these species (Tanner 1952; Johnston 
1971; Merritt 1978, 1981). Population samples 
from the center of each transect were interme
diate between the appropriate parental sam
ples in these measures. Poecile atricapillus-like 
samples from higher elevations in the central 
Appalachians (VA1/WV1, WV2) often aver
aged larger than the parental atricapillus sam
ple (PA), although these differences were rarely 
significant. 

Principal components analysis and discrim
inant function analysis are two multivariate 
approaches often used in the phenetic analysis 
of taxonomic groups engaged in hybridization 
(Rising 1968, Rohwer 1972). In addition to 
more stringent assumptions, discriminant 
analysis requires correct classification of indi
viduals in reference samples (Neff and Smith 
1978). As noted above, although reference sam
ples of atricapillus and carolinensis were collect
ed in areas of allopatry, genetic analysis re
vealed long-distance introgression into two of 
these samples (VA1/WV1 and OH). PCA is a 
more suitable method of analysis in this situ
ation, as long as a large proportion of the var
iation present in the data discriminates among 
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TABLE 4. Eigenvectors genera ted by a principa l 
components analysis of th ree morphometric vari
ables fo r all chickadees comprising the West Vir
ginia and Virginia transects. 

Character PCI PC2 PC3 

Mass 0.54 0.84 0.02 
Wing chord 0.59 - 0.40 0.70 
Tail length 0.59 - 0.37 - 0.72 
Eigenvalue 2.41 0.41 0.18 
Variance explained 0.805 0.135 0.060 

the taxa being analyzed, as is clearly the case 
with the variables analyzed here. 

PCA provided good separation of chickadee 
populations in morphometric space. The first 
principal component (PCl) accounted for 
80.S% of the total variance, and the second and 
third components (PC2 and PC3) explained 
l3.S% and 6.0%, respectively (Table 4). PCl had 
positive factor loadings for all three variables 
and thus was closely related to overall body 
size. The PC2 axis primarily contrasted mass 
with wing chord and tail length, whereas the 
PC3 axis primarily contrasted wing chord with 
tail length. PCl and PC3 scores closely tracked 
the proportion of atricapillus alleles in all pop
ulations, but PC2 showed no consistent differ
ences between the two forms (Fig. 2, Table 3). 

All of the genetically atricapillus-like popu
lation samples (PA, VAl/WVl, WV2, VA2) 
were relatively uniform with respect to both 
PCI and PC3 and showed no significant differ
ences in either measure by ANOVA (Table 3, 
Fig. 2). However, all genetically atricapillus-like 
samples had higher PCl scores and lower PC3 
scores than did all genetically carolinensis-like 
samples (OH, WV4, WVS, VA3-VAS, VA). For 
PCl, all of these differences were significant (P 
< O.OS, Tukey tests). For PC3, the only signifi
cant differences were between OH and all sam
ples of predominantly atricapillus genetics. 

Consistent trends also occurred in these two 
parameters among genetically carolinensis-like 
samples on either side of the Appalachians. For 
PCI, all such samples of the West Virginia tran
sect had larger scores than equivalent samples 
of the Virginia transect (Table 3, Fig. 2), making 
them more like atricapillus. All of the differences 
were significant (P < O.OS, Tukey tests), except 
in the case of the parental sample OH. In con
trast, all carolinensis-like samples of the Virgin
ia transect had smaller PC3 scores than did 
those in West Virginia, making them more atri-

capillus-like on this axis. Only the difference be
tween OH and VA was Significant (P < O.OS, 
Tukey test). 

The best morphometric separation of paren
tal populations was achieved with a scatterplot 
of PCl and PC3 scores (Fig. 3). In the Virginia 
transect, parental samples of atricapillus (PA) 
and carolinensis (VA) were well resolved mor
phometrically from one another (Figs. 3A, B). 
Nonparental population samples of this tran
sect (VAl-VAS) fell into two distinct clusters 
(Figs. 3C, D) despite the presence of a high pro
portion of hybrids in some populations (Table 
2). Most of the hybrids were backcrosses or oth
er recombinant progeny (see above), and each 
sorted morphologically with the appropriate 
parental species based on its predominant 
marker alleles. The lone genetically atricapillus 
individual from the predominantly carolinensis 
population VA4 was clearly atricapillus-like in 
morphology (Figs. 3C, D). 

If morphological intermediacy is defined on 
the basis of an intermediate position between 
parental polygons in the scatterplots, 22 indi
viduals in the Virginia transect were interme
diate. These birds represented 32.4% of the 68 
individuals in VAl- VAS for which morpholog
ical data were available, a proportion similar to 
the proportion of hybrids determined geneti
cally (2S of 7S individuals, or 33.3%). However, 
more than half of these morphologically " in
termediate" individuals were classified as ge
netically "pure" atricapillus or carolinensis 
based on our four marker loci (Fig. 3D). 

For the West Virginia transect, parental sam
ples of atricapillus (PA) and carolinensis (OH) 
separated on the scatterplot of PCl and PC3 
(Figs. 3A, B), but the degree of separation was 
less than that of parental samples of the Vir
ginia transect. Because of this higher morpho
metric similarity between PA and OH, the re
gion between them that defines morphometric 
intermediacy is narrow, and only 6 of 69 birds 
(8.7%) in WVl-WVS fell within this morpho
metric space compared with 30 birds (43.S%) 
that were genetically defined as hybrids in the 
same samples (Figs. 3E, F). 

Allele frequencies at four nonparental West 
Virginia sites were strongly skewed toward ei
ther atricapillus (WVI, WV2) or carolinensis 
(WV4, WVS) alleles, as in Virginia nonparental 
populations. In WV3, representation of atricap
illus and carolinensis alleles was more evenly 
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balanced (Table 2). Instead of falling into two 
distinct clusters in a PC plot as in Virginia, the 
West Virginia nonparental populations were 
distributed in one more or less continuous clus
ter (Figs. 3E, F). Again, hybrids in this transect 
were predominantly back crosses or other re
combinant genotypes and showed a strong ten
dency to fall morphometric ally with the appro
priate parental species on the basis of their ge
netic makeup (Fig. 3F). 

Because of the more balanced representation 
of both species' genes in WV3, we could di
rectly assess the relationship between morpho
metric and genetic variation in this sample. Sig
nificant correlations existed between two PC 
scores (PC1 and PC3) and the number of atri
capillus alleles for individuals of WV3 (Fig. 4). 
Thus, the correlation between morphology and 
genetics evident at the regional or population 
scale (Fig. 2) was maintained on a local level 
among individuals. 

DISCUSSION 

Levels of hybridization.-Data from four diag
nostic genetic markers clearly demonstrate the 
presence of a high proportion of hybrids at the 
range interface of atricapillus and carolinensis in 
Virginia and West Virginia. The estimated pro
portion of hybrids in the Virginia and West Vir
ginia hybrid zones (>58%) is comparable to 
that in southwestern Missouri (Sawaya 1990), 
where at least 44% of 36 individuals sampled at 
the range interface were of mixed ancestry 
based on the same marker loci. The presence of 
a majority of non-F J hybrids among progeny of 
mixed ancestry at these three locations dem
onstrates that some hybrids are fertile and that 
back crossing occurs frequently. The genetic 
data confirm several previous morphological 
analyses of this hybrid zone that found patterns 
of variation suggestive of substantial back
crossing (Rising 1968, Johnston 1971, Robbins 
et al. 1986). The significance of other morpho
logical studies that found little evidence of in
termediacy (Tanner 1952; Merritt 1978, 1981) is 
less clear (see below). 

Correlation of morphometric variation with ge
netic ancestry.-Many morphological traits in 
birds are under polygenic control (Buckley 
1987), making them potentially useful for as
sessing genetic interactions within a hybrid 
zone. However, the specific mode of inheritance 

of morphological traits generally is unknown, 
and in some cases, geographic variation in 
morphology is environmentally induced 
(James 1983, 1991). Thus, it is crucial to sepa
rate environmental from genetic effects to fully 
understand the meaning of morphological data 
in studies of hybridization. 

In our study, PC1 and PC3 exhibited abrupt 
transitions across the contact zone that were 
coincident in position with changes in allele 
frequency at the four marker loci (Fig. 2). This 
suggests (but does not prove) a genetic basis for 
the morphological variation. The morphologi
cal clines also could relate to environmental 
gradients associated with elevation. On the oth
er hand, it is unlikely that the strong correlation 
of PCI and PC3 with an individual's genotype 
in WV3 (Fig. 4) was induced environmentally 
because all individuals were collected in a 16-
km' area within which environmental variation 
surely was minimal. Thus, the morphological 
measures of size and shape that we used prob
ably were strongly influenced by genetics. This 
inference is possible because of the great range 
of genotypic variation present in hybrid zones 
(Hewitt 1988). 

Hybridization assessed from morphology versus 
direct molecular analysis.-Although general 
agreement occurred between morphology and 
genetics in assessing hybridization in this zone, 
careful comparison revealed that these assess
ments differed in important details. Individu
als from the Virginia transect fell into two rel
atively discrete clusters in morphometric space 
(Figs. 3C, D), whereas those from the West Vir
ginia transect were distributed in essentially 
one cluster (Figs. 3E, F). This difference might 
be taken to indicate that less admixture has oc
curred in Virginia, yet the genetic analysis re
vealed comparably high levels of hybridization 
in both transects (Table 2). 

What is responsible for this apparent discor
dance? First, a preponderance of advanced gen
eration hybrids can phenotypically mask exten
sive hybridization and introgression (Arnold 
1993, Arnold et al. 1993). Although the propor
tion of F1 hybrids was comparable among the 
two transects, no Virginia F1 hybrids were 
males, compared with five males out of six total 
F1 hybrids in West Virginia. Thus, no F1 hybrids 
from the Virginia transect were included in the 
PCA. This sampling artifact might accentuate 
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the appearance of bimodality in the Virginia 
transect. 

Second, morphological separation of paren
tal populations in the Virginia transect was 
greater than for the West Virginia transect 
(Figs. 3A, B). Ironically, although this increases 
the ability to detect individual hybrids on the 
basis of morphological intermediacy, it also in
creases the appearance of bimodality at the 
population level (Figs. 3C, D). It is unclear 
whether the lower separation of parentals in 
the West Virginia transect relative to those in 
the Virginia transect was due to long-distance 
introgression, geographic variation, or both 
(see below). 

A third factor that probably contributed to 
the seeming disparity between genetics and 
morphology was a difference in the hybrid 
zone's structure between the Virginia and West 
Virginia transects. Both genetic and morpho
logical clines along the Virginia transect were 
steeper than along the West Virginia transect. 
The range interface in the Virginia transect is 
located at a very sharp ecological transition 
where the Shenandoah Valley meets the first 
steep ridge of the Appalachians. Samples VA2 
and VA3 were taken on the ridges and valley 
floor, respectively, but essentially were contig
uous in that there was no room for another 
sample between them (Sattler 1996). Because of 
the sharpness of the transition, VA2 is predom
inantly atricapiIlus-like and VA3 is predomi
nantly carolinensis-like, both morphometrically 
and genetically (Table 2, Fig. 2). Yet, the dis
crete nature of molecular genetic variation al
lows the identification of many of these birds as 
hybrids, which the morphological variation 
alone would not. In contrast, the West Virginia 
transect crossed the range interface in a region 
where the ecological transition was more grad
ual. Consequently, it was possible to collect a 
population sample (WV 3) in a region where in
termediate birds predominated. 

Morphological and genetic assessments of 
hybridization differed in other important de
tails. Introgression beyond the range interface 
was evident in the genetic data but was not 
clearly discernable in the morphological data 

(see below). Also, many morphologically "in
termediate" individuals were classified genet
ically as "pure" atricapillus or carolinensis based 
on our four marker loci, and vice versa . This 
last result probably relates to the quantitative 
nature of morphological variation, the prepon
derance of later-generation hybrids, and the 
limited number of loci actually surveyed in ei
ther the morphological or genetic data sets. 
Non-F, hybrids can easily be missed by either 
type of data. 

These examples illustrate that caution is nec
essary when inferring hybridization processes 
on the basis of phenetiC evidence alone. Char
acter intermediacy and increased character var
iability in a population can often be reliable 
means of phenetically identifying the occur
rence of hybridization (Schueler and Rising 
1975). However, the converse may not always 
be true. The conclusion that limited hybridiza
tion occurs at some portions of the atricapillus/ 
carolinensis contact zone based on morpholog
ical analyses (Tanner 1952; Merritt 1978, 1981) 
requires verification with genetic data. The lo
cal structure of the contact zone in the areas ex
amined by those studies may resemble the Vir
ginia range interface, making detection of hy
bridization difficult on the basis of morphology 
alone (Braun and Robbins 1986, Robbins et al. 
1986, Grubb et al. 1994). 

Extent of introgression.-Genetic introgres
sion across the chickadee range interface was 
higher than has previously been appreciated. 
We found P. carolinensis alleles in all Appala
chian populations of atricapillus that we exam
ined and atricapillus alleles in many carolinensis 
populations. In fact, introgression was so ex
tensive that two of the three samples originally 
collected to represent "pure" parentals, OH 
and VAl / WV1, contained significant numbers 
of foreign alleles. Introgression certainly has 
affected parental populations of both forms in 
a broad swath, extending a considerable dis
tance from the range interface. 

The extent of genetic introgression varies 
with respect to genetic locus as evidenced in 
the more extensive penetration of ski alleles rel
ative to those at the other loci (Table 2). Of the 

displaced from the east / west transects, and its equivalent position relative to the other population samples 
is calculated as described in Table 1. 
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four marker loci, ski is the only one that is au
tosomal, and hence is the only diploid locus. 
Perhaps the other three loci are exposed to 
stronger selection against hybrid gene combi
nations because they are haploid or sex linked. 
This effect is believed to be the reason that a 
disproportionate number of sex-linked loci are 
involved in reproductive isolation (Coyne and 
Orr 1989). 

Introgression of atricapillus ski alleles into the 
range of caroIinensis also varies with respect to 
geographic location. Introgression along the 
West Virginia transect is greater than along the 
Virginia transect, extending as far as the paren
tal carolinensis population sample OH (Table 2). 
Alternatively, these foreign atricapillus alleles 
could be interpreted as an ancestral polymor
phism, because we do not have a terminal pop
ulation fixed for the carolinensis allele in OH. 
However, their absence in allopatric caroIinensis 
populations on the Virginia transect, as well as 
in Louisiana (Sawaya 1990) and at an addition
al site in western Virginia (G. Sattler and M. 
Braun unpubl. data), makes introgression a 
more plausible explanation. 

Consistent with the idea of gene flow as the 
source of these alleles is the fact that the Ohio 
range interface was in a more southerly posi
tion in historic times (Wheaton 1882), thereby 
favoring introgression in southern Ohio and 
West Virginia. In addition, winter incursions of 
atricapillus south of its normal range occasion
ally reach southern Ohio (Peterjohn 1989). If 
some individuals undertaking these move
ments remain to breed successfully, they would 
provide another source of atricapillus alleles in 
the range of carolinensis. Such southerly occur
rences of atricapillus are virtually unknown 
along the coastal plain of Virginia (VSO 1987), 
where caroIinensis populations show no evi
dence of introgression. 

Long-distance introgression across the atri
capillus / caroIinensis range boundary is evident 
in the genetic data but is not so clear in the mor
phological data (Table 2, Fig. 2). Within the 

FIG. 4. Scatter plots of principal components 
scores vs. number of Poecile atricapillus alleles at the 
four diagnostic loci for 21 individuals in WV3. Cor
relations were significant for PC1 (r, = 0.62, P = 

0.0027) and PC3 (r, = ~ 0.50, P = 0.022) but not for 
PC2 (r, = ~0.03, P = 0.889). 
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range of carolinensis, PC1 scores are more atri
capillus-like in the West Virginia transect, but 
PC3 scores are more atricapillus-like in the Vir
ginia transect. Introgression could affect one 
morphological component but not the other. 
Alternatively, the differences could reflect 
large-scale ecogeographic variation (James 
1991). For instance, both atricapillus and carol i
nensis increase in size from south to north 
across their ranges in accordance with Berg
mann's rule (Duvall 1945, Lunk 1952, James 
1970). Likewise, Lunk (1952) observed an in
crease in size and in tail / wing ratio in caroli
nensis from east to west across the southern 
portion of its range, where a genetic influence 
from atricapillus is unlikely. Because the West 
Virginia and Virginia transects run essentially 
east/west but traverse steep elevational chang
es, both of these trends could be relevant. Dis
tinguishing ecogeographic variation from that 
caused by genetic introgression is difficult in 
this case because they yield similar expecta
tions. In fact, both might be operating. In any 
case, the observed morphological variation in 
carolinensis does not correspond to recognized 
subspecies, because all samples fall within the 
range of P carolinensis extimus (AOU 1957). 

Significance of introgression.-We have taken 
the ski data as evidence that substantial genetic 
introgression occurs across this hybrid zone, 
but these data are from a single genetic locus. 
Focusing instead on the sharp clines for the 
other three markers and the equivocal morpho
logical evidence, one might adopt the alterna
tive view that introgression on the whole is 
minimal. Which of these perspectives is more 
realistic? 

In evaluating the available data, it is impor
tant to note that we used only diagnostic mark
er loci to infer hybridization and introgression. 
This is the norm in studies of hybrid zones be
cause such markers allow unambiguous deter
mination of hybrids. Yet, diagnostic markers in 
a narrow, quasi-stable hybrid zone such as this 
one are likely to be under selection, either di
rectly or indirectly (Barton and Gale 1993). Rel
evant modes of selection will oppose the move
ment of alleles across the zone, resulting in es
timates of introgression that are lower than 
might be obtained with neutral loci. 

The greater the strength of selection, the 
greater this bias will be. As mentioned above, 
there is an a priori expectation for selection to 

be stronger on mtDNA, GDA, and C7 because 
these markers are haploid and / or sex linked. 
For these reasons, it seems likely that all of 
these loci will yield underestimates of intro
gression genome-wide. The ski data probably 
represent an underestimate as well, but it can 
be taken as a minimum estimate of introgres
sion at neutral loci. 

To obtain a quantitative sense of gene flow 
across the entire genome, evidence from many 
more marker loci would be desirable. Such 
studies are demanding but now are feasible 
(Reisberg et al. 1999). However, a dilemma ex
ists here. Marker loci should be a representative 
sample of the genome as a whole, but the more 
diagnostic a marker is, the more likely it will 
experience selection against hybrids and the 
more limited introgression will be. Regions of 
the genome that experience neutral diffusion 
(or positive selection) will have few diagnostic 
marker loci because gene flow will tend to erase 
differences. Thus, it may be difficult to achieve 
a representative sampling of the genome. This 
problem is exacerbated in groups like birds 
where sample sizes per population are limited 
by practical or ethical constraints; statistical 
significance can be achieved only with marker 
loci that are strongly differentiated. 

The problem then becomes one of determin
ing what portions of the genome are experienc
ing selection against hybridization and intro
gression, and what the strength of that selec
tion is. This problem is no more tractable than 
that noted above, but some inferences can be 
made. For example, we can safely assume that 
regions of the genome that are identical cannot 
be experiencing selection against hybrids. In 
fact, the overall genomic divergence between 
these birds is small. DNA-DNA hybridization 
studies yield an estimate of nucleotide se
quence divergence between atricapillus and car
olinensis of roughly 0.5% over the entire single
copy genome (Slikas et al. 1996, Werman et al. 
1996). When interspecific divergences are so 
small, intraspecific variation becomes signifi
cant. Available estimates of intraspecific vari
ation in vertebrates average around 0.3% se
quence mismatch (Werman et al. 1996). Thus, 
the actual proportion of fixed sequence diver
gence between atricapillus and carolinensis is 
likely to be in the neighborhood of 0.2%, or one 
base in 500. It should be noted that these rough 
estimates do not account for several sources of 
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error; the average standard deviation in the 
data of Slikas et al. (1996) translates to about 
0.29% sequence mismatch. 

One in 500 bases seems like a small fraction 
of the genome. However, because the complex
ity of avian genomes typically is on the order 
of 109 bp, this proportion implies that atricapil
Ius and carolinensis differ at about 2 million nu
cleotide positions. If these differences were dis
tributed randomly throughout the genome 
(they probably are not), they could involve a 
large fraction of all genetic loci. Again, a rough 
estimate of the proportion of differentiated loci 
can be made from existing surveys. Only one 
of 40 isozyme loci that have been studied was 
found to be differentiated (Braun and Robbins 
1986, Gill et al. 1989). In searching for restric
tion fragment length differences, Sawaya (1990) 
effectively examined more than 2,000 bp of se
quence from nine nuclear loci in order to detect 
the two diagnostic nuclear markers used here. 
Obviously, these surveys are biased in dispa
rate ways with respect to coding vs. non-cod
ing sequences and sensitivity for detecting di
vergence. Nevertheless, one gains the impres
sion that perhaps only a relatively small frac
tion of the genome is differentiated and 
therefore could be potentially involved in the 
maintenance of the hybrid zone. 

What, then, of the rest of the genome? Loci 
from undifferentiated regions of the genome 
may be subject to a certain amount of neutral 
diffusion, and alleles under positive selection 
surely will be able to cross a hybrid zone (Bar
ton 1979). Recombinant genotypes must be 
present to facilitate this process, but we now 
know that many viable and fertile hybrids and 
a preponderance of recombinant genotypes oc
cur in the chickadee hybrid zone. The analogy 
emerges that some hybrid zones act as semi
permeable membranes that provide a conduit 
for gene flow at some loci and restrict it at oth
ers. Such an interface would increase the range 
of genetic variation available at some loci, while 
allowing local adaptation (to the environment) 
and co adaptation (among loci) at others. A 
structure such as this has been proposed for 
other hybrid zones (e.g. Tegelstrom and Gelter 
1990, Dod et al. 1993, Parsons et al. 1993). To 
determine how well the analogy applies to 
these chickadees will require more data on in
trogression at diagnostic and non-diagnostic 
loci, as well as more information on reproduc-

tive success of hybrids (Brewer 1963, Rising 
1968). 

One species or two ? -The demonstration that 
gene flow at some autosomal loci reaches pop
ulations far from the hybrid zone refutes pre
vious contentions that hybridization is irrele
vant to the species status of these birds (Gill et 
al. 1993). The same authors appear to believe 
that, because atricapillus and carolinensis may 
not be sister on a mtDNA phylogeny, they can
not belong to the same species. This ignores the 
fact that single-gene phylogenies may differ 
from organismal phylogenies (Nei 1987) and 
the possibility that mtDNA (and other sex
linked genes) in birds may be particularly 
prone to divergence early in the differentiation 
process, while gene flow at other loci continues 
(Tegelstrom and Gelter 1990). To apply phylo
genetic reasoning to questions about species 
status requires broadening of simple principles 
when micro evolutionary processes may result 
in true differences among gene phylogenies 
(Maddison 1997). 

Ultimately, any useful debate about species 
status must be preceded by a clear definition of 
a species concept. Unfortunately, rigorous and 
operationally relevant definitions have been 
elusive for most species concepts. Also, because 
speciation processes extend over significant pe
riods of time, many assemblages of differenti
ated populations defy categorization. We lack 
the data to predict whether these chickadees 
eventually will satisfy the criteria of one or an
other currently popular species concept. Still, 
we are heartened by the thoughts of Hennig 
(1966:30): "Groups of individuals that are in
terconnected by tokogenetic relationships are 
called species. The fact that the species concept 
as used in systematics is much more compli
cated need not concern us at the moment." Re
search programs that will deepen our under
standing of the diversification of these birds are 
worth pursuing regardless of nomenclatural 
considerations. 
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