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Abstract

Aluminum (Al) compounds are neurotoxic and have been shown to induce experimental neurodegeneration although

the mechanism of this effect is unclear. In order to study this neurotoxic effect of Al, we have developed an in vitro model

system using Al maltolate and human NT2 cells. Al maltolate at 500 mM caused significant cell death with a 24-h

incubation and this toxicity was even more evident after 48 h. Lower doses of Al maltolate were also effective, but required

a longer incubation for cell death. Nuclear fragmentation suggestive of apoptosis was observed as early as three hours

and increased substantially through 24 h. Chromatin condensation and nuclear fragmentation were confirmed by electron

microscopy. In addition, TUNEL positive nuclei were also observed. The release of cytochrome c was demonstrated with

Western blot analysis. This in vitro model using human cells adds to our understanding of Al neurotoxicity and could

provide insight into the neurodegenerative processes in human disease.

# 2004 Elsevier Inc. All rights reserved.
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INTRODUCTION

Apoptosis or programmed cell death is a regulated
process of death in cells that facilitates the removal of
extra, aged or damaged cells. In contrast to necrosis,
apoptosis is an ordered operation with characteristic
apoptotic morphological changes that include nuclear
condensation and fragmentation, DNA damage, cell
shrinkage, membrane blebbing, and the formation of
membrane-bound apoptotic bodies (Huppertz et al.,
1999).

Mitochondria are key mediators of apoptosis.
Early in apoptosis, the mitochondrial transmembrane

potential (DcM) collapses (Brown et al., 1999), indicat-
ing the opening of the permeability transition (PT) pore.
When it opens, the PT pore facilitates the equilibration
of ions in the intermembrane space, which disconnects
the respiratory chain, possibly causing the outer mem-
brane to burst and release cytochrome c into the cytosol.
Cytochrome c release initiates an irreversible cascade
that activates programmed cell death (Liu et al., 1996).
Several proteins are critical in the regulation of apop-
tosis. Bax causes the release of cytochrome c from
mitochondria, driving apoptosis forward (Jürgensmeier
et al., 1998). In contrast, Bcl-2 interferes with caspase
activity following Bax induction (Rosse et al., 1998),
and can also prevent cytochrome c from being released
at all (Kluck et al., 1997).

Several different triggers have been used to induce
apoptosis experimentally including hydrogen peroxide
and staurosporine. In addition, aluminum (Al) has been
shown to induce death via apoptosis in astrocytes
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(Suarez-Fernandez et al., 1999). AlCl3 has been
demonstrated to preferentially accumulate in cultured
astrocytic cells (Levesque et al., 2000), resulting in
apoptosis. In contrast, Al maltolate accumulates at high
levels in neurons, possibly attributable to its lipophilic
nature (Levesque et al., 2000).

At 8%, Al is the third most abundant element in the
earth’s crust. Although it has no known biological
function, it is constantly introduced into living systems
through soil, water, food, and pharmaceutical agents
(Crapper McLachlan, 1986). Despite its apparent lack
of positive biological function, it has been reported to
be toxic. The first indication of its adverse effects in
humans was seen in patients undergoing long term
hemodialysis treatment for chronic renal failure. Many
of these patients developed hyperaluminemia due to
contamination of the dialysis solution with Al and also
treatment with oral phosphate binding gels to control
hyperphosphatemia. This Al overload resulted in a
fatal neurological syndrome (dialysis dementia) and
a devastating metabolic bone disease known as dialysis
osteodystrophy (reviewed by Mach et al., 1988). Al has
been linked to neurotoxicity (Levesque et al., 2000;
Perl and Pendlebury, 1986; Roll et al., 1989; Suarez-
Fernandez et al., 1999; Troncoso et al., 1985; Tsubou-
chi et al., 2001) and implicated as a possible causative
or contributing factor in neurodegenerative disorders
particularly Alzheimer’s disease (AD), although the
exact mechanism by which it acts is far from clear
(Crapper McLachlan, 1986; Shin et al., 1995; Strong,
2001).

Intracisternal administration of Al compounds to
New Zealand white rabbits has long been known to
induce neurofibrillary pathology (Klatzo et al., 1965).
However, apoptosis-related changes and oxidative
stress (Ghribi et al., 2001a; Savory et al., 1999) have
recently been observed including opening of the per-
meability transition pore, cytochrome c release, Bax
and Bcl-2 translocation involving both mitochondria
and endoplasmic reticulum, caspase activation, and
TUNEL positive nuclei (Ghribi et al., 2001a,
2001d). In these studies, apoptosis was prevented with
the administration of cyclosporin A (Ghribi et al.,
2001b) and also glial cell derived neurotrophic factor
(GDNF) (Ghribi et al., 2001c). The soluble Al com-
pound, Al maltolate, also induces stress to the endo-
plasmic reticulum when it is administered to rabbits
(Ghribi et al., 2001a, 2001d).

Here, we have developed an in vitro model of Al
toxicity using human NT2 neuronal precursor cells and
show that Al maltolate induces apoptosis including the
release of cytochrome c.

MATERIALS AND METHODS

Cell Culture

Human teratocarcinoma (NT2) precursor cells (Stra-
tagene) were grown in DMEM/F-12 (Gibco) growth
medium supplemented with 10% (v/v) FBS, 2 mM
L-glutamine and 1% (v/v) penicillin–streptomycin
and maintained in 5% CO2 at 37 8C. For Al treatment,
Al maltolate was prepared as a stock solution of 25 mM
in sterile water (Berthol et al., 1989) and then passed
through 0.2 mm filter. Al was added to growth medium
just before use. Unless specified, cells were grown on
coverslips in six well plates and allowed to adhere for
�24 h prior to replacement of media containing from
0 to 500 mM Al maltolate.

Cell Viability (LDH) Assay

Cell viability was assessed using a lactate dehydro-
genase assay. NT2 cells were grown in 96 well, round
bottom plates at a density of 10,000 cells in 100 ml of
media. After Al incubation (5–500 mM), 50 ml of media
was removed and analyzed for LDH activity using the
cytotoxicity assay kit from Promega.

Nuclear and Mitochondrial Visualization

NT2 cells were grown on glass coverslips placed in
six-well plates. 1:5 � 105 cells in 3 ml media were
plated for 24 h prior to addition of Al maltolate. Cells
were washed with PBS followed by fixation in 4%
formaldehyde for 15 min. Permeabilization was
accomplished with an incubation in ethanol:acetic acid
(19:1) for 20 min or 0.1% Triton X 100. Nuclei were
stained with Hoechst 33258 (Sigma) at 10 mg/ml for
20 min or VectaShield mounting media with DAPI
(Vector Laboratories). Mitochondria were visualized
with CMXRos Mitotracker Red (Molecular Probes,
Eugene, OR, USA). The mitochondrial polarity-depen-
dent dye was added to culture media at 200 nmol for
20 min before being washed with PBS and fixation
in 4% formaldehyde. Coverslips were mounted with
VectaShield (Vector Laboratories) and the cells were
observed under fluorescence with an Olympus micro-
scope. Pictures were obtained using a digital camera
and ImageProþ software.

Electron Microscopy

NT2 cells were grown in six-well plates, directly on
well bottoms without coverslips. Cells were incubated
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in 500 mM Al maltolate for 24 h, rinsed in HBSS and
then fixed in gluteraldehyde. Cells were postfixed in
1% osmium tetroxide, embedded and viewed at 150 kV
using a Zeiss 902 transmission electron microscope
with an EELS spectrometer.

TUNEL

NT2 cells were grown on glass coverslips in 6-well
plates. Media containing 500 mM Al maltolate was
added and allowed to incubate at 37 8C at incremental
time intervals of 6, and 24 h. Cells were fixed in 4%
formaldehyde for 15 min followed by a wash with
PBS. DNA damage was assessed using the apoptosis
detection kit, fluoroscein (Promega) following the
manufacturer’s instructions.

Counts

Apoptotic nuclei percentages were determined by
obtaining images from 10 random fields on each
slide. The total number of cells and the number with
apoptotic morphology (strongly condensed or frag-
mented) were found for each image and then combined
to yield a total for each slide. The number of TUNEL
positive nuclei was obtained in a similar manner.

Western Blot

NT2 cells were grown to confluency in T25 flasks.
The media was replaced with normal growth media or
that containing 500 mM Al maltolate. After six hours in
5% CO2 at 37 8C, cells were trypsinized and detached
cells were pelleted at 300 g for 5 min. The cell pellet
was resuspended in five volumes of homogenizing
buffer (20 mM Hepes–KOH (pH 7.5), 10 mM sucrose,
10 mM KCL, 1.5 mM MgCl2, 1 mM EDTA, 1 mM
EGTA, 1 mM DTT, 1 mM PMSF, 2 mg/ml aprotinin,
10 mg/ml leupeptin, 5 mg/ml pepstatin and 12.5 mg/ml
of N-acetyl-Leu-Leu-Norleu-Al) (Liu et al., 1996) and
homogenized in a Teflon homogenizer. The resulting
suspension was centrifuged for 5 min in a micro-
centrifuge. The supernatant was then centrifuged at
100,000 � g using a Beckman Optima LE-80K ultra-
centrifuge for 30 min to obtain cytosolic extract.
The protein concentration was determined using the
Bradford method and BSA as a standard (BioRad).
Cytosolic and mitochondrial extract was mixed with 2x
Lamelli sample buffer and frozen at �80 8C until used
for electrophoresis. 10 mg of protein was loaded onto
precast 4–20% gradient SDS-PAGE gels (BioRad)
and subsequently transferred to PVDF membrane.

Membranes were blocked with 5% non-fat dry milk
and incubated with monoclonal antibody to human
cytochrome c (Pharmingin, Lexington, KY, USA). A
monoclonal antibody to b-actin (Sigma) was used as a
gel loading control. Protein bands were visualized with
chemiluminescence (Vector Laboratories). An anti-
body to cytochrome oxidase IV (Molecular Probes)
was used to determine the extent of mitochondrial
contamination of the cytosol.

RESULTS

Aluminum is a Potent Neurotoxin for
Cultured NT2 Cells

Cell viability was determined by measuring lactate
dehydrogenase (LDH) release into tissue culture
media. This assay allowed determination of the
appropriate cell density and Al maltolate concentra-
tions for further study. 500 mM and 250 mM Al mal-
tolate-induced noticeable death of NT2 cells after
a 24-h incubation (Fig. 1) and effectively depleted
cells from the culture after 48 h. Lower doses of
Al maltolate (50–100 mM) were also neurotoxic,
but required longer incubation times to elicit similar
neuronal death observed at 250 mM and 500 mM at
24 h.

Aluminum-Induced Neurotoxicity Occurs via
Apoptosis

To assess the type of death evoked by Al maltolate,
we used Hoechst 33258 or DAPI to examine nuclear
morphology. Nuclear fragmentation consistent with
apoptotic morphology was observed as early as
three hours following incubation with Al maltolate.
At 24 h, numerous fragmented and condensed nuclei
could clearly be observed in the culture (Fig. 2B).
The percentage of apoptotic nuclei had increased at
6 h and rose dramatically through 24 h (Fig. 2C).
Under phase microscopy, the size of some cells
with apoptotic nuclei was clearly reduced (data not
shown).

Chromatin condensation and nuclear fragmentation
were further confirmed by electron microscopy.
Nuclei of control cultures appeared healthy and round,
fully enclosed within the nuclear membrane (Fig. 3A).
Al-treated cultures contained nuclei that appeared
irregular and separated into fragments (Fig. 3B). In
addition, nuclei in experimental cultures contained
patches of condensed DNA consistent with apoptotic
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morphology. Many of the separated nuclear fragments
were surrounded by membrane although some of the
nuclear vesicles appeared ruptured.

Al-treated cells exhibited DNA damage, a key mar-
ker of apoptosis, as indicated by TUNEL positive
nuclei (Fig. 4D). A significant increase in the number
of cells with DNA damage and nuclear fragmentation
was observed at six hours and a 10-fold increase in
damage was observed by 24 h (Fig. 4F). This occurred
with a clear decrease in cell number in Al maltolate-
treated cultures (Fig. 4E).

Al-treated NT2 Cells Undergo Apoptosis Including
the Release of Cytochrome c

CMXRos is a mitochondrial specific dye that is
taken up in a membrane polarity dependent manner.
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Fig. 1. Al maltolate induces cell death Cell viability was

determined by measuring the amount of LDH released into the

culture media at 2 h (A); 24 h (B) and 48 h (C). Incubation with

250–500 mM Al maltolate-induced substantial cell death at 24 and

48 h. Lower doses of Al maltolate also induced death of NT2

cells, however, longer incubation times were required. Data is

representative of three independent experiments with similar

trends. Values are �S.D.

Fig. 2. DAPI staining of NT2 cells revealed large round or oval

nuclei (A). Following 24 h incubation in Al maltolate, the nuclei

take on a bright, condensed (arrowhead) or fragmented (arrows)

morphology (B). The percentage of nuclei with a fragmented,

apoptotic morphology had increased as early as 6 h and increased

further at 24 h (C). Values are means � S:E:M: and representa-

tive from three independent experiments. Scale bar ¼ 40 mm

(*P < 0:001).
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Therefore, the dye can be used to demonstrate mito-
chondria with an intact membrane potential. Polarized
mitochondria were observed in nearly all of the
cells even following treatment with Al maltolate
(Fig. 4C).

Release of cytochrome c to the cytoplasm was
confirmed with Western blotting. Cytosolic extract
was isolated from control and Al maltolate-treated
cultures after a 6 h incubation. Cytochrome c was
detected in the cytoplasm of Al maltolate-treated
cells to a much greater extent than controls (Fig. 5).
In order to verify that the cytochrome c in the cytosolic
fraction was not due to mitochondrial contamination,
an antibody to cytochrome oxidase IV was used.
While present in the mitochondrial fraction, cyto-
chrome oxidase IV was absent from the cytosolic
fraction.

DISCUSSION

Although the neurotoxic effects of Al have been well
established in conditions such as dialysis encephalo-
pathy (Mach et al., 1988), the mechanism by which it
elicits its effects remain to be elucidated. Here, we
show that Al maltolate toxicity in human NT2 cells
occurs via apoptosis and includes cytochrome c
release. Our results indicate this neurotoxicity is time
and concentration dependent, and occurs via apoptosis
as shown by nuclear fragmentation and chromatin
condensation, DNA damage, and cytochrome c release.

Al maltolate-induced substantial cell death of the
NT2 precursor cells with a 24-h incubation. Concen-
trations of 250–500 mM Al maltolate were highly toxic,
while lower concentrations required longer incubations
to cause significant death. Similar concentrations of Al
have been used in vitro and shown to be neurotoxic
(Levesque et al., 2000; Suarez-Fernandez et al., 1999;
Tsubouchi et al., 2001). In particular, Al has a narrow
effective range with a large difference in outcome (Roll
et al., 1989). Pulse or low concentration exposure
appears to be less toxic than higher concentrations
(Kashiwagi et al., 1998). We found that lower con-
centrations of Al maltolate (50–100 mM) did induce
death but required longer incubations for a significant
effect. It is possible that Al must first accumulate
intracellularly to a critical level before triggering cell
death. Such accumulation is likely to be concentration
and time dependent as well as impacted by the Al
species administered (Levesque et al., 2000). Accumu-
lation below a certain threshold may have little or no
effect. Alternatively, sub-lethal accumulated concentra-
tions insufficient to induce apoptosis may still nega-
tively impact the cytoskeleton or intracellular transport.

Cytochrome c release is a key event in the initiation
of apoptosis (Liu et al., 1996). This release generally
coincides with opening of the mitochondrial PT pore
and loss of mitochondrial membrane polarity. An ear-
lier study reported that cytochrome c could be released
by staurosporine without concomitant depolarization
of the mitochondrial membrane potential (Krohn et al.,
1999). Al-induced apoptosis appears to occur through a
similar mechanism. Previously, Al was shown to
induce mitochondrial permeability transition (Toni-
nello et al., 2000). However, when Al was bound to
the PT pore, it held it in an intermediate, partially open
position. It is possible that this is sufficient to trigger
cytochrome c release.

While a causal link between Al and Alzheimer’s
disease has not been demonstrated, several epidemio-
logical studies have shown a statistically significant

Fig. 3. Electron microscopy confirmed nuclear condensation in

Al maltolate-treated cultures. Nuclei of cells in control cultures

(A) appeared healthy with a round, even morphology. In contrast,

nuclei of Al maltolate-treated cultures (B) were typically

fragmented (arrows).
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Fig. 4. Numerous NT2 cells can be observed following a 24 h incubation in control media (CMXRos, red A). Very few of these cells were

TUNEL positive (B, green). However, after 24 h in Al maltolate (C) a clear reduction in cell number has occurred. Many of these cells were

TUNEL positive (D, green). The number of cells in control cultures increases over 24 h but decreases in Al maltolate-treated cultures (E)

which has more TUNEL positive nuclei as well (F). Values are means � S:E:M: and representative from three independent experiments

with similar trends (*P < 0:5, **P < 0:001). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of the article.)
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positive link (reviewed by Flatten, 2001). Nonetheless,
aluminum induces many of the same biochemical and
pathological changes that occur in AD (reviewed by
Strong). Regardless of any lack of evidence for a
causative link, aluminum has potential as a trigger
to cause cellular changes that mimic aspects of AD
pathology (Perl and Pendlebury, 1986; Huang et al.,
1997). If similar pathways are activated, Al-induced
pathology may prove useful as a model to understand
the sequence of events that occurs as neurons die in AD
brain. New Zealand white rabbits have been used
successfully in this regard (Ghribi et al., 2001a,
2001b, 2001b, 2001d; Kowall et al., 1989; Klatzo
et al., 1965; Munoz-Garcia et al., 1986; Savory et al.,
1999, 2001).

Aside from inducing apoptosis, Al negatively
affects cytoskeletal proteins and axonal transport
(Kashiwagi et al., 1998; Shea et al., 1997). Indeed,
pulse exposure to Al maltolate blocks fast axonal
transport leading to the accumulation of NF-L proteins
in rat cortical neurons (Kashiwagi et al., 1998). Dis-
rupted transport has been shown in AD (Cash et al.,
2003; Praprotnik et al., 1996; Richard et al., 1989;
Terry, 1996) and also amyotrophic lateral sclerosis
(Williamson and Cleveland, 1999), however relatively
few studies have examined this aspect of the disease
(Kasa et al., 2000). Nonetheless, numerous factors
implicated in AD including oxidative stress (de la
Monte et al., 2000; Perry and Smith, 1997; Smith
et al., 1995), APO e (Tesseur et al., 2000), and APP-L
(Torroja et al., 1999) have all been shown to affect
axonal transport. The observation that AbPP can serve
as a kinesin cargo receptor (Kamal et al., 2000,
2001) as well as the inhibition of kinesin-dependent
transport by tau overexpression (Ebneth et al., 1998;
Stamer et al., 2002) should not be overlooked. It
would be interesting to see whether tau overexpression
and Al affect intracellular transport via a similar
mechanism.

Apoptosis has been suggested to play a role in AD
pathology (Cotman and Anderson, 1995; Su et al.,
1997) however, either the full cascade is not activated
or appears to be aborted (Perry et al., 1998a, 1998b;
Raina et al., 2001) An intriguing possibility is that
apoptosis-related changes, oxidative stress, and axonal
transport disruption are linked in a way that promotes
neurodegeneration and involves cytoskeletal disruption
(Srivastava et al., 1998). Since Al contributes to all
of these factors (Ghribi et al., 2001b; Kashiwagi
et al., 1998; Pratico et al., 2002), the model presented
here may prove useful in understanding the mecha-
nisms leading to neuronal death in neurodegenerative
diseases.
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