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We have developed an in vitro model in which iso-
lated senile plaque (SP) cores are presented to rat
microglial cells in culture. Microglia rapidly phagocy-
tosed, broke apart, and cleared SP cores. However,
when cocultured with astrocytes, microglial phagocy-
tosis was markedly suppressed, allowing the SPs to
persist. Suppression of phagocytosis by astrocytes ap-
pears to be a general phenomena since microglia in the
presence of astrocytes showed reduced capacity to
phagocytose latex beads as well. The astrocyte effect
on microglia is related in part to a diffusible factor(s)
since astrocyte- but not fibroblast-conditioned media
also reduced phagocytosis. These results suggest that
while microglia have the capacity to phagocytose and
remove SPs, astrocytes which lie in close association to
microglia may help prevent the efficient clearance of
SP material allowing them to persist in Alzheimer’s
disease. r 1998 Academic Press
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INTRODUCTION

Amyloid b (Ab) accumulation in senile plaques (SP)
is considered a key step in the pathogenesis of Alzhei-
mer’s disease (AD) (55). This contention is supported by
numerous molecular and genetic studies linking muta-
tions in the b-protein precursor (bPP) to increased
production of Ab (8, 19, 46, 55, 64). While most studies
have focused on Ab formation, maintenance of the SP
depends not only on factors which promote Ab produc-
tion, but also on factors which hinder efficient clearance
(31). Therefore, SP maintenance is likely to be a
complex interaction of Ab with the surrounding dystro-
phic neurites (12), processes of reactive astrocytes (9,
42, 52), and activated microglia (12, 28, 34, 43, 49). As
the resident macrophages of the brain (21, 62, 68),

microglia are likely candidates in Ab catabolism. How-
ever, even though activated microglia are a common
component of SPs, there is little evidence for efficient
Ab removal by them in AD (16, 27).

The efficiency of microglial phagocytosis and debris
removal seems to be related to their state of activation.
Early in development or following certain types of
injury in the adult when debris removal is rapid,
microglia have a round or ameboid morphology and
express high levels of various macrophage markers (4,
6, 13, 15, 20, 22, 24, 30, 32, 33, 35, 38, 45, 60, 63, 68). In
contrast, so-called ‘‘resting’’ microglia in the adult CNS
have a ramified or process bearing morphology with a
small cell body, low levels of macrophage markers (13,
45, 62, 72), and poor phagocytic ability (7, 13, 23, 50, 51,
69). Following axotomy via a nonpenetrating injury,
e.g., dorsal rhizotomy or infection, resting microglia
become activated (5, 13, 20, 68). Although such acti-
vated cells express high levels of macrophage markers,
they remain process bearing and continue to show
limited phagocytosis (13, 20, 37). The cell processes
often found on microglia associated with SP are similar
to those showing limited phagocytic activity (28, 34).
Yet microglia in the adult CNS are able to phagocytose
debris following certain severe insults in the adult, e.g.,
a penetrating injury or stroke, (20, 22, 24). Indeed,
when infarcts occur in AD brain, SP actually can be
rapidly removed by microglia that transform into mac-
rophages (70; P. Gambetti, personal communication).
Understanding the mechanism(s) that modulate micro-
glial activation and clearance of Ab is critical to under-
standing SP homoeostasis.

Since astrocytes can modify microglial/monocyte be-
havior (1, 26, 39, 44, 58, 65, 67), we examined the role of
astrocytes as potential modulators of microglial interac-
tions with SPs in vitro. We found that purified rat
microglia with a round, macrophage-like morphology
rapidly phagocytose and clear SP cores. In contrast,
when cocultured with rat cortical astrocytes microglia
had a process bearing morphology and phagocytosis
was dramatically suppressed. Therefore, SP persis-
tence in vivo may be the result of a complex interplay
that occurs between glial cells associated with the SP.
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METHODS

Isolation of Senile Plaque Cores

SP cores were isolated using a modification of the
procedure of Selkoe et al. (56). Portions of frontal and
temporal lobe from three patients with confirmed,
severe Alzheimer’s disease were obtained at autopsy
and frozen. The meninges and large blood vessels were
removed along with large portions of white matter.
Grey matter was finely minced and stirred for 2 h in 2%
SDS, 1 mM Tris (pH 7.6) to a final volume of 53. Tissue
was homogenized by 20 passages in a Dounce homog-
enizer (A pestle). The homogenate was brought to 97°C
for 10 min, sieved through 110-µm nylon mesh, and
centrifuged at 300g for 30 min to pellet the SP core-
containing fraction. The samples were then washed in
(0.1% SDS, 150 mM NaCl, 0.02% NaN3) and centri-
fuged again at 300g for 10 min. The samples were
sieved through a 35-µm nylon mesh and then applied to
a noncontinuous sucrose gradient (1.2 M, 1.4 M, 1.6 M,
1.8 M sucrose) and centrifuged again at 72,000g for 60
min. All interfaces were collected, pelleted, and washed
33 with 1 mM Tris (pH 7.6), 0.1% SDS to remove
sucrose. Most of the SP cores as well as some lipofuscin
were at the 1.4 M–1.6 M interface as demonstrated by
Congo red birefringence. To enhance the purity of the
SP cores as well as to remove small or broken cores and
clumps, a Bectin–Dickinson FACStar Plus was used.
SP cores were sorted by fluorescence and size (56), with
a flow rate of 1000 particles per second. SP cores were
stored at 4°C until use.

Immunocytochemistry

Cells and SP attached to coverslips were fixed in 2%
paraformaldehyde in 1 M PBS, pH 7.2, for 1 h and
rinsed with 1 M PBS. Endogenous peroxidase activity
was blocked with 3% hydrogen peroxide for 30 min. The
coverslips were further blocked with 10% normal goat
serum for 30 min prior to addition of primary antibod-
ies or lectin. The lectin G. simplicifolia (Isolectin B4,
biotin conjugated, Sigma) was specific for microglia and
did not bind to astrocyte cultures (61). Additionally,
ED1 and OX-42 (Chemicon) were used as markers of
microglia (45). Cellular purity was assessed by using
phase microscopy and antisera to GFAP (Accurate), an
astrocyte marker, and O1, an oligodendrocyte marker
(gift of Robert Miller). SP cores were identified with the
monoclonal 4G8 (36) or antisera toAb. Primary antibod-
ies and lectin (20 µg/ml) were incubated overnight at
4°C. The peroxidase anti-peroxidase method (59) with
diaminobenzidine as a cosubstrate was used to visual-
ize the immunoreaction. Biotinylated lectin and ED1
were visualized with Vectastain ABC streptavidin-
alkaline phosphatase (Vector Labs) with Fast Blue as a
chromagen.

Microglia Cultures

Microglia were obtained using a modification of the
procedure of Giulian and Baker (23). Mixed cultures
were prepared from the cortex of PO Sprague–Dawley
rat pups, and grown in poly-L-lysine-coated flasks with
DMEM (Gibco) containing 20% fetal calf serum. After
6–7 days, the cultures were placed in an orbital shaker
at 37°C for 1 h. Microglia were separated by collecting
the media, since astrocytes and other cells remain
attached to the substrate. Microglia were seeded onto
poly-lysine-coated coverslips and after 1 h, when a
majority of microglia had adhered, the media was
changed to further eliminate contaminating, nonadher-
ent cells. Microglia obtained in this manner were
consistently .95% pure. Unless indicated, approxi-
mately 2–3 3 104 cells per well were grown in 24-well
Falcon plates.

Astrocyte Cultures and Conditioning

Astrocytes were obtained from neonatal rat pups.
Mixed glial cultures were prepared as indicated above
except they were grown in DMEM with 10% FCS for 2
weeks to allow for growth of astrocytes. Microglia and
other cells were removed through shaking. About 5 3
104 astrocytes per well were grown with SP cores for 1
week prior to the addition of microglia to determine the
effects of astrocyte conditioning/coculture. Astrocyte-
conditioned media was collected after 4 days in culture
and applied to microglia cultures 1–2 h after seeding to
determine the effects of soluble, astrocytic factors.

Fibroblast Cultures

Fibroblasts were obtained from the meninges which
were stripped from the neonatal rat brain, diced with a
razor blade, and added to poly-lysine-coated culture
flasks with DMEM and 10% FCS. Fibroblasts adhered
to the flask and the media was changed after 1 day to
remove large aggregates of cells. Fibroblast-condi-
tioned media was also obtained after 4 days.

Quantification of Senile Plaque Cores

The fate of SP cores was assayed by binding 1–2 µl of
SP core stock solution (Approximately 500 6 30 SD) to
15-mm glass coverslips previously coated with poly-L-
lysine. These were incubated in the presence of 2–3 3
104 microglial cells per well in a 24-well plate. At
various time points, the coverslips were fixed in 2%
paraformaldehyde and processed for immunocytochem-
istry. At the time of fixation, and during all media
changes, the media was collected and frozen for later
analysis. Four coverslips were used for each time point.
This paradigm was repeated for two complete sets
yielding a total of eight coverslips per time point.

Following immunocytochemistry and Congo red stain-
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ing for Ab, the SP cores remaining were counted on a
Zeiss Axiophot microscope using the 203 objective and
the 23 optivar. Lectin/alkaline phosphatase staining
was used to determine if microglia surrounded SPs
(intracellular) or were either not associated with microg-
lia or simply in close juxtaposition (extracellular). Ab
immunoreactive material within microglia which ap-
peared as condensed, small vesicles within the cell (.5
µm total diameter) was scored as 1 SP. Multiple SP
cores were scored as such only when each of the Ab
aggregates was ,10 µm diameter. In parallel cultures,
SP cores were incubated in media alone or astrocyte
cultures in the absence of microglia. Spent media was
saved and analyzed for intact SP cores by centrifuga-
tion at 5000g for 10 min. The pelleted material was
smeared and stained with Congo red solution and
viewed under cross-polarized light.

Phagocytosis of Latex Beads

Latex beads (Sigma) of the approximate diameter as
SP cores (11 µm diameter) were used to compare
phagocytosis of SP cores versus that of dissimilar
material as well as to determine the percentage of
phagocytic cells in conditioned media. Prior to use, 500
µL of a 2.5% suspension of beads was activated with
borate buffer (pH 8.0) and incubated with 300 µg/mL
bovine serum albumin for 2 h at 20°C. The beads were
rinsed three times with Tris–HCl, pH 7.2, and stored in
Tris buffer, at 4°C until use.

Microglia were seeded at approximately 3 3 104 cells
per well in 1 ml of DMEM with 10% FCS. After 2 h, the
media was replaced with fresh media or that condi-
tioned for 4 days by either astrocytes or fibroblasts
(which had been passed through a 0.2-µm filter). After
24 h, 1-µl (approximately 105) beads were added to each
well. On day 2, the percentage of cells phagocytosing
beads was determined. The first 100 randomly selected
cells were counted by a ‘‘blind’’ observer and scored as
having 0, 1, or .1 bead per cell.

Latex particles of 0.5 µm diameter (Polysciences)
were used to quantitate the extent and rate of phagocy-
tosis. Since these smaller beads were supplied in excess
and microglia could phagocytose .10 beads (rather
than 1–2 seen with 11-µm beads), they serve as a better
index for the extent of phagocytosis and kinetic analy-
sis than the larger beads. After a 24-h incubation of the
microglial cells with astrocytes or astrocyte-condi-
tioned media, latex particles were added. The cells

were fixed after 6 or 24 h and analyzed. The total
number of beads within randomly selected microglia
was determined.

Electron Microscopy

Cultures were fixed in 4% paraformaldehyde with 3%
glutaraldehyde, rinsed, and postfixed with 1% osmium
tetroxide in 0.1% sodium cacodylate buffer. The cover-
slips were then dehydrated in ethanol followed by
infiltration in Spurr medium. Thin sections were made,
stained with lead citrate and uranyl acetate, and
observed on a JEOL 100 electron microscope.

RESULTS

Isolation of SP Cores for Use in an in Vitro Model

SP cores from AD brain were isolated by the method
of Selkoe et al. (56), which yields a population with a
fairly uniform diameter (from 5 to 20 µm). They were
Congo red positive, displaying the characteristic apple-
green birefringence in a Maltese cross-pattern under
polarized light and were also Ab immunoreactive (Fig.
1). This morphology is virtually identical to SP cores in
AD brain. When placed in DMEM/F12 media alone,
over 95% of SP cores remain bound to coverslips and
intact for at least 30 days.

FIG. 1. Isolated senile plaque cores following FACS sorting and
immunocytochemistry for Ab. Scale bar, 50 µm.

FIG. 2. In vitro, SP cores (c, brown) are phagocytosed by rat cortical microglia (blue, GS1B4 isolectin) (A) and subsequently appear as
numerous small vesicles containing Ab (arrow) (B). Scale bar, 10 µm.

FIG. 6. In vivo, astrocytes show increased GFAP immunoreactivity (brown) in processes surrounding SP cores (c, core) (A). In vitro, rat
astrocytes (GFAP, brown) also surround SP cores (blue) (B). Microglia (HLADR, purple) associated with SP cores (brown) in vivo are often
ramified (C). Similarly, microglia (ED1, blue) cultured on monolayers of astrocytes (unstained, arrowheads) have a ramified morphology even
near SP cores (brown) (D). Note: in neither case is there evidence of phagocytosis of SP cores. Scale bars, 30 µm.

331ASTROCYTES SUPPRESS MICROGLIAL PHAGOCYTOSIS



332



Microglia Phagocytose and Degrade SP Cores

Rat microglial cells have the ability to phagocytose
SP cores and began to internalize them within 2 h after
plating. Although most microglia contained 1 core per
cell (Fig. 2A), a few cells phagocytosed multiple cores
(not shown). With extended time, the SP cores were
broken apart and incorporated into smaller intracellu-
lar vesicles (Fig. 2B) a phenomenon that was also

observed ultrastructurally (see below). Most cells con-
tained a single Ab containing vesicle (roughly 6–12 µm).
Others had numerous small (1–2 µm) Ab containing
vesicles. The number of cells with these ‘‘broken’’ cores
was low, suggesting that SP cores are rapidly cleared
once they have been partitioned into smaller vesicles.

Electron microscopy verified that the SP cores were
intracellular (Fig. 3A). At early time points, intact SP

FIG. 3. Ultrastructural examination of internalized SP cores shows Ab fibrils (A, arrowheads) (A) within a membrane bounded vesicle
(arrowheads) (B). Phagolysosomes (PL) could be seen fusing with the SP containing vesicle (C). N, nucleus. (A) Scale bar, 2 µm. (B, C) Scale bar,
1 µm.
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cores could be observed in apparent membrane bounded
structures residing entirely within the cell (Fig. 3B).
The SP cores occupied most of the cytoplasmic space,
displacing the nucleus to one side. Phagolysosomes,
characteristic of microglia, could be seen fusing with
the SP core containing vesicle (Fig. 3C), suggesting that
lysosomal enzymes may be involved in SP breakdown.

Temporal Distribution of SP Core Phagocytosis and
Breakdown

To determine the kinetics of SP core clearance from
microglial cultures, we examined their temporal distri-
bution. Extracellular SP cores decreased continuously
and exponentially during the culture period, consistent
with rapid phagocytosis by microglia (Fig. 4A). In
conjunction, the number of intracellular SP cores in-
creased steadily within the first 24 h, but then stabi-
lized for the next 7 days in culture (Fig. 4B), and then
decreased.

After 3 days in culture, the total number of SP cores
(extracellular and intracellular combined) decreased
exponentially; less than 10% remained by day 30 (Fig.
4C). This distribution of SP cores is consistent with
phagocytosis, internal processing leading to break-
down, and subsequent turnover or removal of SP from
the cell.

Phagocytosis May Be the Rate Limiting Step

In order to determine if the rate-limiting step in SP
core clearance is the rate of phagocytosis or subsequent
breakdown, the rate of SP core clearance was followed
for a range of microglial cell densities. At higher cell
densities, nearly 100% of the SP cores were phagocy-
tosed within 24 h while with low cell densities it was
,60% over the same time period. The initial rate of SP
core dissolution was dependent on the number of cells
per well (Fig. 5A), suggesting that phagocytosis is a
rate-limiting step in SP core clearance with a minimum
SP core half-life of 2.4 days (Fig. 5B). However, even
with maximum cell density (100,000 cells per well) and
virtually all of the SP cores internalized within hours,
there was a small fraction of cores which persisted
intracellularly for at least 14 days. It is unclear whether
this is a subset of resistant SP cores or a subgroup of
microglia with less efficient digestive capacity.

Response of Glial Cells to SP Cores in Vitro

In order to mimic the cellular complexity of the SP we
presented isolated SP cores to microglia in mixed glial
cultures. Rat cortical astrocytes were grown on SP
cores which had been bound to coverslips. Astrocytes
wrapped processes around the SP cores but did not
phagocytose them, a situation that is reminiscent of
astrocytes associated with SPs in AD brain (compare
Figs. 6A and 6B). These cells appeared to adopt a

FIG. 4. Time course of microglial SP phagocytosis expressed as
extracellular (A), intracellular (B), and total SP cores (C). Each time
point is an average from eight coverslips.
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reactive phenotype as indicated by their morphology
and increased GFAP immunoreactivity (Fig. 6B) in the
immediate vicinity of the SP core. SP cores were not
toxic to astrocytes since these cells survived with SP
cores through 30 days in vitro. Further, DIC microscopy
and immunocytochemistry indicated that the astro-
cytes did not completely cover the SP cores but left
them partially exposed providing a surface for micro-
glial contact.

Microglia seeded onto an established monolayer of
astrocytes with SP cores adopted a process bearing
morphology even when in close contact with SP cores
(Fig. 6D). The microglial processes were long and
branched, consistent with previous studies which have
shown that astrocytes induce microglial ramification

(26, 39, 58, 65). During the 14-day period of the
experiment, few microglia phagocytosed SP cores in the
presence of astrocytes. Surprisingly, microglia often
clustered tightly around the SP cores but, nonetheless,
they did not phagocytose them (Fig. 6D). Both micro-

FIG. 5. SP core clearance was dependent on microglial density
(A) as reflected in a decreasing half-life (B). In A, each time point
represents an average from six coverslips from two experiments. (*no
microglia; M, 1 3 103 cells/well; W, 2.5 3 103 cells/well; X, 5 3 104

cells/well; N, 1 3 105 cells/well.)

FIG. 7. In contrast with the clearance of SP cores by microglia, if
SP cores were cultured with astrocytes for 7 days prior to addition of
microglia virtually no SP cores were cleared. (N, microglia only; W,
microglia 1 astrocytes; M, no microglia.)

FIG. 8. Microglia were grown in astrocyte conditioned, fibroblast
conditioned, or control media for 24 h prior to addition of polystyrene
beads. Astrocyte-conditioned media reduces the percentage of microg-
lia phagocytosing 11-µm polystyrene beads compared to noncondi-
tioned media or fibroblast conditioned media. Note: microglia which
had phagocytosed a bead had a round morphology. (Representative
data, N 5 6, performed in triplicate.)
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glial clustering and their process bearing morphology
are characteristics of microglia in AD brain (Fig. 6C).
With extended time in coculture, some microglia did
eventually phagocytose SP cores; however, the de-
creased phagocytosis of SP cores in the presence of
astrocytes was reflected in their persistence. Time
course experiments indicated the SP cores were not
readily broken down or cleared from microglia cocul-
tured with astrocytes (Fig. 7).

Effect of Astrocytes/Astrocytic Factors on Microglial
Phagocytosis

To determine whether astrocyte factors decrease
microglial phagocytosis generally, we used 11-µm latex
beads as a model of SP cores but having the advantage
that they cannot be broken down. While microglia
readily phagocytosed these beads, neither astrocytes
nor fibroblasts did. In cocultures, microglia growing on
fibroblast monolayers quickly phagocytose the beads;
however, microglia growing on astrocyte monolayers
showed virtually no internalization of the beads. The
ability of astrocytes to suppress phagocytosis is, in part,
diffusible since the percentage of phagocytic microglia
was significantly lower in astrocyte-conditioned media
compared with fibroblast conditioned media (Fig. 8). In
all cases, suppression of phagocytosis was temporally
correlated with microglial transformation from a round
to a ramified morphology. These results were consistent
with other findings that ramified microglia have im-
paired phagocytic ability (23, 69) since microglia grown
on astrocytes were ramified while those on fibroblasts
were round.

We further analyzed the effects of astrocytes on the
extent and rate of microglial phagocytosis using 0.5-µm
latex particles. The smaller size allows the microglia to
phagocytose numerous beads which provides a more
precise evaluation of the kinetics of phagocytosis. Mi-
croglia were incubated for 24 h in the presence of
astrocytes, astrocyte-conditioned media, or control me-
dia prior to addition of the latex particles. Astrocyte
cocultures suppressed phagocytosis at least three-fold
compared to control media. A similar, although less
dramatic effect was also seen in astrocyte-conditioned
media (Fig. 9A) after 6 h. In both astrocyte cocultures
and conditioned media, phagocytosis was still signifi-
cantly suppressed after 24 h; however, by this time, the
differences between astrocyte coculture and astrocyte-
conditioned media were less obvious (Fig. 9B). While
diffusible astrocytic factors appear to suppress micro-
glial phagocytosis in general, direct astrocytic contact
was clearly more effective in suppression of phagocyto-
sis as well as induction of a ramified morphology (Fig. 10).

DISCUSSION

We have shown that microglial cells from rat cortex
can rapidly phagocytose whole SP cores. Once internal-
ized, the SP cores were partitioned into smaller vesicles
and cleared from the cell. However, when in the pres-
ence of astrocyte-conditioned media or especially when
direct contact occurred between astrocytes and microg-
lia, microglial phagocytosis was strongly suppressed
with a coincident increase in their ramification. This
suggests that both diffusible and astrocyte contact-

FIG. 9. Phagocytosis of 0.5-µm latex particles conditioned for 24 h with astrocytes, astrocyte-conditioned media, or control media. After 6
h, astrocyte-conditioned media suppresses microglial phagocytosis; however, not to the same extent as astrocyte cocultures until 24 h (B),
while both are significantly less than control. (Representative data, performed in triplicate.)
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FIG. 10. As early as 1 day in coculture with astrocytes, microglia (red, ED-1) adopt a ramified morphology when in direct contact with
astrocytes (A) while other microglia in the same culture not in contact with astrocytes remain round (B, arrow). Note the large number of latex
beads (green) phagocytosed by microglia not in contact with astrocytes.
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mediated factors play significant roles in regulating
microglial phagocytosis (26, 67) in vitro, a phenomena
that may be relevant to the turnover of SPs within the
brain.

Several roles for microglia in the pathogenesis of AD
have been proposed, including production of Ab fibrils
(16, 71), proteolytic processing of bPP (12), synaptic
stripping (47), destruction of neurons through comple-
ment activation (29, 43, 53), and the production of
cytokines and neurotoxins (2, 25). Relatively little
attention has been paid to phagocytic activities of
microglia possibly because the ramified microglia asso-
ciated with SPs, although activated (34, 41), are in a
largely nonphagocytic state. Observations of minimal
Ab phagocytosis in vivo (27) contrast with the robust
debris removal capacity that microglia actually possess
following traumatic injury such as a stroke or penetrat-
ing injury. Indeed, following a stroke, microglia rapidly
phagocytose SP in a rapid time frame consistent with
our in vitro model (70). Significantly, both penetrating
injury and stroke can lead to astrocyte death or migra-
tion from the immediate site of injury (40), which could,
in turn, eliminate their regulatory role and allow for a
more rapid rate of debris removal.

Our results are consistent with previous studies
where dog microglia in culture (16) and rat microglia in
situ phagocytosed SP cores (18). However, in both
studies, the authors stressed the persistence of Ab
rather than its removal and suggested that Ab was
resistant to microglial proteases even though in the
latter study Ab was present in small, intracellular
vesicles. While we also found that some SP cores could
persist for as long as 30 days in vitro, this represented
only a small subpopulation of SP cores. Further, since
the SP cores were initially of a uniform size, but once
eaten, became incorporated into progressively smaller
vesicles, we suggest that these observations are consis-
tent with the idea that SP cores can be readily broken
down by their host phagocyte (3, 57). The similar
regulatory capacity of astrocytes on microglia in the
presence of both SP cores and latex beads suggest
astrocyte inhibition of microglial phagocytosis is not
Ab-specific. Astrocytes could regulate microglial phago-
cytosis through a number of possible mechanisms.
Astrocytes could down-regulate microglial scavenger
receptors or (5, 11, 48) alter levels of phagocytosis-
related trophic factors (14). Alternatively, astrocytes
may induce ramification which blocks the formation of
pseudopods thought to be required for phagocytosis
(59).

Although the specific astrocytic factor(s) that induce
microglial ramification are unknown, a number of
candidate molecules exist including mCSF1 (39), fibro-
nectin (10), and TGF-b (66). In addition, a recent paper
clearly implicated astrocytic extracellular matrix pro-
teins (67) since fixed astrocyte monolayers as well as

astrocyte matrix alone induced ramification. Our re-
sults are consistent with these findings, since astrocyte
monolayers were much more effective than astrocyte-
conditioned media in suppressing phagocytosis. Al-
though it is well established that astrocytes can induce
ramification of microglia (26, 39, 58, 64), ours is the first
to show that astrocytes concomitantly suppress micro-
glial phagocytosis.

The implications for astrocyte regulation of micro-
glial phagocytosis and debris removal within the CNS
goes well beyond its potential role in AD. Following an
injury to the PNS, macrophages rapidly adopt a round
morphology and remove debris and necrotic tissue
quickly (7, 20, 51, 72). In contrast, a lesion to the CNS
such as severing (7, 50) or crushing (17) the optic nerve
results in a much slower rate of resolution distally. Our
data implicating astrocytes in the general suppression
of microglial phagocytosis suggests that astrocytes may
be indirectly responsible for the persistence of SP as
well as other forms of debris in the brain.
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