Faculty Publications and Presentations
Publication Date
2001
Document Type
Article
Abstract
Direct (intracisternal) injection of aluminum complexes into rabbit brain results in a number of similarities with the neuropathological and biochemical changes observed in Alzheimer’s disease and provides the opportunity to assess early events in neurodegeneration. This mode of administration induces cytochrome c release from mitochondria, a decrease in Bcl-2 in both mitochondria and endoplasmic reticulum, Bax translocation into mitochondria, activation of caspase-3, and DNA fragmentation. Coadministration of glial cell neuronal-derived factor (GDNF) inhibits these Bcl-2 and Bax changes, upregulates Bcl-XL, and abolishes the caspase-3 activity. Furthermore, treatment with GDNF dramatically inhibits apoptosis, as assessed by the TUNEL technique for detecting DNA damage. Treatment with GDNF may represent a therapeutic strategy to reverse the neuronal death associated with Alzheimer’s disease and may exert its effect on apoptosis-regulatory proteins.
Recommended Citation
Dewitt, David A.; Ghribi, Othman; Herman, Mary M.; Forbes, Michael S.; and Savory, John, "GDNF Protects against Aluminum-Induced Apoptosis in Rabbits by Upregulating Bcl-2 and Bcl-XL and Inhibiting Mitochondrial Bax Translocation" (2001). Faculty Publications and Presentations. 8.
https://digitalcommons.liberty.edu/bio_chem_fac_pubs/8
Comments
Published in Neurobiology of Disease 8, 764–773 (2001).