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Abstract 
 
 Triclosan is an antimicrobial commonly used in many different antiseptics and 

everyday products. Unfortunately, many bacteria are now resistant to triclosan due to 

innate resistance, mutations in the fabI gene, and/or overexpression of certain other genes 

(soxS, marA, and an efflux pump encoded by acrAB). Therefore, it is essential that drugs 

be developed to destroy bacteria now resistant to triclosan. In this experiment, four 

different derivatives of triclosan were tested for antibacterial capabilities under the 

supervision of Dr. Hubbard at Liberty University. The derivatives were synthesized by 

Professor McGibbon (professor of organic chemistry at LU). Solutions of 4.0 ug/mL of 

each derivative were made and then tested against S. aureus for inhibition capabilities. 

Some of the derivatives seemed to have some inhibition capabilities, but none of them 

were as inhibitive as triclosan itself. Of special note, some of the results seem to indicate 

that the added benzene ring may inactivate triclosan’s antibacterial capabilities while the 

added chlorines provide at least some inhibition to S. aureus. Ultimately, the derivatives 

of triclosan did not have high inhibition rates at 4.0 ug/mL, but more experiments need to 

be performed in order to determine their effects at higher concentrations and on different 

species of bacteria. Hopefully, the data gathered and inferred from this experiment, 

including several valuable dissolving ratios and laboratory techniques which were 

discovered, will be implemented into future research on triclosan derivatives that will 

lead to the discovery of compounds even more inhibitive against bacteria growth than 

triclosan. 
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The Effects of Triclosan Derivatives against the Growth of Staphylococcus Aureus 

Background 

Bacteria and Bacterial Diseases 

 Pneumonia, MRSA (Methicillin-Resistant Staphyloccus aureus), tetanus, anthrax, 

plague—these infections and diseases have one major thing in common: they are all 

caused by bacteria. Bacteria are single-celled organisms that contain peptidoglycan (a 

unique structural component) in their cell walls. They generally have one of three typical 

cell shapes: spherical, cylindrical, or spiral. They reproduce via binary fission—the 

division of one cell into two (usually identical) daughter cells (Nester, Anderson, 

Roberts, & Nester, 2007).  

The human body provides an excellent host for many bacteria types, but not all 

bacteria are harmful to humans. Internally and externally, the body is covered with 

bacteria. In fact, one square centimeter of the human back contains approximately 1,000 

organisms (including bacteria and fungi) whereas one square centimeter of the human 

groin or armpit contains more than 10 million microorganisms (Nester et al., 2007). 

These microorganisms compose what is known as the normal flora of the human body; 

the normal flora consists of the microorganisms generally growing on healthy persons. 

The bacteria which compose the normal flora, in many ways, actually help protect the 

body from infection and disease by stimulating the immune system and preventing other 

harmful bacteria from growing on or in the body (Nester et al.). 

Unfortunately, however, some bacteria are harmful or pathogenic—capable of 

causing disease. The problem occurs when bacteria have a parasitic relationship with the 

body—also known as an infection. The infection itself, however, may or may not be 
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noticeable. If, however, the infection leads to obvious damage to the body or bodily 

functions, the infection is said to have become an infectious disease (Nester et al., 2007). 

The diseases mentioned at the beginning of the introduction (pneumonia, tetanus, 

anthrax, and plague) are all infectious diseases caused by bacteria. 

One example of a bacterium which can cause infectious disease is Staphylococcus 

aureus. S. aureus is part of the normal flora of bacteria present on the human body. In 

fact, the bacterium dwells in mucous membranes of most individuals’ nostrils at some 

point during their lives. This bacterium can get transferred to the skin (especially moist 

skin) of individuals via their hands. Unfortunately, this bacterium is pathogenic and can 

cause many different types of infections (primarily skin infections). Some of the 

infections that S. aureus causes include folliculitis (infection of a hair follicle), food 

poisoning, impetigo (skin infection), toxic shock syndrome, wound infections and several 

other infectious diseases (Nester et al., 2007). Although usually not the cause of fatal 

infectious disease, S. aureus can cause death especially in cases of toxic shock syndrome 

which is caused by the release of toxins from the bacteria into the host. Toxic shock 

syndrome usually involves hypotension, fever and the formation of a rash; these 

symptoms can ultimately cause organ failure and/or lethal shock (McCormick, Yarwood, 

& Schlievert, 2001). Thus, from this example of S. aureus, one can see how even normal 

flora bacteria can cause severe infectious diseases.  

Bacterial diseases have plagued the world for centuries. In Europe in the 14th 

century, the bubonic plague killed an estimated twenty-five million people—

approximately one third to one half of the European population at the time (Thompson 

and Combee, 1997). In many hospitals in Great Britain in the 19th century, patients would 
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survive amputations of arms and limbs only to die shortly thereafter due to a disease 

referred to as “hospitalism” (Bankston, 2005, p. 7-8), diseases apparently caused by 

bacteria. Primarily due to the plague and “hospitalism,” millions have died from bacterial 

infections over the past several centuries. 

Antibiotics and Antiseptics 

 These bacterial diseases would no doubt have continued to plague modern-day 

societies if it had not been for the discovery and development of antiseptics and 

antibiotics. Antiseptics are chemicals—mild enough to be used on human skin—that are 

used to kill or inhibit bacteria, fungi, or viruses (Nester et al., 2007). Joseph Lister is the 

man credited with the discovery and promotion of the use of antiseptics and antiseptic 

techniques. After studying the work of Louis Pasteur, Joseph Lister decided to treat a 

young patient’s severe wound with linseed oil and carbolic acid in order to kill the germs 

that could cause gangrene. The treatment worked. A cure had now been discovered for 

hospitalism using carbolic acid and linseed oil as an antiseptic to prevent bacterial 

infections! As a result of his use of this antiseptic, the death rate from major operations 

plummeted to only 7.1 percent (Bankston, 2005). In addition, Lister helped to establish 

several important antiseptic techniques involving increased sanitation and cleanliness in 

hospitals to decrease the chance of bacterial infections. Surgeons operating today wear 

masks and gloves largely as a result of Lister’s establishment of antiseptic techniques 

(Bankston, 2005). 

 The discovery of antiseptics did much to prevent bacterial infections. The 

discovery of antibiotics, however, did much not only to prevent bacterial infections but 

also to treat and cure them. According to Nester et al. (2007), an antibiotic is “A 
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compound naturally produced by mold or bacteria that inhibits the growth of or kills 

other microorganisms” (p. 496). In 1928, Dr. Alexander Fleming discovered that a certain 

mold growing on a petri dish seemed to have certain antibacterial effects. This discovery 

soon led to the breakthrough of the antibiotic he named penicillin (Bankston, 2005). After 

much experimentation, Penicillin G (a specific version of penicillin) began to be used to 

treat many bacterial infections. Penicillin G was the first widely used antibiotic. 

Following the discovery of penicillin, Selman Waksman discovered that a certain bacteria 

produced an antibiotic called streptomycin. Thus a rapid search for more microorganisms 

that produced antibiotics began. In the 1960s, researchers began to change certain 

structural components of these early antibiotics to yield even more effective antibiotics—

e.g. ampicillin and methicillin (Nester et al.). Due to these new antibiotic discoveries, the 

1960s were an exciting time period for microbiologists. These new antibiotics were truly 

wonder drugs in that they could cure most bacterial infections. In fact, it was predicted 

that with the discovery of these new antibiotics that one day bacterial infections would be 

completely eliminated (Larson, 2007). 

 Antibiotics and antiseptics together form a class of drugs known as antimicrobials 

which inhibit the growth of bacteria via several different mechanisms including 

disrupting or interfering with cell wall synthesis, protein synthesis, nucleic acid synthesis, 

metabolic pathways, and cell membrane integrity (Nester et al., 2007). For example, 

triclosan, the antiseptic on which this study is focusing, is a phenolic compound (a 

compound structurally similar to carbolic acid—also known as phenol) used in many 

everyday products including toothpaste, soaps, and lotions (Nester et al.); triclosan 
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inhibits bacterial fatty acid synthesis and thus inhibits bacteria growth by disrupting 

bacterial cell membrane integrity (Ellison & Champlin, 2007). 

Resistance to Antibacterial Compounds 

 It has been said: “Resistance to each new antibiotic…. is inevitable” (Larson, 

2007, p. 436). Some bacteria have a natural resistance to certain antibiotics; this type of 

resistance is called intrinsic or innate resistance. Other bacteria become resistant over 

time due to mutations or due to obtaining new genetic material (e.g. the R plasmid); this 

type of resistance is referred to as acquired resistance. As previously mentioned, the 

discoveries of novel antibiotics led to the hope that bacterial infections would eventually 

be eliminated. In fact, with the use and overuse of certain antibiotics, the non-resistant 

strains of certain bacteria have been almost completely eradicated. Unfortunately, what 

remains are resistant versions of bacteria. For example, at the first use of Penicillin G, 

only 3% of S. aureus were resistant to the drug. Over time, however, the extreme use of 

Penicillin G has all but eliminated non-resistant strains of S. aureus to the point that now 

90% of S. aureus are resistant to this drug (Nester et al., 2007). 

 Antimicrobial resistance comes in many shapes and forms. Sometimes bacteria 

produce enzymes which modify the drug in such a way as to inactivate it and thus inhibit 

its toxic effects. Another method of resistance occurs when the antimicrobial’s target 

molecule (the molecule to which the antimicrobial binds and inactivates) changes 

structurally in such a way that the antimicrobial no longer binds to it. Bacteria can also 

lower the amount of drug uptake by changing the structure of their outer membrane porin 

proteins (proteins which determine the permeability of the bacteria’s membranes to 
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certain molecules) or by amplifying the expression of their efflux pumps, which in turn 

pump more of the drug back out of the cell (Nester et al., 2007).  

 Fortunately, there are quite often multiple antibiotics which can be used to treat 

resistant forms of bacteria. For example, methicillin is another antibiotic (besides 

Penicillin G) which can be used to treat S. aureus infections, but S. aureus is becoming 

increasingly resistant to methicillin—MRSA (Larson, 2007). Vancomycin is an important 

antibiotic often used to treat MRSA. Unfortunately, in 1997, a case of S. aureus resistant 

to vancomycin was reported in Japan. Since then, there have been multiple reports of 

vancomycin-resistant S. aureus (Walsh & Howe, 2002). This new resistance to 

vancomycin is of special concern because vancomycin is often considered “the antibiotic 

of last resort” (Nester et al., 2007, p. 191). This growing resistance in many different 

types of bacteria (not just S. aureus) threatens to bring modern-day society back to the 

“preantibiotic era” in regards to treating certain bacterial diseases (Larson, 2007, p. 435). 

In addition to being resistant to some antibiotics, some bacteria are no longer 

inhibited by certain antiseptics. For example, certain streptococci (group of bacteria 

species) have cellular components innately resistant to triclosan. With this innate 

resistance and the extreme usage of triclosan in many products, it is speculated that soon 

there will be multiple strains of bacteria no longer inhibited by triclosan (Campbell & 

Cronan, 2001). Therefore, it is imperative that new antiseptics are developed to help 

prevent the growth of bacteria—especially bacteria resistant to certain antiseptics (e.g. 

triclosan). 

 With this new threat of an antimicrobial-resistant world, what then can be done to 

decrease the progression of antimicrobial-resistance in bacteria? Increasing personal 



Effects of Triclosan Derivatives 10 
 

hygiene practices, educating the public about proper use of antimicrobials, vaccinating 

against certain diseases, limiting the use of antimicrobials in agriculture, lowering the 

overuse and misuse of antimicrobials and increasing incentives to develop new 

antimicrobials would all help slow the increase of antimicrobial resistance in bacterial 

infections. Unfortunately, resistance cannot be totally eliminated. Therefore, it is essential 

that new antimicrobials be continuously developed for prevention and treatment of 

antimicrobial-resistant bacterial infections (Larson, 2007). The purpose of this study is to 

evaluate four new antiseptics derived from triclosan.  

Introduction 

 Staphylococcus aureus is a Gram-positive pathogenic bacterium known to cause 

skin infections (Nester et al., 2007). Experiments have shown, however, that triclosan 

(IUPAC name: 5-chloro-2-(2,4-dichlorophenoxy)phenol—Menoutis & Parisi, 2006, 

Triclosan, para. 1)., an antibacterial compound used in many antiseptics and consumer 

items (Campbell & Cronan, 2001), inhibits the growth of S. aureus (see Fig. 1). 

 

              

Figure 1. Organic Structure of Triclosan (Menoutis & Parisi, 2006, Triclosan, para. 2). 
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The bacterium Staphylococcus aureus was originally chosen for this experiment 

for two important reasons: S. aureus is a pathogenic bacterium; and secondly, it grows 

rapidly (and thus is easy to culture and use in experiments). During the course of this 

experiment, however, the value of using S. aureus in this experiment increased due to 

frequently reported MRSA (Methicillin-Resistant Staphylococcus aureus) outbreaks in 

the local and national news. If some of these derivatives could inhibit S. aureus growth, it 

is probable that they could also inhibit MRSA as well. 

Triclosan inhibits the growth of S. aureus and other bacteria by inhibiting certain 

enoyl ACP-reductases—essential enzymes involved in bacterial fatty acid synthesis 

(Ellison & Champlin, 2007). Triclosan forms a tightly-bound, non-covalent ternary 

complex with co-factor NAD(P)+ and an enoyl-ACP reductase encoded by fabI (fatty 

acid biosynthesis gene I); this tight binding prevents the reductase from participating in 

fatty acid synthesis—a form of competitive inhibition. The tight ternary complex is 

achieved due to triclosan’s  binding to the reductase’s active site—the site where the fatty 

acid substrate normally binds (see Fig. 2). Triclosan’s binding site is located next to 

NAD(P)+’s nicotinamide ring; thus, triclosan’s phenol ring interacts significantly with 

NAD(P)+’s nicotinamide ring via hydrogen bonding leading to the formation of the 

complete ternary complex (Escalada, Harwood, Maillard, & Ochs, 2005; Heath, Rubin, 

Holland, Zhang, Snow, & Rock, 1999). Enonyl ACP-reductase is crucial for acyl chain 

elongation in fatty acid synthesis in bacteria (Heath et al., 1999). Therefore, by inhibiting 

this enzyme, triclosan inhibits the production of phospholipids which disturbs the 

assembly of bacterial membranes which ultimately leads to the inhibition of bacterial 

metabolism and growth (Ellison & Champlin, 2007; Heath et al., 1999).  
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Figure 2. “The active site region of the FabI-NAD+-triclosan ternary complex. The 
hydroxychlorophenyl ring stacks with the nicotinamide ring of the NAD+ with an 
interplanar distance of 3.4 Å and contacts Tyr-146 and Tyr-156 on the protein. The 
hydroxyl group of the ligand forms hydrogen bonds with phenol of Tyr-156 and with the 
2’-hydroxyl of the NAD+ ribose. The 2,4-dichlorophenyl ring of triclosan sits in a 
hydrophobic pocket in contact with Met-159. The 4-chloro substituent accepts a 
hydrogen bond from the amide backbone amide nitgrogen of Ala-95” (Heath et al., 1999, 
p. 11114, fig. 6). 
 

Unfortunately, recent studies have shown that certain mutations in fabI as well as 

overexpression of soxS, marA, and an efflux pump encoded by acrAB can all contribute 

to triclosan resistance in bacteria. In fact, due to innate resistance to triclosan in some 

bacteria and due to the heavy use and overuse of triclosan in everyday products, many 

bacteria may be resistant to triclosan in the near future (Campbell & Cronan, 2001). 

Therefore, it is essential that new antimicrobials be developed in order to destroy bacteria 

that acquire resistance to triclosan.  
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One possibility in the development of these new antimicrobials would be to 

synthesize derivatives structurally similar to triclosan. Over the course of the past several 

years, Professor McGibbon (professor of organic chemistry at Liberty University, 

Lynchburg, VA) has synthesized several derivatives of triclosan. He added a benzene 

ring via a dinitrogen double bond para to the alcohol on triclosan. The added benzene 

ring in turn has anywhere from zero to four chlorines attached to it. Derivative 1 (burnt 

orange) has chlorines attached to the added benzene ring at the 2,3,5,6 positions going 

clockwise around the ring (the carbon attached to the nitrogen is in position 1—IUPAC 

name: 5-chloro-2-(2,4-dichlorophenoxy)-4-(2,3,5,6-tetrachlorophenylazo)phenol —see 

Table 1 and Fig. 3). Derivative 2 (rusty yellow and clumpy in appearance) has a chlorine 

at the meta position (position 3) on the added ring (IUPAC name: 5-chloro-2-(2,4-

dichlorophenoxy)-4-(3-chlorophenylazo)phenol). Derivative 3 (small brown particles) 

has just the extra benzene ring attached (no added chlorines—IUPAC name: 5-chloro-2-

(2,4-dichlorophenoxy)-4-(phenylazo)phenol). Derivative 4 (clumpy, claylike, dull, 

yellow particles) has two chlorines attached to the added ring at the meta and para 

positions (positions 3 and 4—IUPAC name: 5-chloro-2-(2,4-dichlorophenoxy)-4-(3,4-

dichlorophenylazo)phenol). 

Table 1. Derivative Numbers Assigned to Various Triclosan Derivatives. 
Derivative 
number  Description of actual Triclosan Derivative 

Derivative 1 
T with benzene ring attached with chlorines at positions 2,3,5,6 on the ring 
(position 1 is the location of the attachment bond to Triclosan) 

Derivative 2  T with benzene ring attached with chlorine meta to attachment bond 
Derivative 3  T with benzene ring attached 

Derivative 4 
T with benzene ring attached with 2 chlorines meta and para to attachment 
bond 

Compound 5  Triclosan (standard of comparison) 
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A      B 

 
C      D 

 
Figure 3. Organic Structures of the Four Triclosan Derivatives. In all of the derivatives, 
the added benzene ring is added via a dinitrogen double bond (-N=N-) to the 2nd ring of 
triclosan para to the alcohol group. A) Derivative 1: The added ring has four chlorines 
attached in positions 2,3,5,6 (ortho and meta positions). B) Derivative 2: The added ring 
has one chlorine attached in the meta (3rd) position. C) Derivative 3: The added ring has 
no chlorines attached. (Since this is the base structure of all the derivatives, the various 
atoms are labeled in this figure.) D) Derivative 4: The added ring has two chlorines 
attached in the meta and para (3rd and 4th) positions. 
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 A search of the relevant literature has revealed no tests on these triclosan 

derivatives to date. Thus, one can easily see the potential importance of testing these 

derivatives in this experiment especially considering the threat of growing bacterial 

resistance against triclosan. If derivatives more inhibitive against bacteria than triclosan 

could be synthesized, they could possibly be used against triclosan-resistant bacteria. 

Therefore, four of Professor McGibbon’s derivatives (designated Derivatives 1-4) were 

tested under the supervision of Dr. Hubbard (professor of microbiology at Liberty 

University) for inhibitive capabilities against S. aureus. 

Materials and Methods 

 Before any experiments were performed on triclosan and its derivatives, a sample 

of Staphylococcus aureus was obtained from Dr. Hubbard. The S. aureus was streaked 

for isolation on a Trypticase Soy Agar (TSA; Becton-Dickinson & Co., Sparks, MD) 

plate (incubated at 37°C for approximately 1 day). A colony on the plate was also gram-

stained to ensure that the bacteria were indeed the gram-positive S. aureus. Two colonies 

were then transferred into two test tubes of Trypticase Soy Broth (TSB—approximately 

5mL each; Becton-Dickinson & Co.) to provide stock solutions for the duration of the 

experiment. These colonies were incubated at 37°C for 1 day before being stored at 4°C 

for the remainder of the experiment. Approximately halfway through the experiment, the 

bacteria were re-isolated and two new broths of the bacteria were prepared and stored in a 

similar fashion to be used for the remainder of the experiment. 

 Throughout this experiment, a modification of the Kirby-Bauer disc diffusion test 

(Nester et al., 2007) was performed multiple times. In these tests, 0.1mL of S. aureus was 

taken from the stock broth and spread onto a TSA plate. The 7mm paper discs were then 
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soaked in their relative solutions for 5 sec. before being placed onto the TSA plate. The 

plate was then incubated at 37°C for approximately 24 hours, and the zones of inhibition 

around each disc were then measured. 

 A stock supply of triclosan and each derivative were obtained from Professor 

McGibbon. He had synthesized each of the derivatives from triclosan in an organic 

chemistry laboratory at Liberty University. The derivatives were designated Derivative 1, 

2, 3, and 4 (see Table 1, p. 13). 

Before triclosan or its derivatives’ solutions were prepared, 0%, 5%, 8%, 10%, 

10.75%, 13%, 20%, and 25% acetone dilutions were all prepared; using a modification of 

the Kirby-Bauer disc diffusion test, each of these acetone dilutions were tested against S. 

aureus growth. Next, 20ug/mL, 10ug/mL, 5ug/mL, 4ug/mL, 2ug/mL, and 1ug/mL 

triclosan solutions were all prepared by dissolving various amounts of triclosan in 20% 

acetone solutions. These various concentrations of triclosan were then tested against the 

growth of S. aureus once again using a modification of the Kirby-Bauer disc diffusion 

test. 

 Next, 4ug/mL solutions of triclosan and the various triclosan derivatives were 

prepared. In preparing the triclosan solution, 1.0mg of triclosan was dissolved in a 

100mL 50% acetone/50% deionized water solution. The solution was lightly heated and 

intensely stirred for 15 minutes. Another 150mL of deionized water was added 

approximately 10 minutes into the stirring to yield a 20% acetone solution. Each of the 

derivatives was prepared in a similar fashion to yield a 4ug/mL 20% acetone solution of 

each compound. These solutions were sealed and stored at room temperature for the 

duration of the experiment. 
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Finally, several Kirby-Bauer disc diffusion tests were performed testing triclosan 

and its derivatives against S. aureus growth. In the first of these tests, triclosan and 

Derivatives 1-2 were tested against the bacteria growth. In the second experiment, two 

Kirby-Bauer disc diffusion tests were performed testing triclosan and all four derivatives 

against S. aureus growth. In the final experiment, five Kirby-Bauer disc diffusion tests 

were performed testing triclosan and all four derivatives against the bacteria growth. 

Results 

 In the experiment with the various acetone/water solutions, the 0%, 5%, 8%, 10%, 

10.75%, 13%, and 20% acetone solutions did not exhibit resistance/inhibition to S. 

aureus. The 25% acetone solution did inhibit the growth of S. aureus; it produced a 9mm 

(diameter) zone of inhibition. 

 The results of the experiment with the various concentrations of triclosan on the 

two TSA plates are included in the table and graph below. Table 2 lists the zones of 

inhibition of each triclosan concentration on each TSA plate. Figure 4 plots the average 

zones of inhibition of the various concentrations of triclosan from both plates (in 20% 

acetone solution).  
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Table 2. Inhibition Zones of Various Concentrations of Triclosan. 

Inhibitor 
(compound and 
concentration) 

Plate 1: 
Inhibition 
zone 
(mm) 

Plate 2: 
Inhibition 
zone 
(mm) 

Water  0 0
20% acetone  0 0
Triclosan 
(1ug/mL)  0 1
Triclosan 
(2ug/mL)  0 7
Triclosan 
(4ug/mL)  7 14
Triclosan 
(5ug/mL)  12 14
Triclosan 
(10ug/mL)  13 12
Triclosan 
(20ug/mL)  13 18

 

.  
Figure 4. Inhibition Zones of the Different Concentrations of Triclosan in 20% Acetone 
Solutions. Generally, the zones of inhibition increased in diameter as the concentration of 
the triclosan solution increased; at a concentration of 5ug/mL, the increase in the zones of 
inhibition began to level off.  
 

The results of the early experiment with Derivatives 1-2 and triclosan are seen in 

Table 3. Triclosan produced a zone of inhibition with a 20mm diameter. Derivatives 1 
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and 2 produced 8mm zones of inhibition (measured at approximately 22 hours). At 43 

hours, Derivative 2’s zone of inhibition had shrunk to 7mm (see Table 3) while 

triclosan’s and Derivative 1’s zones of inhibition had remained the same. 

Table 3. Inhibition Zones of Derivative 1, Derivative 2, and Triclosan. D1 & D2 did not 
display nearly as much inhibition as triclosan did, and D2’s zone of inhibition actually 
shrunk over time. 

Derivative 

Inhibition 
Zones at 22 
hours (mm) 

Inhibition 
Zones at 43 
hours (mm) 

Derivative 1  8 8
Derivative 2  8 7
Triclosan  20 20

 
 In the first experiment with all four derivatives and triclosan, Derivative 1 

produced zones of inhibition with 8 mm and 7 mm diameters on Plates 1 and 2 

respectively (see Table 4). Derivative 2 produced zones of inhibition with 7 mm 

diameters on both plates. Derivative 3 had no zone of inhibition on Plate 1 and a 7mm 

zone of inhibition on Plate 2. Derivative 4 produced 8mm and 7mm zones of inhibition 

on Plates 1 and 2 respectively. Finally, Derivative 5 (triclosan) produced 26mm and 

19mm zones of inhibition on Plates 1 and 2 respectively.  

The results of this experiment on Derivatives 1-4 and triclosan (labeled 5) are 

summarized by Table 4 and Figures 5-9 below. Figure 9 is a comparison of the average 

inhibition zones of Derivatives 1-4 and triclosan (Compound 5). The results clearly show 

that none of the derivatives are nearly as inhibitive against the growth of S. aureus as 

triclosan is.  
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Table 4. Inhibition Zones of Various Triclosan Derivatives. None of the derivatives were 
as inhibitive against S. aureus as triclosan. Although most of the derivatives showed some 
inhibition, on plate 1, D3 showed no inhibition at all against S. aureus growth. 

Derivative 

Plate 1: 
Inhibition 
Zone (mm) 

Plate 2: 
Inhibition 
Zone (mm) 

Derivative 1  8 7
Derivative 2  7 7
Derivative 3  0 7
Derivative 4  8 7
Triclosan (5)  26 19

 
 
 
 
 

 
Figure 5.  Inhibition Zones of Various Triclosan Derivatives (Plate 1). Triclosan is 
pictured at the bottom, and the derivatives are pictured in order (D1-D4) clockwise 
around the plate starting at triclosan. Notice the lack of inhibition in Derivative 3. 
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.  
Figure 6. Comparison of the Inhibition Zones of Triclosan Derivatives (Plate 1). As 
noted in Table 3, D3 showed no inhibition against S. aureus growth. 
 

Figure 7.  Inhibition Zones of Various Triclosan Derivatives (Plate 2). Triclosan is 
pictured at the bottom; the derivatives are pictured in order (D1-4) clockwise around the 
plate starting at triclosan. 
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.  
Figure 8. Comparison of the Inhibition Zones of Triclosan Derivatives (Plate 2). On this 
plate, D3 did show some inhibition against S. aureus. 
 
 
 

.  
Figure 9. Comparison of the Average Inhibition Zones of Triclosan Derivatives. This graph 
takes the average of the zones of inhibition of triclosan and each of the derivatives from the 
two TSA plates. 
 
 In the final experiment with the 5 TSA plates, the results were observed to confirm 

the results of the main experiment (See Fig. 5-9). The results, however, were not physically 

measured. 
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Discussion 

Introductory Summary of Findings 

The results indicate that, as tested in this experiment, none of the derivatives were 

as inhibitive as triclosan against the growth of S. aureus (The reason that no results were 

physically measured in the final experiment was that the results appeared to be virtually 

identical to the results of the previous experiments and clearly indicated that the 

derivatives were not as inhibitive as triclosan). Fortunately, several observations and 

laboratory techniques were discovered and developed during the experimental 

procedures. It is hoped that these observations and techniques will aid in future research 

on triclosan derivatives.  

Inhibition by Triclosan Is Greater than All Derivatives 

 As tested in this experiment, none of the derivatives were as inhibitive as 

triclosan. In fact, none of the derivatives produced zones of inhibition even half the 

average diameter of triclosan’s zone of inhibition, and in one experiment, Derivative 3 

showed no inhibition at all against the bacteria growth (see Fig. 6, p. 21). 

One possible explanation for the derivatives’ small zones of inhibition would be 

that the derivatives may not dissolve (nor stay dissolved) as well as triclosan. The 

derivatives, structurally, are less polar than triclosan due to the addition of the extra 

benzene ring. Therefore, it would be more difficult to dissolve them in the primarily polar 

20% acetone solution (80% deionized water). It is possible that when the discs soaked in 

the derivative solutions were placed onto the TSA plate that the derivatives did not stay 

completely dissolved; therefore, as the acetone/water solution diffused outward onto the 

agar, the derivatives could have crystallized onto the disc and not diffused out with the 
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solution, therefore producing only small zones of inhibition against S. aureus. Although 

this proposition is only a hypothesis, certain observations during the experiment seem to 

support it. For example, the derivatives proved more difficult to dissolve than triclosan, a 

fact which indicates that the derivatives would most likely come out of solution more 

easily than triclosan. Two simple ways to test this hypothesis would be to perform a 

minimum inhibitory concentration (MIC) test (Nester et al., 2007) or to test for a bacteria 

that can tolerate higher levels of acetone (30-50% solutions) and to repeat this Kirby-

Bauer disc diffusion test using compounds dissolved in these more concentrated acetone 

solutions—the higher acetone concentration should ensure the derivatives stay dissolved. 

Another way to test this hypothesis would be to dissolve the derivatives in the 20% 

acetone solution, then to make an agar directly from this solution, and finally to test if S. 

aureus is capable of growing on this agar containing the derivative. 

Assuming that it was not the derivatives’ insolubility that caused their small zones 

of inhibition, there was another observation that may explain the derivatives’ apparent 

lack of significant inhibition against S. aureus. Figures 6 and 9 show that the benzene 

ring added to triclosan by itself (no chlorines attached to the ring—Derivative 3) seems to 

inactivate triclosan’s inhibitive capabilities toward S. aureus. But as more chlorines are 

attached to the added ring, the inhibition seems to be slightly increased as compared to 

just the added ring by itself (see Fig. 5-9, p. 20-22). Therefore, a possible future 

experiment would be to synthesize triclosan derivatives that consist of chlorines added to 

one (or both) of the two benzene rings of triclosan itself instead of adding another 

benzene ring (with attached chlorines) to triclosan. These compounds may prove to be 

more inhibitive than the derivatives tested in this experiment.  
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 Based on these observations and hypotheses, recommendations for future research 

would therefore include more tests performed with Derivatives 1-4 not only against S. 

aureus (using 4ug/mL and higher concentrations as well) but also against other 

pathogenic bacteria. In addition, compounds should be synthesized based on the 

description above (with chlorines added to the triclosan benzene rings) and tested for 

antibacterial capabilities. Finally, to determine the inhibitory capabilities of all of these 

derivatives, other antimicrobial tests (see above paragraphs), including a minimum 

inhibitory concentration (MIC) test, should be performed. 

Methodological Benefits of Study 

Despite the negative results of this experiment, several beneficial observations 

and techniques developed during the course of the experiment could aid in future efforts 

to develop/discover more effective antiseptic compounds. Well over half the time 

devoted to experimental methods was spent primarily on developing effective 

procedures. These procedures were used to provide stock solutions and to determine 

ratios and concentrations to use during the main experiment. The observations and 

discovered techniques which have been established from this study will prove extremely 

helpful in future research on triclosan. 

Because triclosan is insoluble in a purely aqueous solution, it was determined that 

a partial acetone solution would be used to dissolve triclosan and its derivatives. 

Therefore, the original experiment testing various concentrations of acetone against S. 

aureus growth was performed to determine the maximum concentration of acetone that 

could be used to dissolve the compounds. Since 25% acetone concentration showed a 

complete inhibition against bacteria growth and the 20% acetone concentration showed 
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no inhibition against bacteria growth, it was determined to use a 20% acetone solution for 

dissolving triclosan and its derivatives. 

To determine the concentration of triclosan and its derivatives to use for the 

comparison experiment, the experiment testing the various concentrations of triclosan 

(1ug/mL-20ug/mL) was performed. Figure 4 clearly indicates that increasing the 

concentration of triclosan increases the zones of inhibition significantly up until a 

concentration of 5ug/mL is reached; at this point, the zones of inhibition begin to level 

off even if the triclosan concentration is doubled or quadrupled. Therefore, it was 

determined that 4ug/mL would be the best concentration to use for a comparison study 

between triclosan and its derivatives. 

Despite using a low concentration for the experiment, dissolving the derivatives 

still proved extremely difficult. Therefore, at the recommendation of Dr. Hubbard, the 

compounds were originally dissolved in a 50% acetone solution by stirring on low heat, 

and more deionized water was added approximately 10 minutes into stirring to bring the 

acetone concentration down to 20% and the compound concentration down to 4ug/mL. 

This method proved efficient in dissolving the compounds and should be used in future 

efforts to dissolve triclosan and/or its derivatives. 

Conclusion 

 In conclusion, although the tests performed in this study indicate that none of the 

derivatives were nearly as inhibitive as triclosan itself, several valuable insights were 

gained. First of all, it was discovered that a 4ug/mL 20% acetone solution of each 

compound was the best concentration for dissolving triclosan and its derivatives and 

performing comparison experiments. Secondly, dissolving the compounds into a 50% 
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acetone solution (stirring on low heat) and diluting to a 20% acetone solution (while still 

stirring on low heat) proved far more effective than dissolving the compounds straight 

into a 20% acetone solution. Finally, although none of these derivatives seem to hold 

much promise as components of future antiseptics, there is hope that other derivatives 

will be synthesized by adding chlorines directly to triclosan (as described in the 

Discussion section) and that these derivatives will be subsequently tested for antibacterial 

capabilities. All three of these observations could prove extremely useful in future 

experiments with triclosan derivatives. With time and effort, antibacterial compounds 

even more inhibitive than triclosan may be discovered to aid in the battle against 

pathogenic bacteria. 
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